A probabilistic representation for continuous-time zero-sum games with incomplete information on both sides.

Catherine Rainer, joint work with Fabien Gensbittel

University of Brest, France

Singapore, November 2015

Plan

(1) Settings, preliminary game
(2) Incomplete information on one side
(3) Incomplete information on both sides

Settings

Are given

- a finite time horizon $T>0$,
- two metric, compact control spaces U, V,
- for some $I \in \mathbb{N}^{*}$ and all $i \in\{1, \ldots, l\}$ a continuous map $\ell_{i}:[0, T] \times U \times V \rightarrow \mathbb{R}$,
- $\Delta(I)$ denotes the set of probabilities on $\{1, \ldots, I\}$ \simeq simplex in \mathbb{R}^{\prime}.

Isaac's assumption: For all $(t, p) \in[0, T] \times \Delta(I)$,

$$
\begin{aligned}
& \min _{u \in U} \max _{v \in V} \sum_{i=1}^{l} p_{i} \ell_{i}(t, u, v) \\
& \quad=\max _{v \in V} \min _{u \in U} \sum_{i=1}^{l} p_{i} \ell_{i}(t, u, v):=H(t, p)
\end{aligned}
$$

A preliminary game

Fix $(t, p) \in[0, T] \times \Delta(I)$.
For any $u .:[t, T] \rightarrow U$ and $v .:[t, T] \rightarrow V$ measurable, consider the mean payoff

$$
J\left(t, p, u_{.}, v_{.}\right)=\sum_{i} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s
$$

P1 plays u. and aims to minimize $J(t, p, u, v)$,
P2 plays v. and aims to maximize $J(t, p, u, v)$.

Interpretation: The index i is chosen according to p, but no player is informed : both optimize the average game.

Proposition: Under Isaacs assumption, the game has a value

A preliminary game

Fix $(t, p) \in[0, T] \times \Delta(I)$.
For any $u .:[t, T] \rightarrow U$ and $v .:[t, T] \rightarrow V$ measurable, consider the mean payoff

$$
J\left(t, p, u_{.}, v_{.}\right)=\sum_{i} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s
$$

P1 plays u. and aims to minimize $J(t, p, u, v)$,
P2 plays v. and aims to maximize $J(t, p, u, v)$.

Interpretation: The index i is chosen according to p, but no player is informed : both optimize the average game.

Proposition: Under Isaacs assumption, the game has a value

$$
V_{0}(t, p)=\int_{t}^{T} H(s, p) d s=J\left(t, p, u_{*}^{*}, v_{.}^{*}\right),
$$

with $u_{s}^{*} \in \operatorname{Argmin}_{u} \max _{v} \sum_{i=1}^{l} p_{i} \ell_{i}(s, u, v)$
and $v_{s}^{*} \in \operatorname{Argmax}_{v} \min _{u} \sum_{i=1}^{l} p_{i} \ell_{i}(s, u, v)$.

Payoff: $J(t, p, u, v)=\sum_{i} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s$.
P1 plays u. and aims to minimize $J(t, p, u, v)$,
P2 plays v. and aims to maximize $J(t, p, u, v)$.
Proposition: Under Isaacs assumption, the game has a value

$$
V_{0}(t, p)=\int_{t}^{T} H(s, p) d s
$$

with $H(s, p)=\min _{u \in U} \max _{v \in V} \sum_{i=1}^{l} p_{i} \ell_{i}(s, u, v)$.

Remark:

Obviously, V_{0} satisfies

$$
\left\{\begin{array}{l}
\frac{\partial V_{0}}{\partial t}+H(t, p)=0,(t, p) \in[0, T] \times \Delta(I) \\
\left.V_{0}\right|_{t=T}=0
\end{array}\right.
$$

Game with incomplete information on one side

Given $(t, p) \in[0, T] \times \Delta(I)$, suppose now that,

- at time $t, i \in\{1, \ldots, /\}$ is chosen randomly according to p and shown to P1 (not to P2),
- P2 knows p,
- both player observe the actions of their opponent.

P1 still wants to minimize, P 2 to maximize the running cost

$$
J\left(t, p, u_{.}, v_{.}\right)=\sum_{i=1}^{l} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s .
$$

Strategies for P1:
$\alpha:\left(i,\left(v_{r}, t \leq r \leq s\right)\right) \mapsto u_{s}$ random (+technical assumptions)
Strategies for P2:
$\beta:\left(u_{r}, t \leq r \leq s\right) \mapsto V_{s}$ random (+technical assumptions)

Game with incomplete information on one side

Given $(t, p) \in[0, T] \times \Delta(I)$, suppose now that,

- at time $t, i \in\{1, \ldots, I\}$ is chosen randomly according to p and shown to P1 (not to P2),
- P2 knows p,
- both player observe the actions of their opponent.

