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Potential Games: A Special Class

Potential games are a special class of games that admit tractable static
and dynamic analysis.

- A pure strategy Nash equilibrium always exists.

- Natural learning dynamics converge to a pure Nash equilibrium.

- [Monderer and Shapley 96], [Young 98], [Marden, Arslan,
Shamma 07, 09]

Only a few games in economics, social sciences, or engineering are
potential games

- e.g., congestion games.
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Motivation of Our Research

- What makes potential games “special”?

- What is the underlying preference structure that leads to the
desirable properties of potential games?

- Are there other classes of games with distinguished static and
dynamic properties?

- How do we determine whether a game is “close" to a potential
game?
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Main Contributions

We obtain a direct sum decomposition of games:

- We provide a representation of finite games as flows on graphs.

- These flows admit an orthogonal decomposition, which leads to a
decomposition of the space of games to potential (P), harmonic (H)
and nonstrategic (N ) components:

P ⊕
Harmonic games︷ ︸︸ ︷
N︸ ︷︷ ︸

Potential games

⊕ H .

- Closed form expressions for each of these components.

This decomposition allows us to identify classes of games with distinct
properties.

- For instance, potential games always have pure equilibria, whereas
harmonic games generically do not.
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Main Contributions – II

Decomposition framework can be used to find close potential games
to a given game.

Properties of potential games can be extended to near-potential
games:

- Approximate equilibria of a game can be characterized in terms
of the equilibria of a close potential game.

- Convergence properties of dynamics can be studied using the
relation of the game to a close potential game.
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Outline

1. Decomposition of games

2. Properties of potential and harmonic games

3. Equilibria and dynamics in near-potential games
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Potential Games and Nash Equilibrium

- Finite games in strategic form: G = 〈M, {Am}m∈M, {um}m∈M〉.
- A = Πm∈MAm denotes the set of strategy profiles, and um : A→ R.

- A unilateral deviation by player m: (pm,p−m)→ (qm,p−m).

- G is an exact potential game if there exists a function φ : A→ R, such
that for all m ∈M, pm, qm ∈ Am, and p−m ∈ A−m:

um(qm,p−m)− um(pm,p−m) = φ(qm,p−m)− φ(pm,p−m).

O F
O 3, 2 0, 0
F 0, 0 2, 3

Table: Battle of the Sexes

O F
O 3 1
F 0 3

Table: Potential function

- A global maximum p of the potential is a pure Nash equilibrium.

um(pm,p−m)− um(qm,p−m) ≥ 0 for all m ∈M, qm ∈ Am.

- Natural learning dynamics converge to a NE.
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Potential Games and Cycles

Is matching pennies a
potential game?

H T
H 1, -1 -1, 1
T -1, 1 1, -1

Table: Matching Pennies

Consider a cycle of unilateral
deviations:

(H,H) (H,T)

(T,H) (T,T)

2 2

2

2

Figure: Utility improvements.

Since the utility of the deviating player improves at each step, this
cannot be a potential game:

- At each deviation payoff increases by 2,
- When the cycle is completed the potential would need to

increase by 8.
- Monderer and Shapley 96: G is a potential game↔ total utility

change over a unilateral deviation cycle equals to zero.
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Flows on Graphs

What is the global structure of these cycles?

Conceptually similar to structure of (continuous) vector fields.

We need the combinatorial analogue (flows), a well-developed theory
from algebraic topology.

Consider an undirected graph G = (A,E), with set of nodes A, and set
of edges E.

Edge flows: X : A× A→ R such that X(p,q) = −X(q,p) if
(p,q) ∈ E, and 0 otherwise.

9



Flows on Graphs

What is the global structure of these cycles?

Conceptually similar to structure of (continuous) vector fields.

We need the combinatorial analogue (flows), a well-developed theory
from algebraic topology.

Consider an undirected graph G = (A,E), with set of nodes A, and set
of edges E.

