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Topics on strategic learning IV:

Tools via continuous time



1. Fictitious play

Discrete fictitious play

Consider a finite game with I players having pure strategy sets
Si and mixed strategy sets Xi = ∆(Si). The evaluation fonction is
G from S = ∏i Si to RI.
The game is played repeatedly in discrete time and the moves
are announced.
Given an n-stage history hn = (x1 = {xi

1}i∈I,x2, ...,xn) ∈ Sn, the
move xi

n+1 of player i at stage n+1 is a best reply to the “time
average moves" of her opponents.

xi
n+1 ∈ BRi(x−i

n ) (1)

where BRi is the best reply correspondence of player i, from
∆(S−i) to Xi, with S−i = ∏j 6=i Si.



Since one deals with time averages one has

xi
n+1 =

nxi
n + xi

n+1

n+1

hence the stage difference is expressed as

xi
n+1− xi

n =
xi

n+1− xi
n

n+1

so that (1) can also be written as :

xi
n+1− xi

n ∈
1

(n+1)
[BRi(x−i

n )− xi
n]. (2)

Definition
Brown (1949, 1951)
A sequence {xn} of moves in S satisfies discrete fictitious play
(DFP) if (2) holds.
Remark. xi

n does not appear explicitely any more in (2): the
natural state variable of the process is the empirical average
x̄i

n ∈ Xi.



Continuous fictitious play and best reply dynamics

The continuous (formal) counterpart of the above difference
inclusion is the differential inclusion, called continuous fictitious
play (CFP):

Ẋi
t ∈

1
t
[BRi(X−i

t )−Xi
t ]. (3)

The change of time Zs = Xes leads to

Żi
s ∈ [BRi(Z−i

s )−Zi
s] (4)

called continuous best reply (CBR) and studied by Gilboa and
Matsui (1991).
We will deduce properties of the initial discrete time process
from the analysis of the continuous time counterpart.



Zero-sum case

Harris (1998); Hofbauer (1995).
Let x = x1, y = x2. Then F1 =−F2 = F(x,y) = xAy.

Define a(y) = maxx∈X F(x,y) and b(x) = miny∈Y F(x,y), then the
duality gap at (x,y) is

W(x,y) = a(y)−b(x)≥ 0.

Moreover (x∗,y∗) belongs to the set of optimal strategies,
XF×YF, iff W(x∗,y∗) = 0.
W will play the rôle of a potential (distance) for the set XF×YF.

Proposition
The “duality gap" criteria converges uniformly to 0 in (CBR) and
(CFP).



Proof
Let (xt,yt) be a solution of (CBR) (4) and introduce

αt = xt + ẋt ∈ BR1(yt),βt = yt + ẏt ∈ BR2(xt).

Consider the evaluation of the duality gap along a trajectory:
wt = W(xt,yt). Note that a(yt) = F(αt,yt) hence

d
dt

a(yt) = D1F(αt,yt)α̇t +D2F(αt,yt)ẏt

but the first term is 0 (envelope theorem). As for the second
one D2F(αt,yt)ẏt = F(αt, ẏt), by linearity. Thus:

ẇt =
d
dt

a(yt)−
d
dt

b(xt) = F(αt, ẏt)−F(ẋt,βt) = F(xt, ẏt)−F(ẋt,yt)

= F(xt,βt)−F(αt,yt) = b(xt)−a(yt) =−wt.

It follows that exponential convergence holds: wt = e−tw0,
hence convergence at a rate 1/t in the original (CFP).



Extension: Hofbauer and Sorin (2006)
F is a continuous, concave/convex real function defined on a
product of two compact convex subsets of an euclidean space.

Proposition
Under (H), any solution wt of (CBR) satisfies

ẇt ≤−wt a.e.

XF×YF is a global attractor.

To deduce results for the discrete time case from results in the
continuous time one, we introduce a discrete deterministic
approximation.
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Discrete deterministic approximation

Consider a differential inclusion, where Φ is u.s.c. with
convex-compact values:

żt ∈Φ(zt). (5)

Let αn a sequence of positive real numbers with ∑αn =+∞.
Given a0 ∈ Z, define inductively {an} through the difference
equation:

an+1−an ∈ αn+1Φ(an). (6)

Definition
{an} following (6) is a discrete deterministic approximation
(DDA) of (5).