P 1 still wants to minimize, P 2 to maximize the running cost

$$
J(t, p, u ., v .)=\sum_{i=1}^{l} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s
$$

Strategies for P1:

$\alpha:\left(i,\left(v_{r}, t \leq r \leq s\right)\right) \mapsto u_{s}$ random (+technical assumptions)
Strategies for P2:
$\beta:\left(u_{r}, t \leq r \leq s\right) \mapsto v_{s}$ random (+technical assumptions).

Values

$J\left(t, p, u_{1}, v_{.}\right)=\sum_{i=1}^{l} p_{i} \int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s$
Strategies for P1:
$\alpha:\left(i,\left(v_{r}, t \leq r \leq s\right)\right) \mapsto u_{s}$ random (+technical assumptions)
Strategies for P2:
$\beta:\left(u_{r}, t \leq r \leq s\right) \mapsto v_{s}$ random (+technical assumptions).
Payoff: (p, α, β) induces a probability $P_{p, \alpha, \beta}$ on $\{1, \ldots, l\} \times \mathcal{U}_{t} \times \mathcal{V}_{t}$.
Set $J(t, p, \alpha, \beta)=E_{p, \alpha, \beta}\left[\int_{t}^{T} \ell_{i}\left(s, u_{s}, v_{s}\right) d s\right]$.
Upper value function: $V^{+}(t, p)=\inf _{\alpha} \sup _{\beta} J(t, p, \alpha, \beta)$
Lower value function: $V^{-}(t, p)=\sup _{\beta} \inf _{\alpha} J(t, p, \alpha, \beta)$
Theorem 1 (Cardaliaguet 2007): Under Isaac's assumption, the game has a value $V:=V^{+}=V^{-}$,

Characterization of the value V

For $(t, p) \in[0, T] \times \Delta(I)$, let $\mathcal{M}(t, p)$ be the set of càdlàg martingales $\left(p_{s}\right)$ with values in $\Delta(I)$ such that $p_{t-}=p$.

Theorem 2 (Cardaliaguet,R. 2009) For all $(t, p) \in[0, T] \times \Delta(I)$, $V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)$.

Comment:
For any (random) control u. played by P1, set
$p_{s}(i)=P\left[\right.$ index i has been chosen $\left.\mid u_{r}, t \leq r \leq s\right], i \in\{1, \ldots, /\}$
Then

- $\left(p_{s}\right)$ is a $\Delta(/)$-valued martingale with $p_{t-}=p$,
- $\left(p_{s}\right)$ is a martingale of belief for P2.

Optimal strategy for P1

- choose $\left(p_{s}\right)$ optimal in $\left(^{*}\right)$,
- for all $s \in[t, T]$, play $u_{s}^{*} \in \operatorname{Argmin} \max _{v} \sum_{i} p_{s}(i) \ell_{i}(s, u, v)$.

Characterization of the value V

For $(t, p) \in[0, T] \times \Delta(I)$, let $\mathcal{M}(t, p)$ be the set of càdlàg martingales $\left(p_{s}\right)$ with values in $\Delta(I)$ such that $p_{t-}=p$.

Theorem 2 (Cardaliaguet,R. 2009) For all $(t, p) \in[0, T] \times \Delta(I)$, $V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)$.
Comment:
For any (random) control u. played by P1, set

$$
p_{s}(i)=P\left[\text { index } i \text { has been chosen } \mid u_{r}, t \leq r \leq s\right], i \in\{1, \ldots, I\} .
$$

Then

- $\left(p_{s}\right)$ is a $\Delta(I)$-valued martingale with $p_{t-}=p$,
- $\left(p_{s}\right)$ is a martingale of belief for P2.

Optimal strategy for P1

- choose $\left(p_{s}\right)$ optimal in $\left({ }^{*}\right)$,
- for all $s \in[t, T]$, play $u_{s}^{*} \in \operatorname{Argmin} \max _{v} \sum_{i} p_{s}(i) \ell_{i}(s, u, v)$.

Characterization of the value V

For $(t, p) \in[0, T] \times \Delta(I)$, let $\mathcal{M}(t, p)$ be the set of càdlàg martingales $\left(p_{s}\right)$ with values in $\Delta(I)$ such that $p_{t-}=p$.

Theorem 2 (Cardaliaguet,R. 2009) For all $(t, p) \in[0, T] \times \Delta(I)$,
$V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)$.
Comment:
For any (random) control u. played by P1, set

$$
p_{s}(i)=P\left[\text { index } i \text { has been chosen } \mid u_{r}, t \leq r \leq s\right], i \in\{1, \ldots, I\} .
$$

Then

- $\left(p_{s}\right)$ is a $\Delta(I)$-valued martingale with $p_{t-}=p$,
- $\left(p_{s}\right)$ is a martingale of belief for P2.

