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Topics on strategic learning III:

Global procedures



1. Application to games

Let G a finite game in strategic form.
There are finitely many players labeled i = 1,2, . . . , I.
Si is the finite moves set of player i, S = ∏i Si, and Z = ∆(S) is
the set of probabilities on S (correlated moves).
We will consider repeated interaction in discrete time where at
each stage the players observe the actions of their opponents.
We want evaluate the joint impact on the play of the prescribed
behavior of the players.
Since we will study the procedure from the view point of player
1 it is convenient to set S1 = K,X = ∆(K) (mixed moves of player
1), L = ∏i6=1 Si, and Y = ∆(L) (correlated moves of player 1’s
opponents) hence Z = ∆(K×L).
F : S→ R denotes the payoff function of player 1 and we still
denote by F its linear extension to Z, and its bilinear extension
to X×Y.



2. External consistency and Hannan’s set

Let m be the cardinality of K and R(z) denote the m-dimensional
vector of regrets for player 1 at z in Z, defined by

R(z) = {F(k,z−1)−F(z)}k∈K

where z−1 stands for the marginal of z on L.
(Player 1 compares his payoff using a given move k to his
actual payoff, assuming the other players’ behavior, z−1, given.)

Definition
H1 (for Hannan’s set) is the set of correlated moves in Z
satisfying the no-regret condition for player 1.
Formally:

H1 = {z ∈ Z : F(k,z−1)≤ F(z),∀k ∈ K}= {z∈Z : R(z) ∈ D = RK
−}.



The main property is that if player 1 uses a procedure with no
external regret in the on line problem corresponding to the
repeated game where the outcome vector at stage m is
{F(k, `m}k∈K}, where `m is the profile of moves of his opponents,
the empirical average distribution

zn =
1
n

n

∑
m=1

(km, `m) ∈ Z

will converge to H.

Proposition
If Player 1 follows some external consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan
set H1.



Proof
The proof is straightforward due to the linearity of the payoff:
the consistency property is

1
n

n

∑
m=1

F(k, `m)−
1
n

n

∑
m=1

F(km, `m)≤ o(n) ∀k ∈ K

which gives

F(k,
1
n

n

∑
m=1

`m))−F(
1
n

n

∑
m=1

(km, `m))≤ o(n) ∀k ∈ K

and this expression is

F(k,z−1
n )−F(zn)≤ o(n) ∀k ∈ K.



Alternative proof
We consider an auxiliary game with vector payoffs in RM, where
the dimension is M = L+1, and the payoff g(s) = (F(s),s−1) is
the couple of the current payoff in the original game and of the
opponent(s) profile.
D1 is the convex set:

D1 = {(u,θ) ∈ R×∆(S−1);u≥ max
s1∈S1

F(s,θ)}.

Theorem
D1 is approachable.
Proof
The proof that D1 is approachable is that it is not excludable:
namely, for any θ ∈ ∆(S−1), there is some s1 ∈ S1 such that
g(s,θ) ∈ D1.
This obviously implies the non emptiness of H1 since by
approachability d(ḡn,D1) goes to 0 hence also
[maxk∈S1 F(k, z̄−1

n )−F(z̄n)]
+.



One defines similarly Hi for each player and H = ∩iHi which is
the global Hannan’s set.

Proposition
If all players follow some external consistent procedure, the
empirical distribution of moves converges a.s. to the Hannan
set H.

Note that no coordination is required.



3. Correlated equilibria

Examples
Battle of the sexes

3,1 0,0
0,0 1,3

There are 2 pures and efficient equilibria and one mixed
equilibrium (3/4,1/4);1/4;3/4) Pareto dominated.
One can use a public device (fair coin) to get a symmetric
Pareto efficient equilibrium.
Play (3,1) if Head and (1,3) if Tail.
The induced distribution is

1/2 0
0 1/2



Consider now
L R

T 2,7 6,6
B 0,0 7,2

Consider a signal space: (w,g,b) with the uniform probability
(1/3,1/3,1/3).
Assume that the players get private messages:
1 knows a = {w,g} or b = {b} and
2 knows α = {w} or β = {g,b}.
Consider the strategies:
T if a, B if b for player 1;
L if α, R if β for player 2.
They induce on S the correlation matrix

1/3 1/3
0 1/3

and no deviation is profitable.