The associated continuous time trajectory A : R+→ Z is
constructed in two stages.
First define a sequence of times {τn} by: τ0 = 0,τn+1 = τn+αn+1;
then let Aτn = an and extend the trajectory by linear interpolation
on each intervall [τn,τn+1]:

At = an +
(t− τn)

(τn+1− τn)
(an+1−an).

Since ∑αn =+∞ the trajectory is defined on R+.

To compare A to a solution of (5) we use the next approximation
property which states that two differential inclusions defined by
correspondences having graphs close one to the other will have
sets of solutions close, on a given compact time interval.



Notations
A (Φ,T,z) = {z; z is a solution of (5) on [0,T] with z0 = z},
DT(y,z) = sup0≤t≤T ‖yt− zt‖,
GΦ is the graph of Φ and Gε

Φ
is an ε-neighborhood of GΦ.

Proposition
∀T ≥ 0,∀ε > 0,∃δ > 0 such that:

inf{DT(y,z);z ∈A (Φ,T,z)} ≤ ε

for any y solution of ẏt ∈ Φ̃(yt), with y0 = z and d(GΦ,GΦ̃
)≤ δ .



Assume αn decreasing to 0. Then the set L({an}) of
accumulation points of the sequence {an} coincides with the
limit set of the trajectory: L(A) = ∩t≥0A[t,+∞).

Proposition
If Z is a global attractor for (5), it is also a global attractor for (6).

Proof
i) Given ε > 0, let T1 such that any trajectory z of (5) is within ε

of Z after time T1. Given T1 and ε, let δ > 0 be defined by the
previous Proposition (approximation property).
Since αn decreases to 0, given δ > 0, for n≥ N large enough for
an, hence t ≥ T2 large enough for At, one has :

Ȧt ∈Ψ(At) with GΨ ⊂ Gδ
Φ.



ii) Consider now At for some t ≥ T1 +T2.
Starting from any position At−T1 the continuous time process z
defined by (5) reaches Z within ε at time t (the convergence is
uniform).
Since t−T1 ≥ T2, the interpolated process As remains within ε

of the former zs on [t−T1, t], hence is within 2ε of Z at time t.
In particular this shows: ∀ε > 0,∃N0 such that n≥ N0 implies

d(an,Z)≤ 2ε.



Proposition
(DFP) converges to XF×YF in the continuous saddle zero-sum
case.
The initial convergence result in the discrete case (finite game)
is due to Robinson (1951).

In this framework one has also:

Proposition
(Rivière, 1997)
The average of the realized payoffs along (DFP) converge to
the value.



Potential games

Definition
The game (F,S) is a potential game (with potential G) if
G : S→ R satisfies:
- discrete case:

Fi(si,s−i)−Fi(ti,s−i)= G(si,s−i)−G(ti,s−i), ∀si ∈ Si, ti ∈ Si,s−i ∈ S−i, ∀i∈ I.

- continuous case:

∇i Fi(s) = ∇i G(s), ∀s ∈ S, ∀i ∈ I.

In particular the best reply correspondence BRi is the same
when applied to Fi or to G.
Let NE(F)⊂ X be the set of Nash equilibria of F then
NE(F) = NE(G).



Consider a potential game where G is defined on a product X of
compact convex subsets Xi of an euclidean space, C 1 and
concave in each variable.

a) Discrete time
Finite case: Monderer and Shapley (1996).

Proposition
(DFP) converges to NE(G).

b) Continuous time
Finite case: Harris (1998)
Compact case: Benaim, Hofbauer and Sorin (2005).

Proposition
(CBR) (or (CFP) ) converges to NE(G).



Consider a potential game where G is defined on a product X of
compact convex subsets Xi of an euclidean space, C 1 and
concave in each variable.

a) Discrete time
Finite case: Monderer and Shapley (1996).

Proposition
(DFP) converges to NE(G).

b) Continuous time
Finite case: Harris (1998)
Compact case: Benaim, Hofbauer and Sorin (2005).

Proposition
(CBR) (or (CFP) ) converges to NE(G).



