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Settings

Are given

a finite time horizon T > 0,

e two metric, compact control spaces U, V,

for some | € N* and all i € {1,...,/} a continuous map
60, T]x Ux V=R,
A(I) denotes the set of probabilities on {1,...,/}

~ simplex in R’.

Isaac's assumption: For all (t,p) € [0, T] x A(/),

min,cy Max, ey Z,I-zl pili(t, U,IV)
— maxyey mingey Y1y pili(t, u,v) == H(E. p)



A preliminary game
Fix (t,p) € [0, T] x A(/).
For any u. : [t, T] — U and v. : [t, T| = V measurable,
consider the mean payoff

J(t, p,u.,v) Zp,/ (s, us, vs)ds.

P1 plays u. and aims to minimize J(t, p, u, v),
P2 plays v. and aims to maximize J(t, p, u, v).

Interpretation: The index i is chosen according to p, but no player is
informed : both optimize the average game.
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For any u. : [t, T] — U and v. : [t, T| = V measurable,
consider the mean payoff

J(t, p,u.,v) Zp,/ (s, us, vs)ds.

P1 plays u. and aims to minimize J(t, p, u, v),
P2 plays v. and aims to maximize J(t, p, u, v).

Interpretation: The index i is chosen according to p, but no player is
informed : both optimize the average game.

Proposition: Under Isaacs assumption, the game has a value

i
Vo(t,p):/ H(s, p)ds = J(t, p, u*, v*),
t

with u} € Argmin, max, Z,I':1 pili(s, u, v)
and v} € Argmax, min, Zle pili(s, u,v).



Payoff: J(t, p,u,v) =", pi ftT i(s, us, vs)ds.

P1 plays u. and aims to minimize J(t, p, u,v),
P2 plays v. and aims to maximize J(t, p, u,v).

Proposition: Under Isaacs assumption, the game has a value

Vole.p) = [ His. s

with H(s, p) = min,cy max,cy Z:l':l pili(s,u,v).

Remark:
Obviously, Vg satisfies

{ WMo | fi(t,p) =0, (t,p) € [0, T] x A(I),
Vole=7 = 0.




Game with incomplete information on one side

Given (t,p) € [0, T] x A(/), suppose now that,

e attime t, i € {1,...,/} is chosen randomly according to p and
shown to P1 (not to P2),

e P2 knows p,

e both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost
I T
J(t,p, U.,VA) :Zizl pi ft ei(sa Us, VS)dS'
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Given (t,p) € [0, T] x A(/), suppose now that,

e attime t, i € {1,...,/} is chosen randomly according to p and
shown to P1 (not to P2),

e P2 knows p,
e both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost
I T
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Strategies for P1:

a (i, (V,., t<r< S)) > Us random (+technical assumptions)
Strategies for P2:

B:(u,t <r<s)r vs random (+technical assumptions) .



Values

Ity pou,v) =0 pi [T (s, us, vs)ds

Strategies for P1:

a: (i, (vt <r<s))— us random (4technical assumptions)
Strategies for P2:

B - (U,, t<r< S) > Vs random (+technical assumptions) .

Payoff: (p, a, 8) induces a probability Ppapgon{l,. .../} XUy X V.
Set J(t.p,c,3) = Ep o ’ﬂ[ft (s, us, vs)ds].

Upper value function: V*(t, p) = inf, supg J(t, p, v, )
Lower value function: V= (t, p) = supginf, J(t, p,a, B)

Theorem 1 (Cardaliaguet 2007): Under Isaac’s assumption, the game
has avalue V.=Vt =V—,



Characterization of the value V
For (t,p) € [0, T] x A(I), let M(t, p) be the set of cadlag martingales
(ps) with values in A(/) such that p;,_ = p.

Theorem 2 (Cardaliaguet,R. 2009) For all (t, p) € [0, T] x A(/),
, T
V(t, p) = minyengep) E [f, H(s, p)ds] (+)
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e (ps) is a martingale of belief for P2.