Information structure and extended game

Definition
An information structure I is given by:
- a probability space (Ω,A ,P)
- a family of measurable maps θ i from (Ω,A ) to Ai (set of
signals for player i) (or a sub σ -algebra A i).
Let G be a strategic game defined by G : S = ΠiSi→ RI.

Definition
The game G extended par I , denoted [G ,I ], is the game in
extensive form played in 2 stages:
stage 0 : the random variable ω is selected according to P and
the signal θ i(ω) is sent to player i.
stage 1: the players play in the game G .
A strategy σ i of player i in [G ,I ] is a measurable map from Ai

to Si (or a A i-measurable map from Ω to Si).



Correlated equilibria

Definition
A correlated equilibrium of G is a Nash equilibrium of [G ,I ].
A profil σ of strategies in [G ,I ] maps the initial probability P on
Ω into a probability Q(σ) on S: random variable→ signal→
move.

θ i(ω)

Ω

ω

P

Ai

Aj

Si

Sj

σ j

Q(σ)

σ i

θ j(ω)



Explicitly, for each ω, Q(ω,σ) is the product probability on S
given by ∏i σ i(θ i(ω)) and Q(σ) is the expectation w.r.t. P.

Definition
CED(G ) is the set of equilibrium correlated distributions in G :

CED(G ) = ∪I ,σ{Q(σ);σ equilibrium in [G ,I ]}

Note that CED(G ) is a convex set: consider the convex
combination of information structures.



Canonical correlated equilibria

Definition
A canonical information structure for G corresponds to the case
where: Ω = S; θ i : S→ Si,θ i(s) = si.
P is a probability on the space of profiles S and each player is
informed on his component.
A canonical correlated equilibrium is an equilibrium of G
extended by a canonical information structure where moreover
the equilibrium strategies satisfy :

σ
i(ω) = σ

i(s) = σ
i(si) = si “each player follows his signal”

The associated canonical correlated equilibrium distribution
(CCED) is obviously P.



Characterization

Theorem (Aumann, 1974)

CCED(G ) = CED(G )

Proof
Let σ an equilibrium profile in an extension [G ,I ] and
Q = Q(σ) the induced distribution.
Then Q belongs to CCED(G ). In fact each player i gets less
information in the canonical information structure: his move si

rather than the signal ai such that σ i(ai) = si. Then si is a best
reply to the correlated strategy of −i conditionally to ai. We use
then the convexity of BRi on ∆(S−i).



Theorem
Q ∈ CED(G ) iff

∀si, ti ∈ Si,∀i= 1, ...,n ∑
s−i∈S−i

[Gi(si,s−i)−Gi(ti,s−i)]Q(si,s−i)≥ 0.

Proof
One can assume Q ∈ CCED(G ). If si is announced (i.e. its
marginal Qi(si) = ∑s−i Q(si,s−i)> 0) introduce the conditional
distribution on S−i, Q(.|si), and the equilibrium condition writes:

si ∈ BRi(Q(.|si).

si is a best reply of player i to the conditional distribution of the
signals, hence moves of the other payers given si .

Corollary
CED(G ) is the convex hull of finitely many points.



Hart and Schmeidler (1989) give an elementary existence proof
of correlated equilibria by using the minmax theorem.
There are CCED outside the convex hull of Nash distributions:

0,0 5,4 4,5
4,5 0,0 5,4
5,4 4,5 0,0

The only Nash equilibrium is symetrical (1/3,1/3,1/3) with
payoff 3.
But a correlated equilibrium distribution is given by:

0 1/6 1/6
1/6 0 1/6
1/6 1/6 0

inducing a payoff 9/2.



