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Boosting: An Example
Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

Given: a set of training examples.
I (“Attn: Beneficiary Contractor Foreign Money Transfer ...”, spam)
I (“Let’s meet to discuss QPR –Edo”, not spam)

Obtain a classifier by asking a “weak learning algorithm”:
I e.g. contains the word “money” ⇒ spam.

Reweight the examples so that “difficult” ones get more attention.
I e.g. spam that doesn’t contain “money”.

Obtain another classifier:
I e.g. empty “to address” ⇒ spam.

......

At the end, predict by taking a (weighted) majority vote.
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Online Boosting: Motivation

Boosting is well studied in the batch setting, but becomes infeasible when
the amount of data is huge.

Online learning has proven extremely useful:

one pass of the data, make prediction on the fly.

works even in an adversarial environment.
I e.g. spam detection.

An natural question: how to extend boosting to the online setting?
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Related Work

Several algorithms exist (Oza and Russell, 2001; Grabner and Bischof, 2006; Liu and Yu,

2007; Grabner et al., 2008).

mimic offline counterparts.

achieve great success in many real-world applications.

no theoretical guarantees.

Chen et al. (2012): first online boosting algorithms with theoretical
guarantees.

online analogue of weak learning assumption.

connecting online boosting and smooth batch boosting.
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Batch Boosting
Given a batch of T examples, (xt , yt) ∈ X × {−1, 1} for t = 1, . . . ,T .
Learner predicts ŷt ∈ {−1, 1} for example xt .

Weak learner (with edge γ):

T∑
t=1

1{ŷt 6= yt} ≤ ( 1
2 − γ)T

+ S

Strong learner (with error rate ε):

T∑
t=1

1{ŷt 6= yt} ≤ εT

+ S ′

this talk: S = 1
γ (corresponds to

√
T regret)
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Online Boosting
Given a sequence of T examples (xt , yt) ∈ X × {−1, 1} for t = 1, . . . ,T .
Learner observes xt and predicts ŷt ∈ {−1, 1} before seeing yt .

Weak Online learner (with edge γ):

T∑
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1{ŷt 6= yt} ≤ ( 1
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+ Sww�
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1{ŷt 6= yt} ≤ εT

+ S ′

this talk: S = 1
γ (corresponds to

√
T regret)

6 / 29



Online Boosting
Given a sequence of T examples (xt , yt) ∈ X × {−1, 1} for t = 1, . . . ,T .
Learner observes xt and predicts ŷt ∈ {−1, 1} before seeing yt .
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Main Results

Parameters of interest:
N = number of weak learners (of edge γ) needed to achieve error rate ε.
Tε = minimal number of examples s.t. error rate is ε.

Algorithm N Tε Optimal? Adaptive?

Online BBM O( 1
γ2 ln 1

ε ) Õ( 1
εγ2 )

√
×

AdaBoost.OL O( 1
εγ2 ) Õ( 1

ε2γ4 ) ×
√

Chen et al. (2012) O( 1
εγ2 ) Õ( 1

εγ2 ) × ×

7 / 29



Structure of Online Boosting
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ŷ1 y1

WL1

update

w.p. p1
1

(x1, y1)

WL2

update

w.p. p2
1

(x1, y1)

. . .

WLN

update

w.p. pN1

(x1, y1)

8 / 29



Structure of Online Boosting

B
o

oster

x1

WL1

predict

x1

ŷ1
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Structure of Online Boosting

B
o

oster

x2

WL1

predict

x2

ŷ1
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ŷ1
2

WL2

predict

x2

ŷ2
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ŷN2

ŷ2
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Structure of Online Boosting
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Boosting as a Drifting Game (Schapire, 2001; Luo and Schapire, 2014)

Batch boosting can be analyzed using drifting games.

Online version: sequence of potentials Φi (s) s.t.

ΦN(s) ≥ 1{s ≤ 0},
Φi−1(s) ≥ ( 1

2 −
γ
2 )Φi (s − 1) + ( 1

2 + γ
2 )Φi (s + 1).

Online boosting algorithm using Φi :

prediction: majority vote.

update: pit = Pr[(xt , yt) sent to WLi ] ∝ w i
t where

w i
t = difference in potentials if example is misclassified or not.
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Mistake Bound

Generalized drifting games analysis implies

T∑
t=1

1{ŷt 6= yt} ≤ Φ0(0)︸ ︷︷ ︸
≤ε

T + (S + 1
γ )
∑

i ‖wi‖∞︸ ︷︷ ︸
=S ′

.

