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Settings

Are given

• a �nite time horizon T > 0,

• two metric, compact control spaces U,V ,

• for some I ∈ N∗ and all i ∈ {1, . . . , I} a continuous map
`i : [0,T ]× U × V → R,

• ∆(I ) denotes the set of probabilities on {1, . . . , I}
' simplex in RI .

Isaac's assumption: For all (t, p) ∈ [0,T ]×∆(I ),

minu∈U maxv∈V
∑I

i=1 pi`i (t, u, v)

= maxv∈V minu∈U
∑I

i=1 pi`i (t, u, v) := H(t, p)



A preliminary game
Fix (t, p) ∈ [0,T ]×∆(I ).
For any u· : [t,T ]→ U and v· : [t,T ]→ V measurable,
consider the mean payo�

J(t, p, u·, v·) =
∑
i

pi

∫ T

t

`i (s, us , vs)ds.

P1 plays u· and aims to minimize J(t, p, u, v),
P2 plays v· and aims to maximize J(t, p, u, v).

Interpretation: The index i is chosen according to p, but no player is

informed : both optimize the average game.

Proposition: Under Isaacs assumption, the game has a value

V0(t, p) =

∫ T

t

H(s, p)ds = J(t, p, u∗· , v
∗
· ),

with u∗s ∈ Argminu maxv
∑I

i=1 pi`i (s, u, v)

and v∗s ∈ Argmaxv minu
∑I

i=1 pi`i (s, u, v).
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Payo�: J(t, p, u, v) =
∑

i pi
∫ T

t
`i (s, us , vs)ds.

P1 plays u· and aims to minimize J(t, p, u, v),
P2 plays v· and aims to maximize J(t, p, u, v).

Proposition: Under Isaacs assumption, the game has a value

V0(t, p) =

∫ T

t

H(s, p)ds,

with H(s, p) = minu∈U maxv∈V
∑I

i=1 pi`i (s, u, v).

Remark:

Obviously, V0 satis�es{
∂V0

∂t + H(t, p) = 0, (t, p) ∈ [0,T ]×∆(I ),
V0|t=T = 0.



Game with incomplete information on one side

Given (t, p) ∈ [0,T ]×∆(I ), suppose now that,

• at time t, i ∈ {1, . . . , I} is chosen randomly according to p and
shown to P1 (not to P2),

• P2 knows p,

• both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost

J(t, p, u·, v·) =
∑I

i=1 pi
∫ T

t
`i (s, us , vs)ds.

Strategies for P1:
α : (i , (vr , t ≤ r ≤ s)) 7→ us random (+technical assumptions)

Strategies for P2:
β : (ur , t ≤ r ≤ s) 7→ vs random (+technical assumptions) .
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Values

J(t, p, u·, v·) =
∑I

i=1 pi
∫ T

t
`i (s, us , vs)ds

Strategies for P1:
α : (i , (vr , t ≤ r ≤ s)) 7→ us random (+technical assumptions)

Strategies for P2:
β : (ur , t ≤ r ≤ s) 7→ vs random (+technical assumptions) .

Payo�: (p, α, β) induces a probability Pp,α,β on {1, . . . , I} × Ut × Vt .
Set J(t, p, α, β) = Ep,α,β[

∫ T

t
`i (s, us , vs)ds].

Upper value function: V+(t, p) = infα supβ J(t, p, α, β)
Lower value function: V−(t, p) = supβ infα J(t, p, α, β)

Theorem 1 (Cardaliaguet 2007): Under Isaac's assumption, the game
has a value V := V+ = V−,



Characterization of the value V

For (t, p) ∈ [0,T ]×∆(I ), letM(t, p) be the set of càdlàg martingales
(ps) with values in ∆(I ) such that pt− = p.

Theorem 2 (Cardaliaguet,R. 2009) For all (t, p) ∈ [0,T ]×∆(I ),

V (t, p) = min(ps )∈M(t,p) E
[∫ T

t
H(s, ps)ds

]
(∗).

Comment:

For any (random) control u· played by P1, set

ps(i) = P[ index i has been chosen|ur , t ≤ r ≤ s], i ∈ {1, . . . , I}.

Then

• (ps) is a ∆(I )-valued martingale with pt− = p,

• (ps) is a martingale of belief for P2.

