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Topics on strategic learning II:

Complements and extensions



1. Conditional expectation
Recall that the total regret at stage n that the player wants to
control is of the form:

n

∑
m=1

Uk
m−ωm, k ∈ K

where ωm = Ukm
m is the random payoff at stage m.

Let xm ∈ ∆(K) be the strategy of the player at stage m, then

E(ωm|hm−1) = 〈Um,xm〉

so that ωm−〈Um,xm〉 is a bounded martingale difference.
Hoeffding-Azuma’s concentration inequality for a process {Zn}
of martingale differences with |Zn| ≤ L states that:

P{|Z̄n| ≥ ε} ≤ 2exp(−n ε2

2L2 )

Hence the average difference between the payoff and its
conditional expectation is controlled.



Thus we will study quantities of the form:

n

∑
m=1

Uk
m−〈Um,xm〉, k ∈ K.

or equivalently, because of the linearity:

n

∑
m=1
〈Um,x〉−〈Um,xm〉, x ∈ ∆(K).

Similarly the internal no-regret condition becomes:

n

∑
m=1

xi
m[U

j
m−Ui

m]≤ o(n), ∀i, j ∈ K.



2. Procedures in law

Assume that the actual move kn is not observed and define a
pseudo-process R̃ defined through the conditional expected
regret:

Rn = Un−ωn1, R̃n = Un−〈Un,xn〉1

and introduce the associated strategy σ̃ .
Then consistency holds both for the pseudo and the realized
processes under σ̃ .
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3. Experts and generalized consistency

Experts
External consistency can be considered as a robustness
property of σ facing a given finite family of “external” experts
using procedures φ ∈Φ:

lim
1
n
[

n

∑
m=0
〈φm− xm,Um〉]+ = 0, ∀φ ∈Φ.

The typical case corresponds to a constant choice : φ = k and
Φ = K.
In general “k” will be the (random) move of expert k, that the
player follows with probability xk

m at stage m.
Uk

m is then the payoff to expert k at stage m.



Internal consistency corresponds to experts adjusting their
behavior to the one of the predictor.

From external to internal consistency

Stoltz and Lugosi (2005)
Consider a family ψ ij,(i, j) ∈ K×K of experts and θ an algorithm
that satisfies external consistency with respect to this family.
Define σ inductively as follows.
Given some element p ∈ ∆(K), let p(ij) be the vector obtained
by adding pi to the jth component of p.
Let qn+1(p) be the distribution induced by θ at stage n+1 given
the history hn and the behavior ψ ij(hn) = p(ij) of the experts.
Assume that the map p 7→ qn+1(p) is continuous and let p̄n+1 be
a fixed point which defines σ(hn) = xn+1.



The fact that σ is an incarnation of θ implies that it performs
well facing any ψ ij hence

[
n

∑
m=0
〈ψ ij

m− xm,Um〉]≤ o(n), ∀i, j

which is

[
n

∑
m=0
〈p̄(ij)m− p̄m,Um〉]≤ o(n), ∀i, j

hence

[
n

∑
m=0

p̄i
m(U

j
m−Ui

m)]≤ o(n), ∀i, j

and this is the internal consistency condition.



Blum and Mansour (2007)
Consider K parallel algorithms {φ [k]} having no external regret,
that generates each a (row) vector q[k] ∈ ∆(K) then define σ by
the invariant measure p with

p = pQ.

Given the outcome U ∈ RK , add pkU to the entry of algorithm
φ [k]. Expressing the fact that φ [k] satisfies no external regret
gives, at stage m, for all j ∈ K

[
n

∑
m=0

pk
mUj

m−〈q[k]m,pk
mUm〉]≤ o(n)

Note that ∑k〈q[k]m,pk
mUm〉= ∑k〈pk

mq[k]m,Um〉= 〈pm,Um〉, hence
by summing over k, for any function M : K 7→ K, corresponding
to a perturbation of σ with j = M(k) the difference between the
performances of σM and σ will satisfy as well

[
n

∑
m=0

∑
k

pk
mUM(k)

m −〈pm,Um〉]≤ o(n).