Proof
Let W(x) = ∑i[gi(x)−G(x)] where gi(x) = maxs∈Xi G(s,x−i).
Thus x is a Nash equilibrium iff W(x) = 0 (Nikaido).
Let xt be a solution of (CBR) and consider gt = G(xt).
Then ġt = ∑i DiG(xt)ẋi

t. By concavity one obtains:

G(xi
t,x
−i
t )+DiG(xi

t,x
−i
t ) ẋi

t ≥ G(xi
t + ẋi

t,x
−i
t )

which implies

ġt ≥ ∑
i
[G(xi

t + ẋi
t,x
−i
t )−G(xt)] = W(xt)≥ 0

hence g is increasing but bounded.
g is thus constant on the limit set L(x).
By the previous majoration, for any accumulation point x∗ one
has W(x∗) = 0 and x∗ is a Nash equilibrium.



In this framework also, one can deduce the convergence of the
discrete time process from the properties of the continuous
time analog.

Proposition
Assume G(NE(G)) with non empty interior. Then (DFP)
converges to NE(G).
Contrary to the zero-sum case where the attractor was global,
the proof uses here the tools of stochastic approximation.
Remarks. Note that one cannot expect uniform convergence.
Consider the standard symmetric coordination game:

(1,1) (0,0)
(0,0) (1,1)

The only attractor that contains NE(F) is the diagonal. In
particular convergence of (CFP) does not imply directly
convergence of (DFP). Note that the equilibrium (1/2,1/2) is
unstable but the time to go from (1/2+,1/2−) to (1,0) is not
bounded.



2. Stochastic Approximation for Differential Inclusions

We summarize here results from Benaïm, Hofbauer and Sorin
(2005), following the approach for ODE by Benaïm (1996,
1999), Benaïm and Hirsch (1996).

1. Differential inclusions
Given a correspondence F from Rm to itself, consider the
differential inclusion

ẋ ∈ F(x). (I)

It induces a set-valued dynamical system {Φt}t∈R defined by

Φt(x) = {x(t) : x is a solution to (I) with x(0) = x}.

We also write x(t) = ϕt(x) and define ΦA(B) = ∪t∈A, x∈BΦt(x).



2. Attractors

Definition
1) C is invariant if for any x ∈ C there exists a complete solution:
ϕt(x) ∈ C for all t ∈ R.
2) C is attracting if it is compact and there exist a neighborhood
U, ε0 > 0 and a map T : (0,ε0)→ R+ such that: for any y ∈ U,
any solution ϕ, ϕt(y) ∈ Cε for all t ≥ T(ε), i.e.

Φ[T(ε),+∞)(U)⊂ Cε , ∀ε ∈ (0,ε0).

U is a uniform basin of attraction of C and we write (C;U) for
the couple.
3) C is an attractor if it is attracting and invariant.
4) The ω-limit set of C is defined by

ωΦ(C) = ∩s≥0∪y∈C ∪t≥s Φt(y) = ∩s≥0Φ[s,+∞)(C). (7)

5) Given a closed invariant set L, the induced set-valued
dynamical system is denoted by ΦL. L is attractor free if ΦL has
no proper attractor.



3. Lyapounov functions
We describe here practical criteria for attractors.

Proposition
Let A be a compact set, U be a relatively compact
neighborhood and V a function from U to R+. Assume:
i) Φt(U)⊂ U for all t ≥ 0.
ii) V−1(0) = A
iii) V is continuous and strictly decreasing on trajectories on
U \A:

V(x)> V(y), ∀x ∈ U \A,∀y ∈Φt(x), ∀t > 0.

Then:
a) A is Lyapounov stable and (A;U) is attracting.
b) (B;U) is an attractor for some B⊂ A.



Definition
A real continuous function V on U open in Rm is a Lyapunov
function for (A,U), A⊂ U if :
V(y)< V(x) for all x ∈ U \A,y ∈Φt(x), t > 0,
V(y)≤ V(x) for all x ∈ A,y ∈Φt(x) and t ≥ 0.

Proposition
Suppose V is a Lyapunov function for (A,U). Assume that V(A)
has empty interior. Let L be a non empty, compact, invariant
and attractor free subset of U. Then L is contained in A and V|L
is constant.