Application lo learning procedures
Back to the repeated game framework we still consider only
player 1 and denote by F his payoff.
Given z = (zs)s∈S ∈ Z, introduce the family of m comparison
vectors of dimension m (testing k against j with (j,k) ∈ K2)
defined by

C(j,k)(z) = ∑
`∈L

[F(k, `)−F(j, `)]z(j,`).

(This corresponds to the change in the expected gain of Player
1 at z when replacing move j by k.)
Remark that if one let (z | j) denote the conditional probability
on L induced by z given j ∈ K and z1 the marginal on K, then

{C(j,k)(z)}k∈K = z1
j R((z | j))

where we recall that R((z | j)) is the vector of regrets for player 1
at (z | j).



Definition
The set of no internal regret (for player 1) is

C1 = {z ∈ Z;C(j,k)(z)≤ 0,∀j,k ∈ K}.

It is obviously a subset of H1 since

∑
j
{C(j,k)(z)}k∈I = R(z).

As above, when considering the payoff vectors generated by
the moves of the opponents in the repeated game one obtains:

Proposition
If Player 1 follows some internal consistency procedure, the
empirical distribution of moves converges a.s. to the set C1.



Recall that the set of correlated equilibrium distribution of the
game {F} is defined by

C = {z ∈ Z; ∑
`∈L

[Fi(k, `)−Fi(j, `)]z(j,`) ≤ 0, ∀j,k ∈ Si,∀i ∈ I}.

Hence one has :

Proposition
The intersection over all i ∈ I of the sets Ci is the set of
correlated equilibrium distribution of the game.



Thus we obtain:

Corollary
If each player follows some internal consistency procedure, the
empirical distribution of moves converges a.s. to the set of
correlated equilibria.

Note that this provides an alternative proof of existence of
correlated equilibrium through the existence of internally
consistent procedures.



Alternative joint algorithm
(Hart and Mas Colell (2000)
The procedure is defined (for player 1) by x1

n+1 being a function
of his average regret, his last move s1

n = j and some large
parameter L, as follows:

x1
n+1(k) = R+

n (j,k)/L, k 6= j ; x1
n+1 = 1−∑

k 6=j
x1

n+1(k).

Theorem
If all players use procedure B, the empirical distribution of
moves converge to the set of correlated equilibria.



4. From calibrating to correlated equilibrium
Foster and Vohra (1997)
Consider the case where Player 1 is forecasting the behavior (a
profile in L) of his opponents.
Given a precision level δ , Player 1 is thus predicting points in a
δ -grid {p[v],v ∈ V} of ∆(L) and then plays a (pure) best reply to
his forecast.
It is thus clear that if the forecast is calibrated the empirical
distribution of the moves of the opponents, will converge to the
forecast, on each event of the form {m;pm = p[v] ∈ ∆(L)}, hence
eventually the action chosen by Player 1, k, will be a best reply
to the frequency near p[v].
When looking at the average empirical distribution z, the
conditional distribution z|k of z given k, will correspond to a
convex combination of distributions p[v] to which k is best reply,
hence k will again be (approximate ) best reply to z|k: hence z is
(approximately) in C1.
If all players use calibrated strategies the empirical average
frequency converges to C.



5. No convergence to Nash

There is no uncoupled deterministic smooth dynamic that
converges to Nash equilibrium in all finite 2-person games:
Hart and Mas-Colell (2003).
Similarly there are no learning process with finite memory such
that the stage behavior will converge to Nash equilibrium: Hart
and Mas-Colell (2005).
Similar results were obtained for MAD dynamics, Hofbauer and
Swinkels (1995)
see also Foster and Young (2001) On the impossibility of
predicting.
Young (2002) On the limits to rational learning .



6. Weak calibration and deterministic procedure

We follow Kakade and Foster (2004, 2008)
Weak calibration
A general definition of calibrating for X with values in Ω (or RΩ)
is , given a family of test functions from ∆(Ω) to R, say g ∈ G, a
procedure φ such that for each sequence Xm and each g

1
n

n

∑
m=1

g(φm)(Xm−φm)→ 0

where the convergence is in RΩ and φ can be random (then the
cv is a.s.).
In the basic framework the prediction belongs to a finite set (a
grid V of ∆(Ω)) and gv is the indicator of v.
The next result will apply for G, the set of Lipschitz functions
and moreover φ will be deterministic.