This is the internal consistency for “swap experts”.



Large range
Blum and Mansour (2007); Cesa-Bianchi and Lugosi (2006);
Lehrer (2003).
Consider an even larger set of experts that are allowed (in
addition to be adapted to the past history) to choose their
actions and to be active as a function of the choice of the
predictor.
Explicitly every expert s ∈ S (finite) is characterized, at stage m,
conditional to the past, by :
- a choice function f s

m : K→ K
- an activity function τs

m : K→ [0,1].
Given a predictor φ which prediction at stage m has a law pm

the regret facing s is :

rs
m = ∑

k
pk

mτ
s
m(k)[U

f s
m(k)

m −Uk
m]

We assume that the functions f s,τs are known by the predictor.
Then there exists a consistent procedure.



4. Bandit framework

This is the case where given the move k and the vector U the
only information to the predictor is the realization ω = Uk (the
vector U is not announced).
Define the pseudo regret vector at each stage n by:

Ûk
n =

ωn

σ k
n

1{kn=k}

and note that it is an unbiased estimator of the true regret.
To keep the outcome bounded one may have to perturb the
strategy and bt same asymptotic properties hold.
(Auer, Cesa-Bianchi, Freund, Shapire, 2002)

For recent advances, see Bubeck and Cesa-Bianchi (2012),
chapter 5.



5.Link with on-line convex optimization

Cesa-Bianchi N. and G. Lugosi ( 2006) Chapter 11
Bubek S. (2011) Introduction to online optimization.
Hazan E. (2009) The convex optimization approach to regret
minimization.
Rakhlin A. ( 2009) Lecture notes on online learning.
Shalev-Shwartz S. (2011) Online learning and online convex
optimization, Foundations and Trends in Machine Learning, 4,
107-194.



Recall that we are interested in upper bounds for quantities of
the form:

n

∑
m=1

[〈Um,x〉−〈Um,xm〉], x ∈ ∆(K).

where {Um} is an unknown process and {xm} the adapted
procedure.
One can extend the framework to the case where: - X is a
convex compact subset of some euclidean set Rd and
- {fm} is a collection of L-Lipschitz convex functions (that
corresponds to a cost) defined on X.
The quantity to control is now:

An =
n

∑
m=1

[fm(xm)− fm(x)], x ∈ X.



By convexity:

fm(x)− fm(xm)≥ 〈∇fm(xm),x− xm〉

so that:

An ≤
n

∑
m=1
〈−∇fm(xm),x− xm〉

which corresponds to the previous case with Um =−∇fm(xm)



Recall that the basic gradient equation for a (fixed) convex
function:

ẋt =−∇f (xt)

leads to two discrete time algorithms, given a sequence of step
sizes {an}.
Prox (proximal algorithm) corresponds to xn+1 minimizing

f (x)+
1

2an
‖x− xn‖2

which is
xn+1− xn =−an∇f (xn+1)

Euler is given by
xn+1− xn =−an∇f (xn)

Note that Euler corresponds to Prox applied to the linearization
of f near xn: f (x) is replaced by f (xn)+ 〈∇f (xn),x− xn〉



When considering the problem with constraints

min f (x); x ∈ X

the previous equation corresponds to the projected gradient
(Polyack)

xn+1 = ΠX(xn−an∇f (xn))

where ΠX is the orthogonal projection operator.
This amounts to replace the penalization ‖x− xn‖2 by
‖x− xn‖2χX where χX is the indicator function of X.
More generally one can use a penalization generated by a
distance given by a Bregman function (Beck and Teboulle
(2003)) Bh(x,y) = h(x)−h(y)−〈x− y,∇h(y)〉.
Then xn+1 minimizes/

〈x,∇f (xn)〉+
1
an

Bh(x,xn)

so that: ∇f (xn)+
1
an
[∇h(xn+1)−∇h(xn)] = 0

(mirror descent) leading either to projection (if ∇h is defined on
all X ) or interior methods ( if ‖∇h(xt)‖→+∞ whenever
xt→ x ∈ ∂X).



