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Topics on strategic learning I:

Unilateral procedures



Presentation

We will consider here an agent acting in discrete time and
facing an unknown environment.
At each stage n, he chooses kn in a finite set K then observes a
reward vector Un ∈U = [−1,1]K and his payoff is the kth

n
component: ωn = Ukn

n .
We will work in an adversarial framework where no assumption
is done on the reward process that is a function of the past
history hn−1 = {k1,U1, ...,kn−1,Un−1}.
A strategy of the player is a map σ from H = ∪+∞

m=0Hm to ∆(K)
(set of probabilities on K).

A basic tool is approachability theory that we will first cover.



1. Approachability theory

2. No-regret dynamics

3. Calibrating and applications



Deterministic approachability: geometry

All the results are due to Blackwell (1956).

This section presents the basic geometric principle that
sustains the approachability property.
Suppose that x1,x2, ... is a sequence in RK .
Assume the family uniformly bounded: ‖xn‖2 ≤ L.
Denote by x̄n the average of the first n elements in the
sequence:

x̄n =
1
n

n

∑
m=1

xm.

For C ⊂ RK closed, ΠC(x) is a closest point to x in C.
If C is convex, it is the projection of x on C.
d(x,C) = ‖x−ΠC(x)‖ is the distance from x to C.



Theorem (The geometric principle)
Suppose that {xn} satisfies:

〈xn+1−ΠC(x̄n), x̄n−ΠC(x̄n)〉 ≤ 0, (1)

then d(x̄n,C) converges to 0.
Proof
Let yn = ΠC(xn) and d2

n = ‖xn− yn‖2. Then:

d2
n+1 ≤ ‖xn+1− yn‖2 (2)
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d2
n+1 ≤ ‖xn+1− xn‖2 +‖xn− yn‖2 +2〈xn+1− xn,xn− yn〉. (3)

We decompose

〈xn+1− xn,xn− yn〉 = (
1

n+1
)〈xn+1− xn,xn− yn〉

= (
1

n+1
)(〈xn+1− yn,xn− yn〉−‖xn− yn‖2)

and we obtain, using property (1):

d2
n+1 ≤ (1− 2

n+1
) d2

n +(
1

n+1
)2‖xn+1− xn‖2. (4)

Since ‖xn+1− xn‖2 ≤ 2‖xn+1‖2 +2‖xn‖2 ≤ 4L, we deduce

d2
n+1 ≤ (

n−1
n+1

) d2
n +(

1
n+1

)2 4L (5)

so that, by induction:

d2
n ≤

4L
n
.



Minmax theorem

Let A be a I× J real matrix and X = ∆(I),Y = ∆(J).
xAy = ∑ij xiAijyj.

Theorem
Assume: minY maxX xAy≥ 0. Then: maxX minY xAy≥ 0.
Proof
Let C = RJ

+ be the set to approach.
Let z1 be a lign of A.
We construct inductively a sequence {zn} satisfying the
previous inequality (1).
If z̄n /∈ C, let z̄n− z̄+n be the negative components and yn+1 ∈ Y
proportional to −z̄n + z̄+n .
By hypothesis, there exists a move in+1 with ein+1Ayn+1 ≥ 0.
Hence with zn+1 = ein+1A , one has 〈zn+1,yn+1〉 ≥ 0.
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Thus 〈zn+1, z̄n− z̄+n 〉 ≤ 0, but:
i) z̄+n = ΠC(z̄n)
ii) z̄+n ⊥ z̄n− z̄+n .
Hence the previous inequality implies :

〈zn+1−ΠC(z̄n), z̄n−ΠC(z̄n)〉 ≤ 0.

So that d(z̄n,C)→ 0 .
Now z̄n = x̄n A where x̄n is the empirical frequency of moves of
player 1.
For any accumulation point x∗ ∈ X of the sequence {xn}, one
has x∗A ∈ C, which implies maxX minY xAy≥ 0.



Approachability

The framework is as follows:
A is a I×J matrix with coefficients in RK .
At each stage n, Player 1 (resp. Player 2) chooses a move in in
I (resp. jn in J). The corresponding vector payoff, gn = Ainjn ∈ RK

is then announced.
Denote by hn−1 the sequence of payoffs before stage n (this is,
at least, the information available to both players when playing
at stage n) and let gn =

1
n [∑

n
m=1gm] be the average payoff up to

stage n included.
Let also ‖A‖= maxi∈I,j∈J,k∈K |Ak

ij|.