So we want small ‖wi‖∞.

exponential potential (corresponding to AdaBoost) does not work.

Boost-by-Majority (Freund, 1995) potential works well!
I w i

t = Pr[k i
t heads in N − i flips of a γ

2 -biased coin] ≤ 4√
N−i

Online BBM: to get ε error rate, needs
N = O( 1

γ2 ln( 1
ε )) weak learners and Tε = O( 1

εγ2 ) examples. (Optimal)
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Drawback of Online BBM

The draw back of BBM (or Chen et al. (2012)) is the lack of adaptivity.

requires γ as a parameter.

treats each weak learner equally: predicts via simple majority vote.

Adaptivity is the key advantage of AdaBoost!

different weak learners weighted differently based on their
performance.
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Adaptivity via Online Loss Minimization

Batch boosting finds a combination of weak learners to minimize some
loss function using coordinate descent. (Breiman, 1999)

AdaBoost: exponential loss

AdaBoost.L: logistic loss

We generalize it to the online setting:

replace line search with online gradient descent.

exponential loss does not work again, use logistic loss to get adaptive
online boosting algorithm AdaBoost.OL.
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Mistake Bound

If WLi has edge γi , then

T∑
t=1

1{ŷt 6= yt} ≤
2T∑
i γ

2
i

+ Õ

(
N2∑
i γ

2
i

)

Suppose γi ≥ γ, then to get ε error rate AdaBoost.OL needs
N = O( 1

εγ2 ) weak learners and Tε = O( 1
ε2γ4 ) examples.

Not optimal but adaptive.
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Results
Available in Vowpal Wabbit 8.0.

command line option: --boosting.

VW as the default “weak” learner (a rather strong one!)

Dataset VW baseline Online BBM AdaBoost.OL Chen et al. 12

20news 0.0812 0.0775 0.0777 0.0791
a9a 0.1509 0.1495 0.1497 0.1509

activity 0.0133 0.0114 0.0128 0.0130
adult 0.1543 0.1526 0.1536 0.1539
bio 0.0035 0.0031 0.0032 0.0033

census 0.0471 0.0469 0.0469 0.0469
covtype 0.2563 0.2347 0.2495 0.2470

letter 0.2295 0.1923 0.2078 0.2148
maptaskcoref 0.1091 0.1077 0.1083 0.1093

nomao 0.0641 0.0627 0.0635 0.0627
poker 0.4555 0.4312 0.4555 0.4555
rcv1 0.0487 0.0485 0.0484 0.0488

vehv2binary 0.0292 0.0286 0.0291 0.0284
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Regression Setting

Setup:

Examples (x, y) ∈ X × [−1, 1]

Loss of predicting ŷ for (x, y) is (y − ŷ)2

F is a base class of regressors f : X → [−1, 1]

span(F) is set of linear combinations of regressors in F

Boosting ≡ greedy stagewise algorithm for fitting of additive models.

I.e. given alg to fit model in F , fit an additive model in span(F)

Typically, by “greedily fitting the residual,” as in Basis Pursuit.
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F is a base class of regressors f : X → [−1, 1]

span(F) is set of linear combinations of regressors in F

Boosting ≡ greedy stagewise algorithm for fitting of additive models.

I.e. given alg to fit model in F , fit an additive model in span(F)

Typically, by “greedily fitting the residual,” as in Basis Pursuit.

18 / 29



Regression Setting

Setup:

Examples (x, y) ∈ X × [−1, 1]

Loss of predicting ŷ for (x, y) is (y − ŷ)2
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Regression Setting
Setup:

Examples (x, y) ∈ X × [−1, 1]

Loss of predicting ŷ for (x, y) is (y − ŷ)2

F is a base class of regressors f : X → [−1, 1]

span(F) is set of linear combinations of regressors in F

Boosting ≡ greedy stagewise algorithm for fitting of additive models.

Input: a batch S of examples, number of boosting steps N, and step
size parameter η.
Set g to be the constant 0 model.
Repeat for N steps, starting with 0: find

f = arg min
f ∈F

∑
(x,y)∈S

(y − g(x)︸ ︷︷ ︸
residual

−ηf (x))2

and update
g ← g + ηf .
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Batch Boosting: Convergence

Given a batch of T examples, (xt , yt) ∈ X × [−1, 1] for t = 1, . . . ,T .
Learner predicts ŷt ∈ [−1, 1] for example xt .