Characterization of the value V

For (t,p) € [0, T] x A(I), let M(t, p) be the set of cadlag martingales
(ps) with values in A(/) such that p;,_ = p.

Theorem 2 (Cardaliaguet,R. 2009) For all (t, p) € [0, T] x A(/),
, T
V(t, p) = minyengep) E [f, H(s, p)ds] (+)

Comment:
For any (random) control u. played by P1, set

ps(i) = P[ index i has been chosen|u,,t <r <s],ie{1,...,1}.

Then
e (ps) is a A(/)-valued martingale with p,_ = p,
e (ps) is a martingale of belief for P2.
Optimal strategy for P1 :
e choose (ps) optimal in (¥*),
e forall s € [t, T], play uf € Argminmax, ), ps(/)¢i(s, u, v).



Characterization of the value 2

. T
V(t, p) = minge e E [ S, H(s. pe)ds| (+).

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

e V(T,p)=0

o forall t €0, T], p— V(t,p) is convex,

° % + H(t,p) >0,

e for all (t, p) such that p’ — V/(t,p’) is strictly convex in p/,

oV

5; T H(tp)=0.

(if V is not smooth, this holds in a viscosity sense.)



Characterization of the value 2

. T
V(t,p) = ming e mep) E Df H(s, ps)ds| (x).

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

o \/( T, p) =0

e forall t € [0, T], p— V(t,p) is convex, (Splitting argument)
o B¢ +H(t.p) >0,

e for all (t, p) such that p’ — V/(t, p’) is strictly convex in p/,

oV
ot + H(t,p) =0.

(if V is not smooth, this holds in a viscosity sense.)



Characterization of the value 2

V(t,p) = ming e mep) E UtT H(s, ps)ds| ().
(<[5 H(s, p)ds + V(t + h, p))

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that
o V(T,p)=0
e forall t € [0, T], p— V(t,p) is convex,
o &t +H(t,p) =0,
e for all (t, p) such that p’ — V/(t, p’) is strictly convex in p’,
oV

E-FH(t,p):O.

(if V is not smooth, this holds in a viscosity sense.)



Characterization of the value 2

. T
V(t,p) = ming e mep) E Ut H(s, ps)ds| (x).

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

* V(T,p)=0

e forall t € [0, T], p— V(t,p) is convex,

o B¢ +H(t.p) >0,

e for all (t, p) such that p’ — V/(t,p’) is strictly convex in p/,
oV
— 4+ H(t,p) =0.
or TH(EP)=0

(if V is not smooth, this holds in a viscosity sense.)

Idea: Let (ps) optimal in (*). Then (ps) martingale and V strictly
convex = limg : ps = p.



Characterization of the value 2
V(t.p) = minyeatiep) E | S, His,po)ds| ()

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

o V(T,p)=0

e forall t €0, T], p— V(t,p) is convex,

o Y 4+ H(t,p) >0,

e for all (t, p) such that p’ — V/(t,p’) is strictly convex in p/,

oV
ot + H(t,p) =0.

(if V is not smooth, this holds in a viscosity sense.)

or equivalently:
V is the unique viscosity solution of:

{ min{%¥ + H; Amin(D2V)} =0,
V|t=T = 07

where \pin(A) is the smallest eigenvalue of A.
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Game with incomplete information on both sides

Now let /,J € N* and (/)i j)e{1....1} x{1.....s; @ family of continuous
functions [0, T] x U x V — R.
Given (t,p,q) €0, T] x A(I) x A(J), suppose now that,
e at time t, (/,j) € {1,...,1} x {1,...,J} is chosen randomly
according to p® g
e j is shown to P1, j to P2,
e both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost
T
J(t,poq u,v) =32 pig; [, (s, us, vs)ds.
We suppose still that Isaac’s assumption holds : for all (¢, p, q)

minuEU maXyev Zi,j piqjgij(tv P, q)
= maxvev minyeu >, ; Piqili(t, p, q) = H(t, p, q).