Definitions
A set C in RK is approachable by Player 1 if for any ε > 0 there
exists a strategy σ and N such that, for any strategy τ of Player
2 and any n≥ N:

Eσ ,τ(dn)≤ ε

where dn is the euclidean distance d(gn,C).
A set C in RK is excludable by Player 1 if for some δ > 0, the set
Cc

δ
= {z;d(z,C)≥ δ} is approachable by him.

A dual definition holds for Player 2.

From the definitions it is enough to consider closed sets C and
even their intersection with the closed ball of radius ‖A‖.
Given x in X = ∆(I), define [xA] = co {∑i xiAij; j∈J}, and similarly
[Ay], for y in Y = ∆(J). If Player 1 uses x, his expected payoff will
be in [xA], whatever being the move of player 2.



B-sets and sufficient condition

The first result is a sufficient condition for approachability based
on the following notion:

Definition
A closed set C in RK is a B-set for Player 1 if:
for any z/∈C, there exists a closest point w = w(z) in C to z and a
mixed move x = x(z) in X, such that the hyperplane trough w
orthogonal to the segment [wz] separates z from [xA]. Explicitly:

〈z−w,u−w〉 ≤ 0,∀u ∈ [xA].



Theorem
Let C be a B-set for Player 1.
Then C is approachable by that player.
Explicitly, a strategy satisfying σ(hn+1) = x(gn), whenever gn /∈C,
gives:

Eστ(dn) ≤
2‖A‖√

n
, ∀τ

and dn converges Pστ a.s. to 0, more precisely:

P(∃n≥ N;d2
n ≥ ε)≤ 8L

εN

Proof
Let Player 1 use a strategy σ as above. Denote wn = w(gn).
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The property of x(gn) implies that:

〈E(gn+1|hn)−wn,gn−wn〉)≤ 0

since E(gn+1|hn) belongs to [x(gn)A].
Hence the previous equation in the deterministic case:

d2
n+1 ≤ (1− 2

n+1
) d2

n +(
1

n+1
)2‖xn+1− xn‖2,

gives here by taking conditional expectation with respect to the
history hn:

E(d2
n+1|hn)≤ (1− 2

n+1
) d2

n +(
1

n+1
)2E(‖gn+1−gn‖2|hn). (6)



So that we obtain, like in (5):

E(d2
n+1)≤ (

n−1
n+1

) E(d2
n)+(

1
n+1

)2 4L

and by induction:

E(d2
n)≤

4L
n
.

This gives in particular the convergence in probability of dn to 0.
Now introduce the random variable:
Wn = d2

n +L∑
∞
m=n+1(

1
m2 E(‖gm−gm‖2|hn). We have from (6):

E(Wn+1|hn)≤Wn

thus Wn is a positive supermartingale hence converges P a.s. to
0. More precisely Doob’s maximal inequality gives :

P(∃n≥ N;d2
n ≥ ε)≤ E(WN)

ε
≤ 8L

εN
.



In particular one obtains:

Corollary
For any x in S, [xA] is approachable by Player 1, with the
constant strategy x.
It follows that a necessary condition for a set C to be
approachable by Player 1 is that for any y in Y, [Ay] ∩C 6= /0,
otherwise C would be excludable by Player 2.

In fact this condition is also sufficient for convex sets.
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Convex case

Theorem
Assume C closed and convex in RK .
C is a B-set for Player 1 iff

(∗) [Ay] ∩ C 6= /0, ∀y ∈ Y.

In particular a set is approachable iff it is a B-set.
Proof
By the previous Corollary, it is enough to prove that (∗) implies
that C is a B-set.
The idea is to reduce by projection the problem to the
one-dimentional case and to use the minmax theorem.
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In fact, let z /∈ C, w = ΠC(z), and consider the game with real
payoff matrix B = 〈w− z,A〉. Since [Ay] ∩ C 6= /0 for all y ∈ Y, this
implies that its value is at least minc∈C 〈w− z,c〉= 〈w− z,w〉.
Hence there exists an optimal strategy x ∈ X of player 1 such
that 〈w− z,∑i xiAij〉 ≥ 〈w− z,w〉 for any j ∈ J, which shows that
xA is on the opposite side of the hyperplane to z, and the result
follows.