Let V be a simplicial subdivision of D′ ⊂ RΩ which is an
ε(L1)-neighborhood of D = ∆(Ω).
For p ∈ D′ consider the barycentric decomposition

p = ∑
v

Wv(p)v

where Wv(p)≥ 0, ∑v Wv(p) = 1, the support of the sum is Vp,
and |p− v| ≤ ε for v ∈ Vp.
Given a forecast φ with values in D let:

µn(v) =
1
n

n

∑
m=1

Wv(φm)(Xm−φm)

be the error associated to the test function Wv for each v ∈ V.
Define a map ρn on V and then by linear interpolation on D′ by

ρn(v) = v+µn(v)

thus
ρn(p) = p+∑

v
Wv(p)µn(v)



Claim: ρn is a continuous map from D′ to itself.
The continuity is clear and for v ∈ V one writes

ρn(v) = v+
1
n

n

∑
m=1

Wv(φm)(Xm−φm)

= (1− 1
n

n

∑
m=1

Wv(φm))v+
1
n

n

∑
m=1

Wv(φm)(Xm + v−φm)

and in the last term the coefficient is 0 if |v−φm|> ε which
implies that the sum is a convex combination of v and points
within ε of Xm that are thus in D′, as well as the combination.

Define inductively φn+1 to be a fixed point of ρn, in particular it
satisfies

∑
v

Wv(φn+1)µn(v) = 0.



Lemma
There exists C2 such that

∑
v
‖µn(v)‖2 ≤ C2

n

Proof
Let rn(v) = nµn(v) = ∑

n
m=1 Wv(φm)(Xm−φm) so that

‖rn(v)‖2 = ‖rn−1(v)‖2+Wv(φn)
2‖Xn−φn‖2+2Wv(φn)〈Xn−φn,rn−1(v)〉

Now the sum in v of the last term is 0 since it writes

〈Xn−φn,∑
v

Wv(φn)rn−1(v)〉.

For the second term one has ‖X−φ‖2 uniformly bounded by
some C2 on D′ and ∑v Wv(φn)

2 ≤ ∑v Wv(φn) = 1 hence

∑
v
‖rn(v)‖2 ≤∑

v
‖rn−1(v)‖2 +C2 ≤ C2n



Consider now a L Lipschitz function g from D′ to [0,1]. Define
an approximation ĝ through

ĝ(p) = ∑
v

Wv(p)g(v)

and note that |ĝ(p)−g(p)| ≤ εL.
The error associated to g and the above forecast φ is

µn[g] =
1
n

n

∑
m=1

g(φm)(Xm−φm).

Then |µn[g]| ≤ |µn[ĝ]|+ εC1L whith |X−φ | ≤ C1 on D′. But

|µn[ĝ]|= |
1
n

n

∑
m=1

∑
v

Wv(φm)g(v)(Xm−φm)|= |∑
v

g(v)µn(v)|

≤∑
v
|µn(v)| ≤

√
(#V)∑

v
‖µn(v)‖2.



Finally we obtain

|µn[g]| ≤
√

C2#V
n

+ εC1L

hence given any positive η , choose ε small enough and then let
n greater than some N(ε) to get a bound of η .

To avoid forecasting in D′ \D one projects φ on D by ΠD which
is Lipschitz and satisfies ‖ΠD(p)−p‖ ≤ (#Ω)ε.



Application to random calibration
Let V a simplicial subdivision of ∆(Ω) and recall the asociated
barycentric representation p = ∑v Wv(p)v.
Given a deterministic forecast adapted to L Lipschitz functions
as above consider the random forecast having values in V with
law defined by the splitting above.
Then the error is on expectation

Em = ∑
v

Wv(φm)(Xm− v)

which is within ε of

Em = ∑
v

Wv(φm)(Xm−φm)

since Wv(φm) = 0 if ‖φm− v‖ exceeds ε.
When summing the errors on has a finite sum (v ∈ V) of errors
adapted each to φ and a Lipschitz test function Wv.