Strategies for P1:

a:(i,(v,,t <r <5s))— us random (4technical assumptions)
Strategies for P2:

ﬂ : (_].7 (U,, t<r< 5)) = Vg random (+technical assumptions) .

Upper Value : W*(t, p, q) = info supg J(t, p, q,a, ),
Lower Value : W~(t, p, q) = supginf, J(t, p, q,a, B).

Theorem 3 (Cardaliaguet 2007): Under Isaacs assumption the
continuous time game with incomplete information on both sides has a
value W := W* = W~ which is the unique viscosity solution of:

{ max{min %—Vt‘/ + H,; /\min(Dg W)} ; )\maX(Dg W)} =0,
W|t:T = 07

where Apin(A)(resp. Ama(A)) is teh smallest (resp. largest) eigenvalue of
A



Representation in terms of a martingale control-problem 7

We want to define a continuous-time zero-sum game having same value
W(t, p, q) as the zero-sum game with incomplete information on both
sides, and such that:

e P1 controls a (cadlag) martingale (ps)se[e, ) with values in A(/) and

Pt— = p.
e P2 controls a (cadlag) martingale (gs)sefe, 77 with values in A(J)
and g;:— = q.

e The expected payoff is E[ftT H(s, ps, gs)ds].

Repeated games, Laraki 2001 : the splitting game.
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Representation in terms of a martingale control-problem 7

We want to define a continuous-time zero-sum game having same value
W(t, p, q) as the zero-sum game with incomplete information on both
sides, and such that:

e P1 controls a (cadlag) martingale (ps)se[e, ) with values in A(/) and

Pt— = p.
e P2 controls a (cadlag) martingale (gs)sefe, 77 with values in A(J)
and g;:— = q.

e The expected payoff is E[ftT H(s, ps, gs)ds].

Repeated games, Laraki 2001 : the splitting game.

Main problem: How to define non-anticipative strategies in this context?
Chosen approach: Use the framework of stochastic differential games.



A stochastic differential game.

Let (BL) and (B?) be two independent Brownian motions with values in
R/, resp. R7.

For t € [0, T],

let (a;)i<s< 7 be a FB" B _adapted R'*'-valued process,

(resp. (bs)i<s< 7 be FB":B*-adapted, R’*/-valued).



A stochastic differential game.

Let (BL) and (B?) be two independent Brownian motions with values in
R/, resp. R7.

For t € [0, T],

let (a;)i<s< 7 be a FB" B _adapted R'*'-valued process,

(resp. (bs)i<s< 7 be FB":B*-adapted, R’*/-valued).

Consider the controlled stochastic differential system

(1) Xs = P+fts U(Xr»ar)dBrl7
(2)  Ye=gq+ [ 7(Y,b)dB?, s €[t T],

where o(p, -): projection on T,, tangent space on p to A(/)
(resp. 7(g,-) on Ty, tangent space on g to A(J)).



(1) X =p+ [Jo(X?,a)dB;,

(2) Yl =q+ [[7(Y).b)dB?, s €[t, T],

with o(p, -): projection on T,, tangent space on p to A(K)

(+ analogue definition for 7(g, -)).

Remark. The system of controlled SDE'’s is highly nonstandard:
e The control spaces R'*! and R?*7 are unbounded.

e The volatilities o and 7 are not continuous,



(1) X2 =p+ [7o(X?,a)dBL,
()  Yo=q+ [[7(Y).b)dB?, s€[t, T,
with o(p, -): projection on T,, tangent space on p to A(K)
(+ analogue definition for 7(q, -)).
Remark. The system of controlled SDE'’s is highly nonstandard:
e The control spaces R'*! and R?*7 are unbounded.
e The volatilities o and 7 are not continuous,

However

Theorem:
e Equations (1) and (2) have unique strong solutions (X2) and (Y?),
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However

Theorem:
e Equations (1) and (2) have unique strong solutions (X2) and (Y?),
e forall s € [t, T] P-a.s., X2 € A(]) (resp. Y2 € A(J)),



(1) X2 =p+ [7o(X?,a)dBL,
()  Yo=q+ [[7(Y).b)dB?, s€[t, T,
with o(p, -): projection on T,, tangent space on p to A(K)
(+ analogue definition for 7(q, -)).
Remark. The system of controlled SDE'’s is highly nonstandard:
e The control spaces R'*! and R?*7 are unbounded.
e The volatilities o and 7 are not continuous,

However

Theorem:
e Equations (1) and (2) have unique strong solutions (X2) and (Y?),
o forall s € [t, T] P-as., X2 € A(I) (resp. Y2 € A(J)),
e (X2) and (Y?®) are martingales.