Optimal strategy for P1

- choose $\left(p_{s}\right)$ optimal in $\left({ }^{*}\right)$,
- for all $s \in[t, T]$, play $u_{s}^{*} \in \operatorname{Argmin} \max _{v} \sum_{i} p_{s}(i) \ell_{i}(s, u, v)$

Characterization of the value V

For $(t, p) \in[0, T] \times \Delta(I)$, let $\mathcal{M}(t, p)$ be the set of càdlàg martingales $\left(p_{s}\right)$ with values in $\Delta(I)$ such that $p_{t-}=p$.

Theorem 2 (Cardaliaguet, R. 2009) For all $(t, p) \in[0, T] \times \Delta(I)$,
$V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)$.
Comment:
For any (random) control u. played by P1, set

$$
p_{s}(i)=P\left[\text { index } i \text { has been chosen } \mid u_{r}, t \leq r \leq s\right], i \in\{1, \ldots, l\} .
$$

Then

- $\left(p_{s}\right)$ is a $\Delta(I)$-valued martingale with $p_{t-}=p$,
- $\left(p_{s}\right)$ is a martingale of belief for P2.

Optimal strategy for P1:

- choose $\left(p_{s}\right)$ optimal in $(*)$,
- for all $s \in[t, T]$, play $u_{s}^{*} \in \operatorname{Argmin} \max _{v} \sum_{i} p_{s}(i) \ell_{i}(s, u, v)$.

Characterization of the value 2

$$
V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*) .
$$

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

- $V(T, p)=0$
- for all $t \in[0, T], p \mapsto V(t, p)$ is convex,
- $\frac{\partial V}{\partial t}+H(t, p) \geq 0$,
- for all (t, p) such that $p^{\prime} \mapsto V\left(t, p^{\prime}\right)$ is strictly convex in p^{\prime},

$$
\frac{\partial V}{\partial t}+H(t, p)=0
$$

(if V is not smooth, this holds in a viscosity sense.)

Characterization of the value 2

$$
V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)
$$

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

- $V(T, p)=0$
- for all $t \in[0, T], p \mapsto V(t, p)$ is convex, (Splitting argument)
- $\frac{\partial V}{\partial t}+H(t, p) \geq 0$,
- for all (t, p) such that $p^{\prime} \mapsto V\left(t, p^{\prime}\right)$ is strictly convex in p^{\prime},

$$
\frac{\partial V}{\partial t}+H(t, p)=0
$$

(if V is not smooth, this holds in a viscosity sense.)
Idea: Let $\left(p_{s}\right)$ optimal in $(*)$. Then $\left(p_{s}\right)$ martingale and V strictly convex $\Rightarrow \lim _{s \searrow t} p_{s}=p$.

Characterization of the value 2

$$
\begin{aligned}
V(t, p)= & \min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*) . \\
& \left(\leq \int_{t}^{t+h} H(s, p) d s+V(t+h, p)\right)
\end{aligned}
$$

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

- $V(T, p)=0$
- for all $t \in[0, T], p \mapsto V(t, p)$ is convex,
- $\frac{\partial V}{\partial t}+H(t, p) \geq 0$,
- for all (t, p) such that $p^{\prime} \mapsto V\left(t, p^{\prime}\right)$ is strictly convex in p^{\prime},

$$
\frac{\partial V}{\partial t}+H(t, p)=0
$$

(if V is not smooth, this holds in a viscosity sense.)
Idea: Let $\left(p_{s}\right)$ optimal in $(*)$. Then $\left(p_{s}\right)$ martingale and V strictly convex $\Rightarrow \lim _{s \searrow t} p_{s}=p$.

Characterization of the value 2

$$
V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)
$$

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

- $V(T, p)=0$
- for all $t \in[0, T], p \mapsto V(t, p)$ is convex,
- $\frac{\partial V}{\partial t}+H(t, p) \geq 0$,
- for all (t, p) such that $p^{\prime} \mapsto V\left(t, p^{\prime}\right)$ is strictly convex in p^{\prime},

$$
\frac{\partial V}{\partial t}+H(t, p)=0
$$

(if V is not smooth, this holds in a viscosity sense.)
Idea: Let $\left(p_{s}\right)$ optimal in $\left({ }^{*}\right)$. Then $\left(p_{s}\right)$ martingale and V strictly convex $\Rightarrow \lim _{s \searrow_{\searrow}} p_{s}=p$.