Edge flows: X : A× A→ R such that X(p,q) = −X(q,p) if
(p,q) ∈ E, and 0 otherwise.

9



Helmholtz (Hodge) Decomposition

The Helmholtz Decomposition allows for orthogonal decomposition
of the space of edge flows into these three flow components:

I Gradient flow: globally consistent component.
I Harmonic flow: locally consistent, but globally inconsistent.

component
I Curl flow: locally inconsistent component.

im(grad) ker(∆1) im(curl∗)

ker(div)ker(curl)
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Helmholtz (Hodge) Decomposition

Globally consistent Globally inconsistent

Locally consistent Locally inconsistent

Gradient flow Harmonic flow Curl flow
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Flow Representations of Games

- Let Em denote the set of pairs of strategy profiles that differ in
the strategy of only player m, and E = ∪mEm.

- The game graph is defined as the undirected graph G = (A,E).

- For all m ∈M, and f ∈ C0 we define a difference operator Dm:

(Dmf )(p,q) =

{
f (q)− f (p) if (p,q) ∈ Em

0 otherwise.

- The flow generated by a game is given by X =
∑

m∈M Dmum.

H T
H 1, -1 -1, 1
T -1, 1 1, -1

Table: Matching Pennies

(H,H) (H,T)

(T,H) (T,T)

2 2

2

2

Figure: Flow Representation.
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Game Flows: 3-Player Example

1

2 3

- Em = {0, 1} for all m ∈M, and payoff of player i be −1 if its strategy
is the same with its successor, 0 otherwise.

- This game is neither an exact nor an ordinal potential game.

(1, 1, 0) (1, 1, 1)

(1, 0, 0) (1, 0, 1)

(0, 1, 0) (0, 1, 1)

(0, 0, 0) (0, 0, 1)
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Strategically Equivalent Games

Consider the following two games:

H T
H 1, -1 -1, 1
T -1, 1 1, -1

H T
H 2, -1 -1, 1
T 0, 1 1, -1

These games have the same utility change due to unilateral deviations, and
therefore yield the same flows.

They are also strategically equivalent (same equilibrium and dynamic
properties).

The nonstrategic component of player m’s utility belongs to kernel of Dm.

- Πm = D†mDm is a projection operator which eliminates the nonstrategic
component,

- Nonstrategic component of player m’s utility: um −Πmum.
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Redefining Potential Games

- Note that a game is an exact potential game if and only if for all
m ∈M:

Dmum = Dmφ.

- δ0 =
∑

m∈M Dm is a combinatorial gradient operator.

- Image spaces of operators {Dm}m∈M are orthogonal.

- A game is an exact potential game if and only if∑
m∈M

Dmum =
∑

m∈M
Dmφ = δ0φ.

Exact Potential Games - Alternative Definition
A game is an exact potential game if and only if

∑
m∈M Dmum is a

gradient flow.
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Decomposition: Potential, Harmonic, and Nonstrategic

Decomposition of the game flows induces a partition of the space of games:

- When going from utilities to flows, the nonstrategic component is
removed.

- Since we start from utilities (not preferences), always locally
consistent.

- Therefore, two flow components: gradient and harmonic

- potential component corresponds to gradient flow.
- harmonic component corresponds to harmonic flow.

Thus, the space of games has a canonical direct sum decomposition:

G = P ⊕N ⊕H.
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Closed form expressions for decomposition

Theorem (Decomposition)

1. The Potential Component: um
P = Πmφ,

2. The Harmonic Component: um
H = Πmum −Πmφ,

3. The Nonstrategic Component: um
N = (I −Πm)um,

where φ =
(∑

m Dm
)†∑

m∈M Dmum and Πm = D†mDm.