The previous proof gives also the following practical criteria:

Corollary
A closed convex set C is a B- set for Player 1 iff, for any α in RK :

val〈α,A〉 ≥min
c∈C
〈α,c〉,

where val is the maxX minY operator.



Extensions

1. In dimension 1, any set is either approachable or excludable.
There exist sets that are neither approachable nor excludable.
Extension to random payoffs, uniformly bounded in L2

(Blackwell, 1956).
2. Any set is either weakly approachable or weakly excludable
(strategy adapted to the duration) [first link with differential
games] (Vieille, 1992).
3. Any approachable set contains a B-set (Spinat, 2002).
4. Extension to infinite dimension (Lehrer, 2002).
5. General active states (Lehrer, 2003).



6. Idea of a potential (convex case)
Write

〈xn+1−ΠC(x̄n), x̄n−ΠC(x̄n)〉 ≤ 0, (7)

as
〈xn+1− x̄n,∇PC(x̄n)〉 ≤ −2 PC(x̄n), (8)

with PC(x) = ‖x−ΠC(x)‖2 and ∇PC(x) = 2[x−ΠC(x)]
7. Geometric condition and proximal normal (dual approach)
(As Soulaimani, Quincampoix and Sorin, 2009)
8. Approachability and viability [second link with differential
games] (As Soulaimani, Quincampoix and Sorin, 2009)



1. Approachability theory

2. No-regret dynamics

3. Calibrating and applications



External regret

Back to the on-line decision problem, we introduce the regret
given k ∈ K and U ∈U ⊂ RK as the vector R(k,U) ∈ RK defined
by:

R(k,U)` = U`−Uk, ` ∈ K.

Evaluation = regret at stage n = Rn = R(kn,Un) with ωn = Ukn
n

and:
R`

n = U`
n−ωn, ` ∈ K.

Average external regret vector at stage n, R̄n with

R`
n = U`

n−ωn, ` ∈ K.

Compare the actual (average) payoff to the payoff
corresponding to the choice of a constant component,
see Hannan (1957), Foster and Vohra (1999), Fudenberg and
Levine (1995).



Definition
A strategy σ satisfies external consistency (or exhibits no
external regret) if, for every process {Um} ∈U :

max
k∈K

[Rk
n]
+ −→ 0 a.s., as n→+∞

or, equivalently ∑
n
m=1(U

k
m−ωm)≤ o(n), ∀k ∈ K.



We will prove the existence of a strategy satifying EC by
showing that the negative orthant D = RK

− is approachable by
the sequence of regret {Rn}.

Lemma
∀x ∈ ∆(K),∀U ∈U :

〈x,Ex[R(.,U)]〉= 0.

Proof
One has

Ex[R(.,U)] = ∑
k∈K

xk R(k,U) = ∑
k∈K

xk(U−Uk1) = U−〈x,U〉1

(1 is the K-vector of ones), thus 〈x,Ex[R(.,U)]〉= 0.
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Define, if R̄+
n 6= 0, σ(hn) to be proportional to this vector.

Then
〈E(Rn+1|hn)−ΠD(R̄n), R̄n−ΠD(R̄n)〉= 0

since again 〈ΠD(R̄n), R̄n−ΠD(R̄n)〉= 0 and

〈E(Rn+1|hn), R̄n−ΠD(R̄n)〉 = 〈E(Rn+1|hn), R̄+
n 〉

÷ 〈E(Rn+1|hn),σ(hn)〉
= 〈Ex[R(.,Un+1)],x〉, for x = σ(hn)
= 0

Thus the (∗) condition is satisfied, so D is approachable hence
d(R̄n,RK

−) goes to 0 and maxk∈K [R
k
n]
+ −→ 0.



Internal regret

The internal regret evaluation given (k,U) is the K×K matrix
S(k,U) with components: Sj`(k,U) = (U`−Uj) I{j=k}.
The evaluation at stage n is Sn = S(kn,Un) hence defined by:

Sk`
n =

{
U`

n−Uk
n for k = kn

0 otherwise.

Average internal regret matrix:

Sk`
n =

1
n

n

∑
m=1,km=k

(U`
m−Uk

m)

Comparison for each component k, of the average payoff
obtained on the dates where k was played, to the payoff for an
alternative choice `.
See Foster and Vohra (1999), Fudenberg and Levine (1999).