Characterization of the value 2

$V(t, p)=\min _{\left(p_{s}\right) \in \mathcal{M}(t, p)} E\left[\int_{t}^{T} H\left(s, p_{s}\right) d s\right](*)$.
Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

- $V(T, p)=0$
- for all $t \in[0, T], p \mapsto V(t, p)$ is convex,
- $\frac{\partial V}{\partial t}+H(t, p) \geq 0$,
- for all (t, p) such that $p^{\prime} \mapsto V\left(t, p^{\prime}\right)$ is strictly convex in p^{\prime},

$$
\frac{\partial V}{\partial t}+H(t, p)=0
$$

(if V is not smooth, this holds in a viscosity sense.)
or equivalently:
V is the unique viscosity solution of:

$$
\left\{\begin{array}{l}
\min \left\{\frac{\partial V}{\partial t}+H ; \lambda_{\min }\left(D_{p}^{2} V\right)\right\}=0, \\
\left.V\right|_{t=T}=0,
\end{array}\right.
$$

where $\lambda_{\text {min }}(A)$ is the smallest eigenvalue of A.

Game with incomplete information on both sides

Now let $I, J \in \mathbb{N}^{*}$ and $\left(\ell_{i j}\right)_{(i, j) \in\{1, \ldots, I\} \times\{1, \ldots, J\}}$ a family of continuous functions $[0, T] \times U \times V \rightarrow \mathbb{R}$.

Given $(t, p, q) \in[0, T] \times \Delta(I) \times \Delta(J)$, suppose now that,

- at time $t,(i, j) \in\{1, \ldots, l\} \times\{1, \ldots, J\}$ is chosen randomly
according to $p \otimes q$
- i is shown to $\mathrm{P} 1, j$ to P 2 ,
- both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost $J\left(t, p, q, u_{.}, v_{.}\right)=\sum_{i, j} p_{i} q_{j} \int_{t}^{T} \ell_{i j}\left(s, u_{s}, v_{s}\right) d s$.
We suppose still that Isaac's assumption holds : for all (t, p, q)
$\min _{u \in U} \max _{v \in V} \sum_{i, j} p_{i} q_{j}{ }_{i j}(t, p, q)$ $=\max _{v \in V} \min _{u \in U} \sum_{i, j} p_{i} q_{j} \ell_{i j}(t, p, q):=H(t, p, q)$.

Game with incomplete information on both sides

Now let $l, J \in \mathbb{N}^{*}$ and $\left(\ell_{i j}\right)_{(i, j) \in\{1, \ldots, I\} \times\{1, \ldots, J\}}$ a family of continuous functions $[0, T] \times U \times V \rightarrow \mathbb{R}$.

Given $(t, p, q) \in[0, T] \times \Delta(I) \times \Delta(J)$, suppose now that,

- at time $t,(i, j) \in\{1, \ldots, l\} \times\{1, \ldots, J\}$ is chosen randomly according to $p \otimes q$
- i is shown to $\mathrm{P} 1, j$ to P 2 ,
- both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost $J\left(t, p, q, u_{.}, v_{.}\right)=\sum_{i, j} p_{i} q_{j} \int_{t}^{T} \ell_{i j}\left(s, u_{s}, v_{s}\right) d s$.

We suppose still that Isaac's assumption holds : for all (t, p, q)

Game with incomplete information on both sides

Now let $l, J \in \mathbb{N}^{*}$ and $\left(\ell_{i j}\right)_{(i, j) \in\{1, \ldots, l\} \times\{1, \ldots, J\}}$ a family of continuous functions $[0, T] \times U \times V \rightarrow \mathbb{R}$.

Given $(t, p, q) \in[0, T] \times \Delta(I) \times \Delta(J)$, suppose now that,

- at time $t,(i, j) \in\{1, \ldots, I\} \times\{1, \ldots, J\}$ is chosen randomly according to $p \otimes q$
- i is shown to $\mathrm{P} 1, j$ to P 2 ,
- both player observe the actions of their opponent.

P 1 still wants to minimize, P 2 to maximize the running cost

$$
J(t, p, q, u ., v .)=\sum_{i, j} p_{i} q_{j} \int_{t}^{T} \ell_{i j}\left(s, u_{s}, v_{s}\right) d s
$$

We suppose still that Isaac's assumption holds : for all (t, p, q)
$\begin{aligned} \min _{u \in U} & \max _{v \in V} \sum_{i, j} p_{i} q_{j} \ell_{i j}(t, p, q) \\ & =\max _{v \in V} \min _{u \in U} \sum_{i, j} p_{i} q_{j} \ell_{i j}(t, p, q):=H(t, p, q) .\end{aligned}$

Game with incomplete information on both sides

Now let $I, J \in \mathbb{N}^{*}$ and $\left(\ell_{i j}\right)_{(i, j) \in\{1, \ldots, I\} \times\{1, \ldots, J\}}$ a family of continuous functions $[0, T] \times U \times V \rightarrow \mathbb{R}$.