Convergence to Nash equilibria
The random variable is the joint profile sm ∈ S of the players.
Each prediction using a deterministic procedure is a mixed
profile say xm ∈ ∆(S).
Given a smooth (ε-)best reply function for each player, this
defines a profile of mixed strategies ym ∈∏i ∆(Si).
Then, with probability one:
Believing Nash

1
n

n

∑
m=1

d(xm,NEε)→ 0

Playing Nash
1
n

n

∑
m=1

d(ym,NEε)→ 0

Merging

1
n

n

∑
m=1

d(xm,ym)→ 0

Convergence is obtain by requiring all the players to use the
same calibrated algorithm φ .



7. Hypothesis testing
We present here procedures that corresponds to a random
search of an equilibrium profile.
A first approach is based on prediction of the behavior of the
opponents and hypothesis testing, Foster and Young (2003).
Each player state variable has 3 components:
- the empirical frequency of the moves of the opponent during
the last s periods
- an hypothesis on this variable
- a counting variable relevant to the mode of the player.
If the hypothesis is rejected, the player chooses a new one at
random. Then for specific choices of the parameters
convergence in probability to Nash equilibria will occur.

A more direct process can be described as follows:
Consider a δ -discretization of the set of mixed strategies
X = ∏i Xi = ∏i ∆(Si) denoted by {xv;v ∈ V}. Given the payoff
function G and ε > 0 at least one of the xv is for δ small enough
an ε-equilibrium of G.



Assume that each player i plays by large blocks L an i.i.d.
strategy (in the grid), say xi

v while occasionally testing all his
moves in Si. Given a tolerance bound η > 0, if one move si

gives more than the average payoff the block +η , he chooses
at random a new point in his grid. Otherwise he keeps playing
xi

v for another block.
One wants that the proportion of blocks played with
{v ∈ V∗;xv ε-equilibrium of G} approaches 1.

This model has been proposed by Foster and Young (2006)
and improved by Germano and Lugosi (2007).
Note that this strategy is radically uncoupled, in the sense that
not only it does not depend on the payoff function of the
opponents but it does not depend on the knowledge of their
moves. It is simply a function of the realized payoffs of the
player.
Characteristics of this procedure are:
inertia (keep playing if there are small variations)
search (with positive probability experiment)



Note that the procedure generates a Markov chain on V.
Then one makes a precise analysis of the exit probability from
state v in terms of ε as a function of xv being an ε-equilibrium.

Results:
The players plays with probability 1− ε an ε-equilibrium at each
stage n, for n large enough (2 player case; Foster and Young,
2006).
Almost sure convergence holds ( I players, generic; Germano
and Lugosi, 2007) adding:
experimentation (even when no positive gain) with small
probability λ

localization via annealing
to obtain geometric mixing and the proof that the length of the
search phase is negligible compare to the time spent at
equilibrium.



8. Adaptive procedures
We consider here random processes corresponding to adaptive
behavior in repeated interactions.
There are at least three different levels of information.

1) Knowing the fact that one plays a game; the payoff function
G1 : ∏i Si→ R is known (hence player 1 knows both K = S1 and
L = S−1).
After each stage n the opponent ’s move s−1

n is announced; one
deduces the stage vector outcome Un = G1(.,s−1

n ).
One can then speak about “learning" in terms of predicting,
after each observation, the opponent’s behavior.
Note nevertheless that if the payoff of the opponent is unknown
it is difficult to predict anything on a rational basis, except in
special situations like facing the same random event : strategic
experimentation (Bolton and Harris, Rosenberg, Solan and
Vieille) .
ADAPTIVE/LEARNING PROCEDURE



2) Here the information is simply the vector Un (one may face a
sequence of different opponents in terms of strategies or
payoffs) the only “stationarity " in the model is the fact that the
outcome are bounded and the set of moves K is given.
One uses also this approach if the payoff is not linear with
respect to the opponents’ move - so that empirical distribution
of moves has no interpretation).
The knowledge of the move played (s1

n) may be needed (in
no-regret procedures) or not (fictitious play); the explanation is
though the "procedure in law" properties.)
NO REGRET/COMPARISON PROCEDURE