3. Asymptotic pseudo-trajectories

Definition
A continuous function z : R+→Rm is an asymptotic
pseudo-trajectory (APT) for (I) if for all T

lim
t→∞

inf
x∈Sz(t)

sup
0≤s≤T

‖z(t+ s)−x(s)‖= 0. (8)

where Sx denotes the set of solutions of (I) starting from x at 0.
In other words, for each fixed T, the curve: s→ z(t+ s) from
[0,T] to Rm shadows some trajectory for (I) of the point z(t) over
the interval [0,T] with arbitrary accuracy, for sufficiently large t.
Let

L(z) =
⋂
t≥0

{z(s) : s≥ t}

be the limit set.

Theorem
Let z be a bounded APT of (I). Then L(z) is (internally chain
transitive, hence) compact, invariant and attractor free.



4. Perturbed solutions

Definition
A continuous function y : R+ = [0,∞)→ Rm is a perturbed
solution to (I) if it satisfies the following set of conditions (II):
i) y is absolutely continuous.
ii) There exists a locally integrable function t 7→ U(t) such that
limt→∞ sup0≤v≤T

∥∥∫ t+v
t U(s)ds

∥∥= 0, for all T > 0.
iii)

ẏ(t) ∈ Fδ (t)(y(t))+U(t),

for almost every t > 0, for some function δ : [0,∞)→ R with
δ (t)→ 0 as t→ ∞.
Here Fδ (x) := {y ∈ Rm : ∃z : ‖z− x‖< δ , d(y,F(z))< δ}.
The purpose is to investigate the long-term behavior of y and to
describe its limit set L(y) in terms of the dynamics induced by F.

Theorem
Any bounded solution y of (II) is an APT of (I).
A natural class of perturbed solutions to F arises from certain
stochastic approximation processes.



Definition
A discrete time process {xn} with values in Rm is a (γ,U)
discrete stochastic approximation for (I) if it verifies a recursion
of the form

xn+1− xn ∈ γn+1[F(xn)+ Un+1], (III)

where the characteristics {γn} and {Un} satisfy
i) {γn}n≥1 is a sequence of nonnegative numbers such that

∑
n

γn = ∞, lim
n→∞

γn = 0;

ii) Un ∈ Rm are (deterministic or random) perturbations.
To such a process is naturally associated a continuous time
interpolated (random) process w as usual (IV).



5. From interpolated process to perturbed solutions
The next result gives sufficient conditions on the characteristics
of the discrete process (III) for its interpolation (IV) to be a
perturbed solution (II).

Proposition
Assume that :
(∗) For all T > 0

lim
n→∞

sup

{∥∥∥∥∥k−1

∑
i=n

γi+1Ui+1

∥∥∥∥∥ : k = n+1, . . . ,m(τn +T)

}
= 0,

where τn = ∑
n
i=1 γi and m(t) = sup{k ≥ 0 : t ≥ τk};

(∗∗) supn ‖xn‖= M < ∞.
Then the interpolated process w is a perturbed solution of (I).



We describe now sufficient conditions for condition (∗) to hold.
Let (Ω,F ,P) be a probability space and {Fn}n≥0 a filtration of
F . A stochastic process {xn} satisfies the Robbins–Monro
condition if:
i) {γn} is a deterministic sequence.
ii) {Un} is adapted to {Fn},
iii) E(Un+1 |Fn) = 0.

Proposition
Let {xn} given by (III) be a Robbins–Monro process. Suppose
that for some q≥ 2

sup
n

E(‖Un‖q)< ∞ and ∑
n

γ
1+q/2
n < ∞.

Then assumption (∗) holds with probability 1.
Remark Typical applications are
i) Un uniformly bounded in L2 and γn =

1
n ,

ii) Un uniformly bounded and γn = o( 1
logn).



6. Main result

Consider a random discrete process defined on a compact
subset of RK and satisfying the differential inclusion :

Yn−Yn−1 ∈ an[T(Yn−1)+Wn]

where
i) T is an u.s.c. correspondence with compact convex values
ii) an ≥ 0, ∑n an =+∞, ∑n a2

n <+∞

iii) E(Wn|Y1, ...,Yn−1) = 0.