Optimal strategy for P1 :

• choose (ps) optimal in (*),

• for all s ∈ [t,T ], play u∗s ∈ Argminmaxv
∑

i ps(i)`i (s, u, v).
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Characterization of the value 2

V (t, p) = min(ps )∈M(t,p) E
[∫ T

t
H(s, ps)ds

]
(∗).

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

• V (T , p) = 0

• for all t ∈ [0,T ], p 7→ V (t, p) is convex,

• ∂V
∂t + H(t, p) ≥ 0,

• for all (t, p) such that p′ 7→ V (t, p′) is strictly convex in p′,

∂V

∂t
+ H(t, p) = 0.

(if V is not smooth, this holds in a viscosity sense.)
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Idea: Let (ps) optimal in (*). Then (ps) martingale and V strictly
convex ⇒ lims↘t ps = p.
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Characterization of the value 2
V (t, p) = min(ps )∈M(t,p) E

[∫ T

t
H(s, ps)ds

]
(∗).

Theorem 3 (Cardaliaguet 2007)
V is the unique continuous function such that

• V (T , p) = 0

• for all t ∈ [0,T ], p 7→ V (t, p) is convex,

• ∂V
∂t + H(t, p) ≥ 0,

• for all (t, p) such that p′ 7→ V (t, p′) is strictly convex in p′,

∂V

∂t
+ H(t, p) = 0.

(if V is not smooth, this holds in a viscosity sense.)

or equivalently:
V is the unique viscosity solution of:{

min{∂V∂t + H; λmin(D2
pV )} = 0,

V |t=T = 0,

where λmin(A) is the smallest eigenvalue of A.



Game with incomplete information on both sides

Now let I , J ∈ N∗ and (`ij)(i,j)∈{1,...,I}×{1,...,J} a family of continuous
functions [0,T ]× U × V → R.

Given (t, p, q) ∈ [0,T ]×∆(I )×∆(J), suppose now that,

• at time t, (i , j) ∈ {1, . . . , I} × {1, . . . , J} is chosen randomly
according to p ⊗ q

• i is shown to P1, j to P2,

• both player observe the actions of their opponent.

P1 still wants to minimize, P2 to maximize the running cost

J(t, p, q, u·, v·) =
∑

i,j piqj
∫ T

t
`ij(s, us , vs)ds.

We suppose still that Isaac's assumption holds : for all (t, p, q)

minu∈U maxv∈V
∑

i,j piqj`ij(t, p, q)

= maxv∈V minu∈U
∑

i,j piqj`ij(t, p, q) := H(t, p, q).
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Strategies for P1:
α : (i , (vr , t ≤ r ≤ s)) 7→ us random (+technical assumptions)

Strategies for P2:
β : (j , (ur , t ≤ r ≤ s)) 7→ vs random (+technical assumptions) .

Upper Value : W+(t, p, q) = infα supβ J(t, p, q, α, β),
Lower Value : W−(t, p, q) = supβ infα J(t, p, q, α, β).

Theorem 3 (Cardaliaguet 2007): Under Isaacs assumption the
continuous time game with incomplete information on both sides has a
value W := W+ = W− which is the unique viscosity solution of:{

max{min{∂W∂t + H; λmin(D2
pW )} ; λmax(D2

qW )} = 0,
W |t=T = 0,

where λmin(A)(resp. λma(A)) is teh smallest (resp. largest) eigenvalue of
A



Representation in terms of a martingale control-problem ?

We want to de�ne a continuous-time zero-sum game having same value
W (t, p, q) as the zero-sum game with incomplete information on both
sides, and such that:

• P1 controls a (càdlàg) martingale (ps)s∈[t,T ] with values in ∆(I ) and
pt− = p.

• P2 controls a (càdlàg) martingale (qs)s∈[t,T ] with values in ∆(J)
and qt− = q.

• The expected payo� is E [
∫ T

t
H(s, ps , qs)ds].

Repeated games, Laraki 2001 : the splitting game.

Main problem: How to de�ne non-anticipative strategies in this context?
Chosen approach: Use the framework of stochastic di�erential games.
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A stochastic di�erential game.