GM,E

φ C1 C2

{Dm}

δ0 δ1
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Example

A B
A 4, 2 1, -2
B -4, 3 -1, -3

Table: A two player game

(A,A) (A,B)

(B,A) (B,B)

8 2

4

6

Figure: Flow Representation

A B
A 3, 3 2, -3
B -3, 2 -2, -2

Table: Potential Component

(A,A) (A,B)

(B,A) (B,B)

6 4

6

4

Figure: Flow Representation

A B
A 1, -1 -1, 1
B -1, 1 1, -1

Table: Harmonic Component

(A,A) (A,B)

(B,A) (B,B)

2 2

2

2

Figure: Flow Representation
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Properties of the Decomposition

Using the decomposition we identify classes of games with distinct
properties:

- Set of potential games: P ⊕N .

- Set of harmonic games: H⊕N .

Potential and harmonic games have very different equilibrium properties:

Theorem
Potential games always have a pure Nash equilibrium

Theorem
Harmonic games generically do not have pure Nash equilibria.
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Properties of the Decomposition

Other interesting properties of harmonic games:

- A mixed NE: each player chooses a strategy uniformly at random.

- Players never strictly prefer their equilibrium strategies.

- Two players: set of mixed Nash equilibria = set of correlated equilibria

- Two players and equal number of strategies: Uniformly mixed strategy
is the unique mixed NE.
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The Nonstrategic Component

The nonstrategic component does not affect equilibrium sets.

However, payoff related properties, such as efficiency, are determined by the
nonstrategic component.

A strategy profile p is Pareto optimal if there does not exist any other
strategy profile q such that,

um(q) ≥ um(p), for all m ∈M
uk(q) > uk(p), for some k ∈M.

Theorem
Given a game G, there exists a game Ĝ with the same potential and
harmonic components such that the set of pure Nash equilibria of Ĝ
coincides with the set of Pareto optimal strategy profiles.
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Near-Potential Games: Equilibria and Dynamics

Decomposition allows for approximations with a potential game.

- Component in P ⊕N , is the best approximation with a potential game.

Near-potential game: A game with a “small” harmonic component G − Ĝ.

Properties of G can be studied using those of the potential game Ĝ:

- Any equilibrium of G is an ε-equilibrium of Ĝ.

- Natural learning dynamics (e.g., fictitious play, better/best response)
converge to an ε-equilibrium set.

- where ε ∝ G − Ĝ

Static and dynamic properties of a game can be (approximately)
characterized using its potential + nonstrategic components.
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Approach for Analyzing Dynamics

Assume that G is “close” to a potential game Ĝ. Then, the dynamics in G can
be analyzed by:

- Characterizing the outcome of dynamics in Ĝ.

- Using this characterization and the fact that the two games are close, to
approximately characterize the outcome of dynamics in G.

The potential function of Ĝ provides a natural Lyapunov function for
analyzing both games.

- The difference between the potential component and the original game
is a perturbation on this system.
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Discrete Time Better Response Dynamics

Discrete time better response dynamics:

- At each time step t a single player is chosen at random, using a
probability distribution with full support over the set of players.

- Say player m is chosen for update and r ∈ E is the current strategy
profile.

- Player m does not modify its strategy if um(r) = maxqm um(qm, r−m),
and otherwise it updates its strategy to a strategy in
{qm|um(qm, r−m) > um(r)}, chosen uniformly at random.

Convergence in potential games follows by observing that with each update
the potential strictly increases.
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Discrete Time Better Response Dynamics – 2

Theorem
Consider some game G and let Ĝ be a close potential game, such that
d(G, Ĝ) = δ. In G, the trajectory of the better-response dynamics is
contained in the ε-equilibrium set, after finite time with probability 1, where
ε = δ|E|.

- The update process can be modeled with a Markov chain.

- With probability 1, convergence to a recurrent class in finite time.

- Recurrent classes can be characterized with better response cycles.
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Logit-Response Dynamics

Logit-Response Dynamics:

- At each step t, a single player is chosen at random for updating its
strategy.

- Say player m is chosen for update and r ∈ E is the strategy profile.