Theorem
The set of accumulation points of {Yn} is almost surely a
compact set, invariant and attractor free for the dynamical
system defined by the differential inclusion:

Ẏ ∈ T(Y).



A typical application is the case where:

Yn−Yn−1 ∈ anT(Yn−1)

with T random, where one writes

Yn−Yn−1 ∈ an[E[T(Yn−1)|Y1, ...,Yn−1]

+(T(Yn−1)−E[T(Yn−1)|Y1, ...,Yn−1])]



3. Application1: Fictitious Play for potential games

Proposition
Assume G(NE(G)) with non empty interior. Then (DFP)
converges to NE(G).
Apply Proposition 2 to W with A = NE(G) and U = X.

Recall

Proposition
Suppose V is a Lyapunov function for (A,U). Assume that V(A)
has empty interior. Let L be a non empty, compact, invariant
and attractor free subset of U. Then L is contained in A and V|L
is constant.



4. Application 2: No regret
Definition
P is a potential function for D = RK

− if
(i) P is C 1 from RK to R+

(ii) P(w) = 0 iff w ∈ D
(iii) ∇P(w) ∈ RK

+

(iv) 〈∇P(w),w〉> 0,∀w /∈ D.
Compare Hart and Mas Colell (2003).

Example: P(w) = ∑k([wk]+)2= d(w,D)2.

1. External regret

Given a potential P for D = RK
−, the P-regret-based discrete

procedure for player 1 is defined by

σ(hn)÷∇P(Rn) if Rn /∈ D (9)

and arbitrarly otherwise.



Discrete dynamics associated to the average regret:

Rn+1−Rn =
1

n+1
(Rn+1−Rn)

By the choice of σ

〈∇P(Rn),E(Rn+1|hn)〉= 0.

(recall 〈x,Ex(R(.,U))〉= 0.)
The continuous time version is expressed by the following
differential inclusion in Rm:

ẇ ∈ N(w)−w (10)

where N is a correspondence that satisfies

〈∇P(w),N(w)〉= 0.

Theorem
The potential P is a Lyapounov function associated to D = RK

−.
Hence, D contains a global attractor attractor.



Proof
For any solution w, if w(t) /∈ D then

d
dt

P(w(t)) = 〈∇P(w(t)), ẇ(t)〉

∈ 〈∇P(w(t)), N(w(t))−w(t)〉=−〈∇P(w(t)),w(t)〉< 0

Corollary
Any P-regret-based discrete dynamics satisfies internal
consistency.
Proof
D = RK

− contains an attractor whose basin of attraction contains
the range R of R and the discrete process for R̄n is a bounded
DSA.



Proof
For any solution w, if w(t) /∈ D then

d
dt

P(w(t)) = 〈∇P(w(t)), ẇ(t)〉

∈ 〈∇P(w(t)), N(w(t))−w(t)〉=−〈∇P(w(t)),w(t)〉< 0

Corollary
Any P-regret-based discrete dynamics satisfies internal
consistency.
Proof
D = RK

− contains an attractor whose basin of attraction contains
the range R of R and the discrete process for R̄n is a bounded
DSA.



2. Internal regret

Definition
Given a potential Q for M = RK2

− , a Q-regret-based discrete
procedure for player 1 is a strategy σ satisfying

σ(hn) ∈ Inv[∇Q(Sn)] if Sn /∈M (11)

and arbitrarly otherwise.
The discrete process of internal regret matrices is:

S̄n+1− S̄n =
1

n+1
[Sn+1− S̄n]. (12)

with the property:

〈∇Q(S̄n),E(Sn+1|hn)〉= 0.

(Recall 〈A,Eµ(S(.,U))〉= 0.)



Corresponding continuous procedure with w ∈ RK2

ẇ(t) ∈ N(w(t))−w(t) (13)

and
〈∇Q(w),N(w〉= 0.

Theorem
The previous continuous time process satisfy:

w+
k`(t)→t→∞0.

Corollary
The discrete process (12) satisfy:

[S̄k`
n ]+→t→∞0 a.s.

hence conditional consistency (internal no regret) holds.



5. Application 3: Consistency with smooth fictitious
play

This procedure is based only on the previous observations and
not on the moves of the predictor, hence the regret cannot be
used, Fudenberg and Levine (1995).