3) Only the payoff gn = G1(sn) ( the component kn of Un) is
announced.
A first kind of procedure is “payoff-based" using the knowledge
of the move s1

n.
REINFORCEMENT PROCEDURE
A second kind constructs from the observation gn (and the
move played s1

n and its law) a pseudo vector Ũn and applies the
previous procedure ii).
PSEUDO COMPARISON PROCEDURE



In most of the procedures the behavior of the player depends
upon a parameter z ∈ Z.
At stage n, the state is zn−1 and the process is defined by two
functions:
a decision map σ from Z to ∆(K) (the simplex on K) defining
the law πn of the current action kn as a function of the
parameter:

πn = σ(zn−1)

and given the observation αn of the player, after the play at
stage n, an updating rule for the state variable, that depends
upon the stage:

zn = Φn(zn−1,αn).

Remark
Note that the decision map is stationary but that the updating
rule may depend upon the stage.



Example 1: Fictious Play
The state space is usually the empirical distribution of actions
of the opponents zn = {zj

n} with zj
n = s̄j

n if αn = s−1
n , but one can

as well take αn = Un, the vector payoff, then zn = Un is the
average vector payoff thus satisfies:

zn =
(n−1)zn−1 +Un

n

and
σ(z) ∈ br(z) or σ(z) = brε(z).

with br(z) = {x ∈ ∆(K);〈z,x− y〉 ≥ 0,∀y ∈ ∆(K)} being the
payoff-based (rather than strategy-based) best reply.



Example 2: Potential regret dynamics
Here αn = Un and

Rn = Un−gn1

is the “regret vector" at stage n. The updating rule
zn = Φn(zn−1,αn) is simply

zn = Rn.

Choose P to be a “potential function" for the negative orthant
D = RK

− and for z /∈ D let σ(z) be proportional to ∇P(z).



Example 3: Cumulative proportional reinforcement
The observation αn is only the stage payoff gn (we assume all
payoffs ≥ 1).
The updating rule is

zk
n = zk

n−1 +gn I{kn=k}

and the decision map is σ(z) proportional to the vector z.

There is an important literature on such reinforcement
dynamics, see e.g. Beggs (2005), Börgers, Morales and Sarin
(2004), Börgers and Sarin (1997), Hopkins (2002), Hopkins and
Posch (2005), Laslier, Topol and Walliser (2001), Leslie and
Collins (2005), Pemantle (2007), Posch (1997).



Note that these three procedures can be written as

zn =
(n−1)zn−1 + vn

n
or zn− zn−1 =

1
n
[vn− zn−1].

where vn is a random variable depending on the actions ` of the
opponents and on the action kn having distribution σ(zn−1).
Write

vn = Eπn(vn|z1, ...,zn−1)+ [vn−Eπn(vn|z1, ...,zn−1)]

and define

S(zn−1) = Co{Eπn(vn|z1, ...,zn−1);` ∈ L}

where Co stands for the convex hull and

Wn = vn−Eπn(vn|z1, ...,zn−1).

Thus
zn− zn−1 ∈

1
n
[S(zn−1)− zn−1 +Wn].



The related differential inclusion is

ż ∈ S(z)− z (1)

and the process zn is a Discrete Stochastic Approximation of
(1).
For further results with explicit applications of this procedure
see e.g. Hofbauer and Sandholm (2002), Leslie and Collins
(2005), Benaïm, Hofbauer and Sorin (2006), Cominetti, Melo
and Sorin (2010), Coucheney, Gaujal and Mertikopoulos
(2014), Bravo (2015), Bravo and Faure (2015)...
In conclusion, a large class of adaptive dynamics can be
expressed in discrete time as a random difference equation
with vanishing step size. Information on the asymptotic
behavior can then be obtained by studying the continuous time
deterministic analog obtained as above.
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