Given $(t, p, q) \in[0, T] \times \Delta(I) \times \Delta(J)$, suppose now that,

- at time $t,(i, j) \in\{1, \ldots, I\} \times\{1, \ldots, J\}$ is chosen randomly according to $p \otimes q$
- i is shown to $\mathrm{P} 1, j$ to P 2 ,
- both player observe the actions of their opponent.

P 1 still wants to minimize, P 2 to maximize the running cost

$$
J\left(t, p, q, u_{.}, v_{.}\right)=\sum_{i, j} p_{i} q_{j} \int_{t}^{T} \ell_{i j}\left(s, u_{s}, v_{s}\right) d s
$$

We suppose still that Isaac's assumption holds : for all (t, p, q)

$$
\begin{aligned}
\min _{u \in U} & \max _{v \in V} \sum_{i, j} p_{i} q_{j} \ell_{i j}(t, p, q) \\
& =\max _{v \in V} \min _{u \in U} \sum_{i, j} p_{i} q_{j} \ell_{i j}(t, p, q):=H(t, p, q)
\end{aligned}
$$

Strategies for P1:

$\alpha:\left(i,\left(v_{r}, t \leq r \leq s\right)\right) \mapsto u_{s}$ random (+technical assumptions)

Strategies for P2:

$\beta:\left(j,\left(u_{r}, t \leq r \leq s\right)\right) \mapsto v_{s}$ random (+technical assumptions).
Upper Value : $W^{+}(t, p, q)=\inf _{\alpha} \sup _{\beta} J(t, p, q, \alpha, \beta)$,
Lower Value : $W^{-}(t, p, q)=\sup _{\beta} \inf _{\alpha} J(t, p, q, \alpha, \beta)$.
Theorem 3 (Cardaliaguet 2007): Under Isaacs assumption the continuous time game with incomplete information on both sides has a value $W:=W^{+}=W^{-}$which is the unique viscosity solution of:

$$
\left\{\begin{array}{l}
\max \left\{\min \left\{\frac{\partial W}{\partial t}+H ; \lambda_{\min }\left(D_{p}^{2} W\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} W\right)\right\}=0, \\
\left.W\right|_{t=T}=0,
\end{array}\right.
$$

where $\lambda_{\min }(A)\left(\right.$ resp. $\left.\lambda_{\text {ma }}(A)\right)$ is teh smallest (resp. largest) eigenvalue of A

Representation in terms of a martingale control-problem ?

We want to define a continuous-time zero-sum game having same value $W(t, p, q)$ as the zero-sum game with incomplete information on both sides, and such that:

- P1 controls a (càdlàg) martingale $\left(p_{s}\right)_{s \in[t, T]}$ with values in $\Delta(I)$ and $p_{t-}=p$.
- P2 controls a (càdlàg) martingale $\left(q_{s}\right)_{s \in[t, T]}$ with values in $\Delta(J)$ and $q_{t-}=q$.
- The expected payoff is $E\left[\int_{t}^{T} H\left(s, p_{s}, q_{s}\right) d s\right]$.

Repeated games, Laraki 2001 : the splitting game.
Main problem: How to define non-anticipative strategies in this context?
Chosen approach: Use the framework of stochastic differential games.

Representation in terms of a martingale control-problem ?

We want to define a continuous-time zero-sum game having same value $W(t, p, q)$ as the zero-sum game with incomplete information on both sides, and such that:

- P1 controls a (càdlàg) martingale $\left(p_{s}\right)_{s \in[t, T]}$ with values in $\Delta(I)$ and $p_{t-}=p$.
- P2 controls a (càdlàg) martingale $\left(q_{s}\right)_{s \in[t, T]}$ with values in $\Delta(J)$ and $q_{t-}=q$.
- The expected payoff is $E\left[\int_{t}^{T} H\left(s, p_{s}, q_{s}\right) d s\right]$.

Repeated games, Laraki 2001 : the splitting game.
Main problem: How to define non-anticipative strategies in this context?

Representation in terms of a martingale control-problem ?

We want to define a continuous-time zero-sum game having same value $W(t, p, q)$ as the zero-sum game with incomplete information on both sides, and such that:

- P1 controls a (càdlàg) martingale $\left(p_{s}\right)_{s \in[t, T]}$ with values in $\Delta(I)$ and $p_{t-}=p$.
- P2 controls a (càdlàg) martingale $\left(q_{s}\right)_{s \in[t, T]}$ with values in $\Delta(J)$ and $q_{t-}=q$.
- The expected payoff is $E\left[\int_{t}^{T} H\left(s, p_{s}, q_{s}\right) d s\right]$.

Repeated games, Laraki 2001 : the splitting game.
Main problem: How to define non-anticipative strategies in this context? Chosen approach: Use the framework of stochastic differential games.

A stochastic differential game.