Definition
A smooth perturbation of the payoff U ∈U is a map
Vε(x,U) = 〈x,U〉− ερ(x), 0 < ε < ε0, such that:
(i) ρ : X→ R is a C 1 function with ‖ρ‖ ≤ 1,
(ii) argmaxx∈XVε(.,U) reduces to one point and defines a
continuous map brε : U → X, called a smooth best reply
function,
(iii) D1Vε(brε(U),U).Dbrε(U) = 0
(for example D1Uε(.,U) is 0 at brε(U)).



Recall that a typical example is obtained via the entropy
function

ρ(x) = ∑
k

xk logxk. (14)

which leads to

[brε(U)]k =
exp(Uk/ε)

∑j∈K exp(Uj/ε)
. (15)

Let
Wε(U) = max

x
Vε(x,U) = Vε(brε(U),U).

Lemma
(Fudenberg and Levine (1999))

DWε(U) = brε(U).



Let us first consider external consistency.

Definition
A smooth fictitious play strategy σ ε associated to the smooth
best response function brε (in short a SFP(ε) strategy) is
defined by (Un is the average vector of regret at stage n):

σ
ε(hn) = brε(Un).

The corresponding discrete dynamics written in the spaces of
both vectors and outcomes is

Un+1−Un =
1

n+1
[Un+1−Un]. (16)

ωn+1−ωn =
1

n+1
[ωn+1−ωn]. (17)

with
E(ωn+1|hn) = 〈brε(Un),Un+1〉. (18)



Lemma
The process (Un,ωn) is a Discrete Stochastic Approximation of
the differential inclusion

(u̇, ω̇) ∈ {(U−u,〈brε(u),U〉−ω);U ∈U }. (19)

The main property of the continuous dynamics is given by:

Theorem
The set {(u,ω) ∈U ×R : Wε(u)−ω ≤ ε} is a global attracting
set for the continuous dynamics.
In particular, for any η > 0, there exists ε̄ such that for ε ≤ ε̄,
limsupt→∞ Wε(u(t))−ω(t)≤ η (i.e. continuous SFP(ε) satisfies
η-consistency).



Proof
Let q(t) = Wε(u(t))−ω(t).
Taking time derivative one obtains, using the previous Lemma:

q̇(t) = DWε(u(t)).u̇(t)− ω̇(t)

= 〈brε(u(t)), u̇(t)〉− ω̇(t)

= 〈brε(u(t)),U−u(t)〉− (〈brε(u(t)),U〉−ω(t))

≤ −q(t)+ ε.

Hence
q̇(t)+q(t)≤ ε

so that q(t)≤ ε +Me−t for some constant M and the result
follows.



Theorem
For any η > 0, there exists ε̄ such that for ε ≤ ε̄, SFP(ε) is η-
consistent.
Proof
The assertion follows from the previous result and the DSA
property.

A similar result holds for internal no-regret procedures.

Recent advances: Benaim and Faure (2013) obtain
consistency with vanishing perturbation ε = n−a,a < 1.
Process non longer autonomous.
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Proof
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Process non longer autonomous.



6. Replicator dynamics and EWA

Replicator dynamics

Evolution of a single population with K types modelized through
a symmetric 2 person game with K×K payoff (fitness) matrix A
Aij is the payoff of "i" facing "j".
xk

t : frequency of type k at time t.
Replicator equation on the simplex ∆(K) of RK

ẋk
t = xk

t
(
ekAxt− xtAxt

)
, k ∈ K (RD) (20)

Taylor and Jonker (1978)



Replicator dynamics for I populations

ẋip
t = xip

t [F
i(eip,x−i

t )−Fi(xi
t,x
−i
t )], p ∈ Si, i ∈ I

natural interpretation: xi
t = {x

ip
t ,p ∈ Si}, is a mixed strategy of

player i.
The model will be in the framework of an N-person game but
we consider the dynamics for one player, without hypotheses
on the behavior of the others.
Hence, from the point of view of this player, he is facing a
(measurable) vector outcome process {Ut, t ≥ 0}, with values in
the cube U = [−1,1]K where K is his move’s set.
Uk

t is the payoff at time t if k is the choice at that time.
The U -replicator process (RP) is specified by the following
equation on ∆(K):