- Logit response dynamics is the update process, where this player
chooses qm ∈ Em with probability,

Pm
τ (qm|r) =

e
1
τ um(qm,r−m)∑

pm∈Em e
1
τ um(pm,r−m)

.

If τ → 0, players choose their best responses at each update.
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Logit-Response Dynamics – 2

- Logit-response dynamics can be modeled with an irreducible
Markov-chain with transition probabilities:

Pτ (p→ q) =

{
αmPm

τ (qm|p) if q−m = p−m

0 otherwise.

- Let µτ be the stationary distribution. We refer to a strategy profile q
such that limτ→0 µτ (q) > 0 as a stochastically stable strategy profile.

- In potential games, the stochastically stable states are the maximizers
of the potential function.
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Logit-Response Dynamics – 3

Theorem
Let G be a game and Ĝ be a close potential game with potential φ, such that
d(G, Ĝ) = δ. Then, the stochastically stable strategy profiles of G are

(i) contained in S = {p|φ(p) ≥ maxq φ(q)− |E|δ},

(ii) ε-equilibria of G, where ε = (|E|+ 1)δ.

- Proof relies on characterization using resistance trees [Young, 1993],
[Marden and Shamma 2008].

- In near potential games, stochastically stable strategy profiles

- approximately maximize the potential,
- and are contained in an approximate equilibrium set.
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Discrete Time Fictitious Play

In DT fictitious play, agents maintain empirical frequencies of other players’
actions

- They assume (incorrectly) that others are playing randomly and
independently according to empirical frequencies

- At each time instant t, every player m, chooses a strategy pm
t such that

pm
t ∈ arg max

qm∈Em
um(qm, µ−m

t ).

- Empirical frequencies converge to a (mixed) equilibrium in potential
games.

- Observe that the evolution of the empirical frequencies can be captured
by the following equation:

µt+1 =
t

t + 1
µt +

1
t + 1

It,
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Discrete Time Fictitious Play – 2

Lemma
Consider a game G and let Ĝ be a near-potential game with a potential
function φ, such that d(G, Ĝ) = δ. Assume that at time T > 0, the empirical
frequency vector µT is outside the ε equilibrium set of G. Then

φ(µT+1)− φ(µT) ≥ ε−Mδ
T + 1

+ O
(

1
T2

)

I Taylor expansion of φ around µT .

I φ is a multilinear function of its argument.

I Implication: if ε > Mδ, for sufficiently large T , the potential function
“increases” when evaluated at µT .
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Discrete Time Fictitious Play – 3

Theorem
Consider a game G and let Ĝ be a near-potential game, with potential
function φ, such that d(G, Ĝ) = δ. In G, the empirical frequency of fictitious
play converges to the set

C = {x ∈ ∆E|φ(x) ≥ min
y∈XMδ

φ(y)}.

- Assume that t� 0 and µt /∈ XMδ . Then

φ(µt+1)− φ(µt) ≥
ε′ −Mδ
2(t + 1)

> 0.

- Thus XMδ is reached in finite time.
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Discrete Time Fictitious Play – 4

Stronger version of the result can be obtained for games with finitely many
equilibria:

- For small δ, XMδ has disjoint components.

- For sufficiently large t, µt can visit only one such component,
containing equilibrium x.

- Using φ(µT+1)− φ(µT) ≥ ε−Mδ
T+1 + O

( 1
T2

)
, it is possible to construct a

neighborhood r of x that contains the trajectory of µt for t ≥ t′.

x
µ(t)

µ(t’)

r

Figure:
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Summary

We provide a decomposition of games into potential, harmonic and
nonstrategic components.

- Using the decomposition framework we identify classes of games with
distinct properties.

- We establish interesting equilibrium properties of harmonic games.

- Approximation of a game with a potential game provides a systematic
framework for approximate characterization of static and dynamic
properties in arbitrary games.

Future directions:

- Dynamic properties of harmonic games.

- Designing incentive mechanisms for guaranteeing desirable limiting
behavior in near-potential games.
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Questions?
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