Let (B_{s}^{1}) and (B_{s}^{2}) be two independent Brownian motions with values in \mathbb{R}^{\prime}, resp. \mathbb{R}^{J}.
For $t \in[0, T]$,
let $\left(a_{s}\right)_{t \leq s \leq T}$ be a $\mathcal{F}^{B^{1}, B^{2}}$-adapted $\mathbb{R}^{I \times I}$-valued process, (resp. $\left(b_{s}\right)_{t \leq s \leq T}$ be $\mathcal{F}^{B^{1}, B^{2}}$-adapted, $\mathbb{R}^{J \times J}$-valued).

Consider the controlled stochastic differential system

where $\sigma(p, \cdot)$: projection on T_{p}, tangent space on p to $\Delta(I)$ (resp. $\tau(q, \cdot)$ on T_{q}, tangent space on q to $\Delta(J)$).

A stochastic differential game.

Let $\left(B_{s}^{1}\right)$ and (B_{s}^{2}) be two independent Brownian motions with values in \mathbb{R}^{\prime}, resp. \mathbb{R}^{J}.
For $t \in[0, T]$,
let $\left(a_{s}\right)_{t \leq s \leq T}$ be a $\mathcal{F}^{B^{1}, B^{2}}$-adapted $\mathbb{R}^{I \times I}$-valued process, (resp. $\left(b_{s}\right)_{t \leq s \leq T}$ be $\mathcal{F}^{B^{1}, B^{2}}$-adapted, $\mathbb{R}^{J \times J}$-valued).

Consider the controlled stochastic differential system
(1) $X_{s}=p+\int_{t_{s}}^{s} \sigma\left(X_{r}, a_{r}\right) d B_{r}^{1}$,
(2) $Y_{s}=q+\int_{t}^{t_{s}} \tau\left(Y_{r}, b_{r}\right) d B_{r}^{2}, s \in[t, T]$,
where $\sigma(p, \cdot)$: projection on T_{p}, tangent space on p to $\Delta(I)$ (resp. $\tau(q, \cdot)$ on T_{q}, tangent space on q to $\Delta(J)$).

$$
\begin{equation*}
X_{s}^{a}=p+\int_{t}^{s} \sigma\left(X_{r}^{a}, a_{r}\right) d B_{r}^{1} \tag{1}
\end{equation*}
$$

$$
\text { (2) } \quad Y_{s}^{b}=q+\int_{t}^{s} \tau\left(Y_{r}^{b}, b_{r}\right) d B_{r}^{2}, s \in[t, T]
$$

$$
\text { with } \sigma(p, \cdot) \text { : projection on } T_{p} \text {, tangent space on } p \text { to } \Delta(K)
$$

$$
(+ \text { analogue definition for } \tau(q, \cdot))
$$

Remark. The system of controlled SDE's is highly nonstandard:

- The control spaces $\mathbb{R}^{I \times I}$ and $\mathbb{R}^{J \times J}$ are unbounded.
- The volatilities σ and τ are not continuous,

However
Theorem:

- Fquations (1) and (2) have unique strong solutions $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$,
- for all $s \in[t, T]$ P-a.s., $X_{s}^{a} \in \triangle(I) \quad\left(r e s p . Y_{s}^{a} \in \triangle(J)\right)$,
- $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$ are martingales.

$$
\begin{equation*}
X_{s}^{a}=p+\int_{t}^{s} \sigma\left(X_{r}^{a}, a_{r}\right) d B_{r}^{1} \tag{1}
\end{equation*}
$$

(2) $Y_{s}^{b}=q+\int_{t}^{s} \tau\left(Y_{r}^{b}, b_{r}\right) d B_{r}^{2}, s \in[t, T]$, with $\sigma(p, \cdot)$: projection on T_{p}, tangent space on p to $\Delta(K)$
(+ analogue definition for $\tau(q, \cdot)$).
Remark. The system of controlled SDE's is highly nonstandard:

- The control spaces $\mathbb{R}^{I \times I}$ and $\mathbb{R}^{J \times J}$ are unbounded.
- The volatilities σ and τ are not continuous,

However
Theorem:

- Equations (1) and (2) have unique strong solutions $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$,
- for all $s \in[t, T]$ P-a.s., $X_{s}^{a} \in \Delta(I)$ (resp. $Y_{s}^{a} \in \Delta(J)$),
- $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$ are martingales.

$$
\begin{equation*}
X_{s}^{a}=p+\int_{t}^{s} \sigma\left(X_{r}^{a}, a_{r}\right) d B_{r}^{1}, \tag{1}
\end{equation*}
$$

(2) $Y_{s}^{b}=q+\int_{t}^{s} \tau\left(Y_{r}^{b}, b_{r}\right) d B_{r}^{2}, s \in[t, T]$, with $\sigma(p, \cdot)$: projection on T_{p}, tangent space on p to $\Delta(K)$
(+ analogue definition for $\tau(q, \cdot)$).
Remark. The system of controlled SDE's is highly nonstandard:

- The control spaces $\mathbb{R}^{I \times I}$ and $\mathbb{R}^{J \times J}$ are unbounded.
- The volatilities σ and τ are not continuous,

However
Theorem:

- Equations (1) and (2) have unique strong solutions (X_{s}^{a}) and (Y_{s}^{b}),
- for all $s \in[t, T] P$-a.s., $X_{s}^{a} \in \Delta(I)$ (resp. $Y_{s}^{a} \in \Delta(J)$),
- $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$ are martingales.

$$
\begin{equation*}
X_{s}^{a}=p+\int_{t}^{s} \sigma\left(X_{r}^{a}, a_{r}\right) d B_{r}^{1}, \tag{1}
\end{equation*}
$$

(2) $Y_{s}^{b}=q+\int_{t}^{s} \tau\left(Y_{r}^{b}, b_{r}\right) d B_{r}^{2}, s \in[t, T]$,
with $\sigma(p, \cdot)$: projection on T_{p}, tangent space on p to $\Delta(K)$
(+ analogue definition for $\tau(q, \cdot)$).
Remark. The system of controlled SDE's is highly nonstandard:

- The control spaces $\mathbb{R}^{I \times I}$ and $\mathbb{R}^{J \times J}$ are unbounded.
- The volatilities σ and τ are not continuous,

However
Theorem:

- Equations (1) and (2) have unique strong solutions $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$,
- for all $s \in[t, T] P$-a.s., $X_{s}^{a} \in \Delta(I)$ (resp. $Y_{s}^{a} \in \Delta(J)$),
- $\left(X_{s}^{a}\right)$ and $\left(Y_{s}^{b}\right)$ are martingales.

$$
\begin{array}{ll}
\text { (1) } & X_{s}^{a}=p+\int_{t}^{s} \sigma\left(X_{r}^{a}, a_{r}\right) d B_{r}^{1}, \tag{1}\\
\text { (2) } & Y_{s}^{b}=q+\int_{t}^{s} \tau\left(Y_{r}^{b}, b_{r}\right) d B_{r}^{2}, s \in[t, T],
\end{array}
$$

The game:

- P1 plays $\left(a_{s}\right), \mathrm{P} 2$ plays $\left(b_{s}\right)$.
- Expected payoff: $E\left[\int_{t}^{T} H\left(s, X_{s}^{a}, Y_{s}^{b}\right) d s\right]$.

Value functions :

$$
\begin{aligned}
\tilde{W}^{+}(t, p, q) & =\inf _{\alpha} \sup _{\beta} E\left[\int_{t}^{T} H\left(s, X_{s}^{a}, Y_{s}^{b}\right) d s\right], \\
\tilde{W}^{-}(t, p, q) & =\sup _{\beta} \inf _{\alpha} E\left[\int_{t}^{T} H\left(s, X_{s}^{a}, Y_{s}^{b}\right) d s\right],
\end{aligned}
$$

with $\alpha:\left(b_{r}, t \leq r \leq s\right) \mapsto a_{r}\left(\right.$ resp. $\left.\beta:\left(a_{r}, t \leq r \leq s\right) \mapsto b_{r}\right)$ non anticipative strategies.

Proposition: \tilde{W}^{+}and \tilde{W}^{-}are convex-concave and Lipschitz.

Proposition: \tilde{W}^{+}and \tilde{W}^{-}are concave-convex and Lipschitz.

Arguments:

- Lipschitz in t : scaling property of the Brownian motion,
- Lipschitz in p: explicit computation of the projections and decomposition of the trajectory.
- Convexity:

Splitting lemma:
For $p^{1}, p^{2} \in \Delta(I)$ and $p=\lambda p^{1}+(1-\lambda) p^{2}$, let Z be a random variable with $P\left[Z=p^{1}\right]=\lambda, P\left[Z=p^{2}\right]=1-\lambda$.
For all $h>0, \epsilon>0$, there exists a. such that

$$
E\left[\left|X_{t+h}^{a}-Z\right|\right] \leq \epsilon .
$$

(martingale representation property of Brownian motion)

- Concavity : Jensen inequality.

Proposition

$\tilde{W}=\tilde{W}^{+}=\tilde{W}^{-}$is the unique Lipschitz continuous solution in viscosity sense of

$$
\left\{\begin{array}{l}
\max \left\{\min \left\{\frac{\partial \tilde{W}}{\partial t}+H ; \lambda_{\min }\left(D_{\rho}^{2} \tilde{W}\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} \tilde{W}\right)\right\}=0, \\
\left.\tilde{W}\right|_{t=T}=0
\end{array}\right.
$$

Arguments:

- \tilde{W}^{+}is convex in p, concave in q.