ẋk
t = xk

t [U
k
t −〈xt,Ut〉], k ∈ K. (21)
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Recall the logit map L from RK to ∆(K) defined by

Lk(V) =
expVk

∑j expV j . (22)

Let br denotes the (payoff based) best reply correspondence
from RK to ∆(K) defined by

br(U) = {x ∈ ∆(K);〈x,U〉= max
y∈∆(K)

〈y,U〉}

For ε > 0 small, L(V/ε) is a smooth approximation of br(V) in
the following sense:
Given η > 0, let [br]η be the correspondence from RK to ∆ with
graph being the η-neighborhood for the uniform norm of the
graph of br. Then the L map and the br correspondence are
related as follows:
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Proposition
There exists a function η from (0,ε0) to R+, with η(ε)→ 0 as
ε → 0, and such that for any U ∈ C and ε0 > ε > 0

L(U/ε) ∈ [br]η(ε)(U).

Remark

L(U/ε) = brε(U).



Hofbauer, Sorin and Viossat (2009), Sorin (2009)

Define the continuous exponential weight process (CEW) on
∆(K) by:

xt = L(
∫ t

0
Usds).

Proposition
(CEW) satisfies (RP).
Proof
Since xt = L(

∫ t
0 Usds)

ẋk
t = xk

t Uk
t − xk

t ∑
j

Uj
t exp

∫ t
0 Uj

vdv

∑` exp
∫ t

0 U`
vdv

which is
ẋk

t = xk
t [U

k
t −〈xt,Ut〉].
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The link with the best reply correspondence is the following.

Proposition
CEW satisfies

xt ∈ [br]δ (t)(Ut)

with δ (t)→ 0 as t→ ∞.
Proof
Write

xt = L(
∫ t

0
Usds) = L(t Ut)

= L(U/ε) ∈ [br]η(ε)(U)

with U = Ut and ε = 1/t.
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Consider now the time average process:

Xt =
1
t

∫ t

0
xsds

Proposition
If xt follows (CEW) then Xt satisfies

Ẋt ∈
1
t
([br]δ (t)(Ut)−Xt) (∗)

with δ (t)→ 0 as t→ ∞.

Corollary
In a two person game, if both players follow (RP) the time
average process (Xt,Yt) satisfies a perturbed version of (CFP).



External consistency
Recall that a procedure satisfies external consistency (external
no-regret) if for each process {Ut} ∈U , it produces a process
xt ∈ ∆(K), such that:∫ t

0
[Uk

s −〈xs,Us〉]ds≤ Ct = o(t), ∀k ∈ K

Proposition
(CEW) satifies external consistency.
(RP) satifies external consistency.
Proof
1. Let Sk

t =
∫ t

0 Uk
s ds and Wt = ∑` exp S`t , so that xk

t =
expSk

t
Wt

,
Ẇt = ∑k Uk

t exp Sk
t = ∑k Wt xk

t Uk
t = 〈xt,Ut〉Wt and

Wt = W0 exp(
∫ t

0
〈xs,Us〉ds)

but Wt ≥ exp Sk
t implies

∫ t
0〈xs,Us〉ds≥

∫ t
0 Uk

s ds−LogW0,∀k ∈ K.
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2. By integrating:

ẋk
t

xk
t
= [Uk

t −〈xt,Ut〉], k ∈ K. (23)

one obtains, on the support of x0:∫ t

0
[Uk

s −〈xs,Us〉]ds =
∫ t

0

ẋk
s

xk
s
ds = log(

xk
t

xk
0
)≤− logxk

0.



General property of a smoothing process:

Let xt maximize 〈x,
∫ t

0 Usds〉− ερ(x) on X.
Claim:
At = 〈xt,

∫ t
0 Usds〉− ερ(xt) and Bt =

∫ t
0〈xs,Us〉ds satisfy:

Ȧt = 〈xt,Ut〉= Ḃt

(enveloppe property) hence

〈x,
∫ t

0
Usds〉 ≤

∫ t

0
〈xs,Usds〉+ ε(ρ(x)+1), ∀x ∈ X.