(1)  XZ=p+ [ o(X? a)dB},
(2) Y2 =q+ [77(Y), b)dB?, s € [t, T,

The game:
e P1 plays (as), P2 plays (bs).
¢ Expected payoff: E[ftT H(s, X2, Yt)ds].
Value functions :
WH(t, p, q) = infa sups E[[,” H(s, X2, Y2)ds],
W~=(t,p,q) = supginf, E[ftT H(s, X2, Y£)ds],

with a @ (b, t <r <s)— a, (resp. 8: (a,,t < r <s)— b,) non
anticipative strategies.

Proposition: W+ and W~ are convex-concave and Lipschitz.



Proposition: W' and W~ are concave-convex and Lipschitz.

Arguments:

e Lipschitz in t: scaling property of the Brownian motion,

e Lipschitz in p: explicit computation of the projections and
decomposition of the trajectory.

o Convexity:
Splitting lemma:
For pt,p> € A(I) and p = Ap! + (1 — \)p?, let Z be a random
variable with P[Z = p'] = \,P[Z = p?] =1 — A.
For all h > 0,¢ > 0, there exists a. such that

E(IXin—Zl1 <e

(martingale representation property of Brownian motion)

e Concavity : Jensen inequality.



Proposition
W = W+ = W~ is the unique Lipschitz continuous solution in viscosity
sense of

max{min{ 2% 1+ H: \pin(D2W)V : Amax(D2 W)} = 0,
- ot P q
W|t:T = 0



Proposition
W = W+ = W~ is the unique Lipschitz continuous solution in viscosity
sense of

max{min{ 2% 1+ H: \pin(D2W)V : Amax(D2 W)} = 0,
- ot P q
W|t:T = 0

Arguments:
e W is convex in p, concave in g,



Proposition
W = W+ = W~ is the unique Lipschitz continuous solution in viscosity
sense of

max{min{ 2% + H; Anin(D2W)}; Amax(D2W)} =0,
W|t:T = 0

Arguments:
e W is convex in p, concave in g,
e a dynamic programming principle + measurable selection theorem,



Proposition
W = W+ = W~ is the unique Lipschitz continuous solution in viscosity

sense of
max{min{ 2% + H; Anin(D2W)}; Amax(D2W)} =0,
W|t:T = 0

Arguments:
e W is convex in p, concave in g,
e a dynamic programming principle + measurable selection theorem,
e at (t p, q) where W is strictly convex and concave, W is solution

to at +H—O




Proposition
W = W+ = W~ is the unique Lipschitz continuous solution in viscosity
sense of

max{min %—Vy + H; Amin(D3 W)}, Amax(D W)} =o,
W|t:T = 0

Arguments:
e W is convex in p, concave in g,
e a dynamic programming principle + measurable selection theorem,
e at (t p, q) where W is strictly convex and concave, W is solution
to at + H=0.

e Analogue arguments for W~ + comparison theorem

Corollary
W coincides with the value of the continuous time, zero-sum game with
incomplete information on both sides.



Possible extensions

e More general compact convex sets C, D instead of A(/), A(J).
e More general PDE with the same convexity constraints

max{min{%—‘; + L(V) 4+ u; Amin(DIV)} 5 Amax(DZV)} =0,

Already appearing in models of continuous-time Markov games with
incomplete information: see Cardaliaguet, R, Rosenberg, Vieille 2013
and Gensbittel 2013.

(probably requires viability theory)

e PDE with different obstacles ?



Thank you for your attention!
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