Proposition

$\tilde{W}=\tilde{W}^{+}=\tilde{W}^{-}$is the unique Lipschitz continuous solution in viscosity sense of

$$
\left\{\begin{array}{l}
\max _{\tilde{W}}\left\{\min \left\{\frac{\partial \tilde{W}}{\partial t}+H ; \lambda_{\min }\left(D_{\rho}^{2} \tilde{W}\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} \tilde{W}\right)\right\}=0, \\
\left.\tilde{W}\right|_{t=T}=0
\end{array}\right.
$$

Arguments:

- \tilde{W}^{+}is convex in p, concave in q,
- a dynamic programming principle + measurable selection theorem,
- at (t, p, q) where \tilde{W}^{+}is strictly convex and concave, \tilde{W}^{+}is solution to $\frac{\partial \tilde{W}^{+}}{\partial t}+H=0$.
- Analogue arguments for $\tilde{W}^{-}+$comparison theorem

Corollary
W coincides with the value of the continuous time, zero-sum game with incomplete information on both sides.

Proposition

$\tilde{W}=\tilde{W}^{+}=\tilde{W}^{-}$is the unique Lipschitz continuous solution in viscosity sense of

$$
\left\{\begin{array}{l}
\max _{\tilde{W}\left\{\min \left\{\frac{\partial \tilde{W}}{\partial t}+H ; \lambda_{\min }\left(D_{p}^{2} \tilde{W}\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} \tilde{W}\right)\right\}=0,}^{\left.\tilde{W}\right|_{t=T}=0} .
\end{array}\right.
$$

Arguments:

- \tilde{W}^{+}is convex in p, concave in q,
- a dynamic programming principle + measurable selection theorem,
- at (t, p, q) where \tilde{W}^{+}is strictly convex and concave, \tilde{W}^{+}is solution to $\frac{\partial \tilde{W}^{+}}{\partial t}+H=0$.
- Analogue arguments for $W^{-}+$comparison theorem

Corollary
\tilde{W} coincides with the value of the continuous time, zero-sum game with incomplete information on both sides.

Proposition

$\tilde{W}=\tilde{W}^{+}=\tilde{W}^{-}$is the unique Lipschitz continuous solution in viscosity sense of

$$
\left\{\begin{array}{l}
\max _{\tilde{W}}\left\{\min \left\{\frac{\partial \tilde{W}}{\partial t}+H ; \lambda_{\min }\left(D_{p}^{2} \tilde{W}\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} \tilde{W}\right)\right\}=0, \\
\left.\tilde{W}\right|_{t=T}=0
\end{array}\right.
$$

Arguments:

- \tilde{W}^{+}is convex in p, concave in q,
- a dynamic programming principle + measurable selection theorem,
- at (t, p, q) where \tilde{W}^{+}is strictly convex and concave, \tilde{W}^{+}is solution to $\frac{\partial \tilde{W}^{+}}{\partial t}+H=0$.
- Analogue arguments for $\tilde{W}^{-}+$comparison theorem

Proposition

$\tilde{W}=\tilde{W}^{+}=\tilde{W}^{-}$is the unique Lipschitz continuous solution in viscosity sense of

$$
\left\{\begin{array}{l}
\max _{\tilde{W}\left\{\min \left\{\frac{\partial \tilde{W}}{\partial t}+H ; \lambda_{\min }\left(D_{p}^{2} \tilde{W}\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} \tilde{W}\right)\right\}=0,}^{\left.\tilde{W}\right|_{t=T}=0}
\end{array}\right.
$$

Arguments:

- \tilde{W}^{+}is convex in p, concave in q,
- a dynamic programming principle + measurable selection theorem,
- at (t, p, q) where \tilde{W}^{+}is strictly convex and concave, \tilde{W}^{+}is solution to $\frac{\partial \tilde{W}^{+}}{\partial t}+H=0$.
- Analogue arguments for $\tilde{W}^{-}+$comparison theorem

Corollary

\tilde{W} coincides with the value of the continuous time, zero-sum game with incomplete information on both sides.

Possible extensions

- More general compact convex sets C, D instead of $\Delta(I), \Delta(J)$.
- More general PDE with the same convexity constraints

$$
\max \left\{\min \left\{\frac{\partial V}{\partial t}+\mathcal{L}(V)+u ; \lambda_{\min }\left(D_{p}^{2} V\right)\right\} ; \lambda_{\max }\left(D_{q}^{2} V\right)\right\}=0
$$

Already appearing in models of continuous-time Markov games with incomplete information: see Cardaliaguet, R, Rosenberg, Vieille 2013 and Gensbittel 2013.
(probably requires viability theory)

- PDE with different obstacles?

Thank you for your attention!