Back to a game framework this implies that if player 1 follows
(RP) the set of accumulation points of the corrrelated
distribution induced by the empirical process of moves will
belong to his Hannan set:

H1 = {θ ∈ ∆(S);F1(k,θ−1)≤ F1(θ),∀k ∈ S1}.

The example due to Viossat (2007) of a game where the limit
set for the replicator dynamics is disjoint from the unique
correlated equilibrium shows that (RP) does not satisfy internal
consistency.



Comments
We can now compare several processes in the spirit of (payoff
based) fictitious play.
The original fictitious play process (I) is defined by

xt ∈ br(Ūt)

The corresponding time average satisfies (CFP).
With a smooth best reply process one has (II)

xt = brε(Ūt)

and the corresponding time average satisfies a smooth fictitious
play process.
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Finally the replicator process (III) satisfies

xt = br1/t(Ūt)

and the time average follows a time dependent perturbation of
the fictitious play process.



While in (I), the process xt follows exactly the best reply
correspondence, the induced average Xt does not have good
unilateral properties.
One the other hand for (II), Xt satisfies a weak form of external
consistency, with an error term α(ε) vanishing with ε.
In contrast, (III) satisfies exact external consistency due to a
both smooth and time dependent approximation of br.



While in (I), the process xt follows exactly the best reply
correspondence, the induced average Xt does not have good
unilateral properties.
One the other hand for (II), Xt satisfies a weak form of external
consistency, with an error term α(ε) vanishing with ε.
In contrast, (III) satisfies exact external consistency due to a
both smooth and time dependent approximation of br.



While in (I), the process xt follows exactly the best reply
correspondence, the induced average Xt does not have good
unilateral properties.
One the other hand for (II), Xt satisfies a weak form of external
consistency, with an error term α(ε) vanishing with ε.
In contrast, (III) satisfies exact external consistency due to a
both smooth and time dependent approximation of br.



Comparison to the discrete time procedure

Given a discrete process {Xm} and a corresponding EW
algorithm {pm} the aim is to get a bound on

1
n

n

∑
m=1

(Xk
m−〈pm,Xm〉)

from an evaluation of

1
T

∫ T

0
(Yk

s ds−〈qs,Ys〉)ds

where Yt is a continuous process constructed from Xm and qt is
the CTEW algorithm associated to Yt.



Proposition
Given a discrete time process {Xm} ∈ [0,1]K ,m = 1, ...,n, there
exists a measurable continuous time process
{Yt} ∈ [0,1]K , t ∈ [0,T], such that

1
n

n

∑
m=1

Xk
m =

1
T

∫ T

0
Yk

t dt and

1
n

n

∑
m=1
〈pm,Xm〉e−δ ≤ 1

T

∫ T

0
〈qt,Yt〉dt ≤ 1

n ∑
m
〈pm,Xm〉eδ

where {pm} is an EW(T/n) associated to {Xm}, qt is CTEW
associated to {Yt} and δ = T/n.



Alternative proof of

1
n

n

∑
m=1

(Xk
m−〈pm,Xm〉)≤Mn−1/2

Given n, choose T =
√

n so that:
- the bound in the continuous version is of the order 1/T = 1/

√
n

1
T

∫ T

0
(Yk

t −〈qt,Yt〉)dt ≤ logK√
n

- the error term with the discrete approximation of the order of
eδ −1∼ δ = T/n = 1/

√
n

1
n

n

∑
m=1
〈pm,Xm〉 ≥

1
T
(
∫ T

0
〈qt,Yt〉dt)−L/

√
n

Extension Kwon and Mertikopoulos (2014) to several dynamics
with time varying parameters.
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7. Continuous time dynamics

Hofbauer and Sigmund (1998) Evolutionary Games and
Population Dynamics, Cambridge U.P.
Sandholm (2010) Population Games and Evolutionary
Dynamics, M.I.T Press.

Main results:
elimination of dominated strategies
stability of pure strict equilibria
convergence to a profile from inside implies Nash
Lyapounov implies Nash

Typical property:
MAD = Positive correlation



Main classes
0-sum games
Strategic complementarities
Potential games
Dissipative games : congestion games

Several frameworks:
Population games
Congestion games
Extension to composite cases
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