Definition
A strategy σ satisfies internal consistency (or exhibits no
internal regret) if, for every process {Um} ∈U and every couple
k, `:

[Sk`
n ]+ −→ 0 a.s., as n→+∞



Given a K×K real matrix A with nonnegative coefficients, let
Inv[A] be the non-empty set of invariant measures for A, namely
vectors µ ∈ ∆(K) satisfying:

∑
k∈K

µ
kAk` = µ

`
∑
k∈K

A`k ∀` ∈ K.

(This follows from the existence of an invariant measure for a
Markov chain- which is itself a consequence of the minmax
theorem).

Lemma
Given A ∈ RK2

+ , let µ ∈ Inv[A] then:

〈A,Eµ(S(.,U))〉= 0, ∀U ∈U .
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Proof
〈A,Eµ(S(.,U))〉= ∑

k,`
Ak`

µ
k(U`−Uk)

and the coefficient of each U` is

∑
k∈K

µ
kAk`−µ

`
∑
k∈K

A`k = 0



To prove the existence of a strategy satisfying internal
consistency, we show that ∆ = RK×K

− is approachable by the
sequence of internal regret {Sn}.
Define, if B = S̄+n 6= 0, σ(hn) to be an invariant measure of B.
Then:

〈E(Sn+1|hn)−Π∆(S̄n), S̄n−Π∆(S̄n)〉= 0

since again 〈Π∆(S̄n), S̄n−Π∆(S̄n)〉= 0 and

〈E(Sn+1|hn), S̄n−Π∆(S̄n)〉 = 〈E(Sn+1|hn), S̄+n 〉
= 〈E(Sn+1|hn),B〉
= 〈Eµ [S(.,Un+1)],B〉, for µ = σ(hn)
= 0

Then ∆ is approachable hence maxk,`[S
k,`
n ]+ −→ 0.
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Calibrating

One considers a sequence of random variables Xm with values
in a finite set Ω (that will be written as a basis of RΩ).
Obviously any deterministic prediction algorithm φm - where the
loss is measured by ‖Xm−φm‖ - will have a worst loss 1 and
any random predictor a loss at least 1/2 (take Xm = 1 iff
φm(1)≤ 1/2).
We consider here a predictor with values in a finite
discretization V of D = ∆(Ω) with the following interpretation:
“φm = v” means that the anticipated probability that Xm = ω (or
Xω

m = 1) is vω .
Definition:
φ is ε-calibrated if, for any v ∈ V:

lim
n→+∞

1
n
‖ ∑
{m≤n,φm=v}

(Xm− v)‖ ≤ ε



This says that if the average number of times v is predicted
does not vanish, the average value of Xm on these dates is
close to v.
More precisely let Bv

n the set of stages before n where v is
announced, let Nv

n be its cardinal and X̄n(v) the empirical
average of Xm on these stages.
Then the condition writes

lim
n→+∞

Nv
n

n
‖X̄n(v)− v‖ ≤ ε, ∀v ∈ V.



From internal consistency to calibrating

Foster and Vohra (1997) We consider the online algorithm
where the choice set of the forecaster is V and the outcome
given v and Xm is

Uv
m = ‖Xm− v‖2

(where we use the L2 norm).
Given an internal consistent procedure φ one obtains (the
outcome is here a loss)

1
n ∑

m∈Bv
n

(Uv
m−Uw

m)≤ o(n), ∀w ∈ V,

which is

1
n ∑

m∈Bv
n

(‖Xm− v‖2−‖Xm−w‖2)≤ o(n), ∀w ∈ V,



hence implies:

Nv
n

n
(‖X̄n(v)− v‖2−‖X̄n(v)−w‖2)≤ o(n), ∀w ∈ V.

In particular by chosing a point w closest to X̄n(v)

Nv
n

n
(‖X̄n(v)− v‖2)≤ δ

2 +o(n)

where δ is the L2 mesh of V, from which calibration follows.



From calibrating to approachability

Foster and Vohra (1997)
We use calibrating to prove approachability of convex sets.

Assume that C satisfies: ∀y ∈ Y,∃x ∈ X such that xAy ∈ C.
Consider a δ -grid of Y defined by {yv,v ∈ V}.
A stage is of type v if player 1 predicts yv and then plays a
mixed move xv such that xv Ayv ∈ C.
By using a calibrated procedure, the average move of player 2
on the stages of type v will be δ close to yv.
By a martingale argument the average payoff will then be ε

close to xv Ayv for δ small enough and n large enough.
Finally the total average payoff is a convex combination of such
amounts hence is close to C by convexity.
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