A first algorithm, due to Zinkevich (2003), extends the projected
gradient to our framework by changing the function to minimize
at each step:

xn+1 = ΠX(xn−an∇fn(xn)).

Define gn = ∇fn(xn) and yn+1 = xn−angn so that for any x ∈ X:

‖yn+1− x‖2 = ‖xn− x‖2−2an〈xn− x,gn〉+a2
n‖gn‖2

Since xn+1 = ΠX(yn+1):

‖xn+1− x‖2 ≤ ‖xn− x‖2−2an〈xn− x,gn〉+a2
n‖gn‖2

which gives:

〈xn− x,gn〉 ≤
1

2an
[‖xn− x‖2−‖xn+1− x‖2]+

an

2
L2.



By summing we obtain:

AN =
N

∑
n=1
〈xn− x,gn〉 ≤

1
2a1
‖x1− x‖2− 1

2aN
‖xN+1− x‖2

+
N

∑
n=2

[
1

2an
− 1

2an−1
]‖xn− x‖2 +

N

∑
n=1

an

2
L2

hence with m(X) being the diameter of X:

AN ≤ m(X)2 +
L2

2

N

∑
n=1

an

and the choice of an = n−1/2 leads to:

AN ≤
√

N(m(X)2/2+L2).

Alternatively a constant step size a would give:

AN ≤ (m(X)2/2+L2)[
1
a
+aN]

hence the choice a[N] = N−1/2. Use then the “doubling trick”.



This algorithm was of the form xn+1 = Tn(xn,gn).

Other procedures are based on an operator of the kind:

x = argmin[η〈x,y〉+ρ(x)]

where ρ is a bounded smooth regularization function adapted
to X, η is a positive parameter, and y will be the state variable.
We will write x = S(y;η). Note that one has:

x = argmax[〈x,−ηy〉−ρ(x)]

so that if ρ is convex l.s.c., x ∈ ∇ρ∗(−ηy), where ρ∗ is the
Fenchel conjugate of ρ.
The procedure will be typically:
xn+1 = S(yn;ηn) and
yn+1 = yn−∇fn(xn).



Example 1
X = ∆(K), ρ(x) = ∑xk log(xk) (entropy) so that x = S(y;η) is given
by

xk÷ exp(−ηyk)

which corresponds to the logit map.
xn+1 = S(yn;η) is the exponential weight algorithm:

xk
n+1 =

exp[−∑
n
m=1 ∇f k

m(xm)]

∑`∈K exp[−∑
n
m=1 ∇f `m(xm)]

and it satisfies:
AN ≤ L[

1
η
+ηN]

so that again η = N−1/2 will give a rate of convergence of N−1/2.



Example 2

ηn =
1

εn
, xn+1 = S(yn;ηn) is an ε smooth payoff best reply to ȳn,

that remains bounded (smooth fictitious play).
The recursive equation is now:

xn+1 = S(ȳn;ε
−1)

ȳn+1− ȳn =
1

n+1
[−∇fn(xn)− ȳn].



6. Imperfect monitoring

The model
Consider a finite zero-sum two person repeated game defined
by G from I× J to R. In addition there is a finite signal set S and
a map M from I× J to ∆(S).
At each stage n, given a profile of moves (in, jn), a signal sn with
law M(in, jn) is sent to player 1 and this is his only information.
Player 2 is Nature and knows the all history.
Given y ∈ Y = ∆(J), let M(i,y) = ∑j yj M(i, j) be the linear
extension and denote by m(y) ∈ ∆(S)I = { M(i,y), i ∈ I} be the
“flag” induced by y.
This is the maximal information that player 1 can obtain if player
2 uses y i.i.d..
This model appears in repeated games (Mertens, Sorin and
Zamir, 1994) and the analysis of external regret in this
framework was done by Rustichini (1999).