Let (B1
s ) and (B2

s ) be two independent Brownian motions with values in
RI , resp. RJ .
For t ∈ [0,T ],

let (as)t≤s≤T be a FB1,B2

-adapted RI×I -valued process,

(resp. (bs)t≤s≤T be FB1,B2

-adapted, RJ×J -valued).

Consider the controlled stochastic di�erential system

(1) Xs = p +
∫ s

t
σ(Xr , ar )dB

1
r ,

(2) Ys = q +
∫ s

t
τ(Yr , br )dB

2
r , s ∈ [t,T ],

where σ(p, ·): projection on Tp, tangent space on p to ∆(I )
(resp. τ(q, ·) on Tq, tangent space on q to ∆(J)).
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(1) X a
s = p +

∫ s

t
σ(X a

r , ar )dB
1

r ,

(2) Y b
s = q +

∫ s

t
τ(Y b

r ,br )dB
2

r , s ∈ [t,T ],
with σ(p, ·): projection on Tp, tangent space on p to ∆(K)

(+ analogue de�nition for τ(q, ·)).

Remark. The system of controlled SDE's is highly nonstandard:

• The control spaces RI×I and RJ×J are unbounded.

• The volatilities σ and τ are not continuous,

However

Theorem:

• Equations (1) and (2) have unique strong solutions (X a
s ) and (Y b

s ),

• for all s ∈ [t,T ] P-a.s., X a
s ∈ ∆(I ) (resp. Y a

s ∈ ∆(J)),

• (X a
s ) and (Y b

s ) are martingales.
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• (X a
s ) and (Y b

s ) are martingales.



(1) X a
s = p +

∫ s

t
σ(X a

r , ar )dB
1

r ,

(2) Y b
s = q +

∫ s

t
τ(Y b

r , br )dB
2

r , s ∈ [t,T ],

The game:

• P1 plays (as), P2 plays (bs).

• Expected payo�: E [
∫ T

t
H(s,X a

s ,Y
b
s )ds].

Value functions :

W̃+(t, p, q) = infα supβ E [
∫ T

t
H(s,X a

s ,Y
b
s )ds],

W̃−(t, p, q) = supβ infα E [
∫ T

t
H(s,X a

s ,Y
b
s )ds],

with α : (br , t ≤ r ≤ s) 7→ ar (resp. β : (ar , t ≤ r ≤ s) 7→ br ) non
anticipative strategies.

Proposition: W̃+ and W̃− are convex-concave and Lipschitz.



Proposition: W̃+ and W̃− are concave-convex and Lipschitz.

Arguments:

• Lipschitz in t: scaling property of the Brownian motion,

• Lipschitz in p: explicit computation of the projections and
decomposition of the trajectory.

• Convexity:
Splitting lemma:

For p1, p2 ∈ ∆(I ) and p = λp1 + (1− λ)p2, let Z be a random
variable with P[Z = p1] = λ,P[Z = p2] = 1− λ.
For all h > 0, ε > 0, there exists a· such that

E [|X a
t+h − Z |] ≤ ε.

(martingale representation property of Brownian motion)

• Concavity : Jensen inequality.



Proposition

W̃ = W̃+ = W̃− is the unique Lipschitz continuous solution in viscosity

sense of{
max{min{∂W̃∂t + H ; λmin(D2

pW̃ )} ; λmax(D2
qW̃ )} = 0,

W̃ |t=T = 0.

Arguments:

• W̃+ is convex in p, concave in q,

• a dynamic programming principle + measurable selection theorem,

• at (t, p, q) where W̃+ is strictly convex and concave, W̃+ is solution

to ∂W̃+

∂t + H = 0.

• Analogue arguments for W̃− + comparison theorem

Corollary

W̃ coincides with the value of the continuous time, zero-sum game with

incomplete information on both sides.
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Possible extensions

• More general compact convex sets C ,D instead of ∆(I ),∆(J).

• More general PDE with the same convexity constraints

max{min{∂V
∂t

+ L(V ) + u ; λmin(D2
pV )} ; λmax(D2

qV )} = 0,

Already appearing in models of continuous-time Markov games with
incomplete information: see Cardaliaguet, R, Rosenberg, Vieille 2013
and Gensbittel 2013.
(probably requires viability theory)

• PDE with di�erent obstacles ?



Thank you for your attention!
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