Weak learner (a.k.a. ERM):

T∑
t=1

(yt − ηŷt)2 ≤ inf
f ∈F

T∑
t=1

(yt − ηf (xt))2

ww� (Friedman, 2001; Mason et al., 2000)

(Zhang and Yu, 2005)

Strong learner:

For any f ∈ span(F),

T∑
t=1

(yt − ŷt)
2 ≤ inf

f ∈span(F)

T∑
t=1

(yt − f (xt))2

∆f → 0 as N →∞.
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Online Boosting

Given a sequence of T examples, (xt , yt) ∈ X × [−1, 1] for t = 1, . . . ,T .
Learner predicts ŷt ∈ [−1, 1] for example xt before observing yt .

Weak online learner (a.k.a. online ERM):

T∑
t=1

(yt − ηŷt)2 ≤ inf
f ∈F

T∑
t=1

(yt − ηf (xt))2 + R(T )

ww� Our result

Strong online learner: For any f ∈ span(F),

T∑
t=1

(yt − ŷt)
2 ≤

T∑
t=1

(yt − f (xt))2 + R ′f (T )

Rf (T )→ 0 as N →∞.
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Structure of Batch Boosting

Input: batch of examples {(xt , yt) | t = 1, 2, . . . ,T}, step-size η

Set “pseudo-labels” ỹ1
t = yt for all t

For i = 1, 2, . . . ,N

1 Train weak learner on examples {(xt , ỹ it ) | t = 1, 2, . . .T} with
step-size η

2 Obtain predictions ŷ it for all t

3 Compute pseudo-labels ỹ i+1
t = ỹ it − ηŷ it for t
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t = yt for all t

For i = 1, 2, . . . ,N

1 Train weak learner on examples {(xt , ỹ it ) | t = 1, 2, . . .T} with
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step-size η

2 Obtain predictions ŷ it for all t
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Structure of Online Boosting for Regression
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ŷ1 y1

WL1

update(x1, ỹ
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ŷ1
1

WL2

predict

x1

ŷ2
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ŷ2
1

. . .

WLN

predict

x1

ŷN1
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Structure of Online Boosting for Regression

B
o

oster

x2

WL1

predict

x2

ŷ1
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Structure of Online Boosting
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ŷt yt

WL1

update(xt , ỹ
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Constructing the pseudo-labels

Batch boosting:

ỹ1
t = yt

ỹ2
t = ỹ1

t − ηŷ1
t

ỹ3
t = ỹ2

t − ηŷ2
t

· · ·

Online boosting:

ỹ1
t = yt

ỹ2
t = (1− σ1

t )ỹ1
t + σ1

t yt − ηŷ1
t

ỹ3
t = (1− σ2

t )ỹ2
t + σ2

t yt − ηŷ2
t

· · ·

σit ∈ [0, η] are updated using gradient descent.
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Regret bound

For any f ∈ span(F),

R ′f (T ) ≤
(

1− η

‖f ‖1

)N

∆0 + O(‖f ‖1 · (ηT + R(T ) +
√
T )),

where ∆0 :=
∑T

t=1(yt − 0)2 − (yt − f (xt))2.

Choosing η ≈ log N
N , we get R ′f (T )→ 0 as N →∞.

Lower bound: for any online boosting alg, R ′f (T ) ≥ Ω(TN ) for some f in
convex hull of F .

In batch setting, exponentially faster convergence compared to analysis of
Zhang and Yu (2005).
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Experiments

Setup:

Implemented within Vowpal Wabbit.

14 publicly available data sets

Parameters η and N tuned via progressive validation

Base learners: VW, Neural Networks, Regression stumps

Base learner Average boost Median boost
VW 1.65% 0.03%
Neural networks 7.88% 0.72%
Regression stumps 20.22% 10.45%
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Conclusions

We propose:

A natural framework for online boosting.

An optimal boosting algorithm for classification, Online BBM.

An adaptive boosting algorithm for classification, AdaBoost.OL.

An online boosting algorithm for regression.

Future directions:

Open problem: optimal and adaptive boosting algorithm for
classification?

Open problem: is our regret bound in the regression setting tight?

More experimentation and modifications for practical use.
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