Given a n-stage play the average flag is µ̄n, where µr = m(jr)
(hence also m(ȳn)) and the evaluation of player 1 is d(µ̄n) where:

d(µ) = max
x∈∆(I)

min
y∈∆(J);m(y)=µ

G(x,y).

Note that in general best replies are not pure.
The external regret is then rn = d(µ̄n)− Ḡn.

Internal regret
Cesa-Bianchi, Lugosi and Stoltz (2006), Lehrer and Solan
(2007), Lugosi, Mannor and Stoltz (2008), Perchet (2009)
To specify a notion of internal consistency we use the regularity
of the model to define for each ε > 0 a finite discretization
(µ[`],x[`];` ∈ L) such that there exists δ > 0,η > 0 with:
- the set of flags is covered by balls B(µ(`),δ )
- for any µ ∈ B(µ(`),δ ) and x ∈ B(x(`),η), x is a ε−best reply to
µ for the evaluation d(µ).



One can now introduce the vector of internal regret.
Let An[`] be the set of stages before n where player 1 uses x[`]
and Nn[`] its cardinality. µ̄n[`] resp. Ḡn[`], are the corresponding
average flag resp. payoff. Then:

Rn[`] = d(µ̄n[`])− Ḡn[`], ` ∈ L

and define ε−internal consistency as:

limsup
n→+∞

Nn[`]

n
[Rn[`]− ε]+→ 0, ∀` ∈ L.

The main result in this framework is the existence of ε−internal
consistent strategies.



Perchet (2009)
Assume first that player 1 is informed of the vector of signals
(indexed by I) at each. He can use a calibrated strategy
associated to L such that at a stage of type ` he “predicts ” µ[`]
and plays x[`]. Then asymptotically on these stages (if their
frequency is large enough) his prediction will be correct, his
average moves closed to x[`] hence the average regret Rn[`]
small.
To reduce to the previous situation one constructs an estimator
of the flag via a pertubation of the strategy (like in the bandit
framework).

Perchet V. (2011b)
Using a specfic discretization trough Laguerre diagrams allows
to get a speed of convergence of O(n−1/3) which is optimal
(compared to ε +O(n−1/2)).



Approachability

Perchet V. (2011a)
The framework is as above except that G is now from I× J to
Rd. G(x,y) is the multilinear extension to X = ∆(I)×Y = ∆(J).
Let

P(x,µ) = {G(x,y);m(y) = µ,y ∈ Y} ⊂ Rd

be the set of payoffs compatible with the strategy x ∈ X and the
flag µ.

Proposition
A closed convex set C ⊂ Rd is approachable (by player 1) if and
only if

∀µ ∈ m(Y),∃x ∈ X such that P(x,µ)⊂ C.

Note that this is exactly Blackwell’s condition in the full
monitoring case.



Proof
Assume that the condition holds.
Then for each ε > 0 one constructs as above a finite family
{µ[`],x[`], ` ∈ L} with P(x[`],µ[`])⊂ C.
A calibrated strategy associated to this set L, such that x[`] is
played when µ[`] is predicted, will induce on average, on stages
of type `, a payoff near C.
One uses the convexity of C to deduce approchability.
Finally if there exists a signal µ0 such that

∀x ∈ X,∃y ∈ Y,m(y) = µ0 and G(x,y) /∈ C

one can assume d(G(x,y),C)≥ δ > 0 by compactness.



Given σ strategy of player 1 in the n-stage game let

zn = Eσ ,µ0 [īn]

be the expectation of the average move of player 1 facing
signals with distribution µ0 at each stage. Then, let τ be y(zn)
i.i.d. and by convexity

Eσ ,τ [d(ḡn,C)]≥ d(G(zn,y(zn)),C)≥ δ > 0

In addition there are convex sets that are neither approachable
nor excludable.
Extensions to games with payoff correspondence: Mannor,
Perchet and Stoltz (2014).
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