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Abstract

We consider two person zero-sum games where the
players control at discrete times tn of a partition Π of R+, a
continuous time Markov process.
We prove that the limit of the values vΠ exist as the mesh of
Π goes to 0.
The analysis covers the cases of :
1) stochastic games (where both players know the state)
2) symmetric no information case.
The proof is by reduction to deterministic differential games.



Introduction

Repeated interactions in a stationary environment have been
traditionally represented by repeated games.
An alternative approach is to consider a continuous time
process on which the players act at discrete times.
In the first case the number of interactions increases as the
weight of each stage goes to zero.
In the second case it increases as the duration of each stage
vanishes.
In a repeated game framework one can normalize the evolution
of the play using the evaluation and consider a game played on
[0,1] where time t corresponds to the fraction t of the total
duration. Each evaluation θ = {θn} (in the original repeated
game) thus induces trough the stages of the interaction a
partition Πθ of [0,1] and vanishing stage weight corresponds to
vanishing mesh.
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Tools adapted from continuous time models can be used to
obtain convergence results, given a family of evaluations, for the
corresponding family of values vθ , see e.g. Vieille (1992), Sorin
(2002), Laraki (2002), Cardaliaguet, Laraki and Sorin (2012).
In the alternative approach there is a given evaluation k on R+

and one consider a sequence of partitions with vanishing mesh
(vanishing stage duration).
In both cases for each given partition the value function exists
at the times defined by the partition and the stationarity of the
model allows to write a recursive equation. Then one extends
the value function to [0,1] (resp. R+) by linearity and one
considers the family of values as the mesh of the partition goes
to 0.
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The two main points consists in defining a PDE (E) and proving:
1) that any accumulation point of the family is a viscosity
solution of (E) (with an appropriate definition)
2) that (E) has a unique viscosity solution.

Altogether the tools are quite similar to those used in differential
games however in the current framework the state is a random
variable and the players use mixed strategies.



The two main points consists in defining a PDE (E) and proving:
1) that any accumulation point of the family is a viscosity
solution of (E) (with an appropriate definition)
2) that (E) has a unique viscosity solution.

Altogether the tools are quite similar to those used in differential
games however in the current framework the state is a random
variable and the players use mixed strategies.



Differential games

The approach of studying the value trough discretization was
initiated in Fleming (1957), (1961), (1964), see also Friedman
(1971), (1974), Eliott and Kalton (1972).
Z is the state space,
I and J the action sets,
f the dynamics,
g the payoff
k the evaluation function.
Consider a differential game Γ defined on [0,+∞) by the
dynamics:

żt = f (zt, it, jt) (1)

and the total payoff: ∫ +∞

0
g(zs, is, js)k(s)ds.



Z, I,J subsets of Rn,
I and J compact,
f and g continuous and uniformly Lipschitz in z,
g bounded,
k : [0,+∞)→ [0,+∞) Lipschitz with

∫ +∞

0 k(s)ds = 1.

Φh(z; i, j) is the value at time t+h of the solution of (1) starting at
time t from z and with play is = i, js = j on [t, t+h].

To define the strategies we have to specify the information: we
assume that the players know the initial state, and at time t the
previous behavior (is, js;0≤ s < t) hence the trajectory of the
state (zs; 0≤ s < t).



1. Deterministic analysis
Let Π = ({tn},n = 0, ...) be a partition of [0,+∞) with
t0 = 0,δn = tn− tn−1 and δ = supδn.
Consider the associate discrete time game γΠ where on each
interval [tn, tn+1) players use constant moves (in, jn) in I× J.
This defines the dynamics.
At time tn+1, (in, jn) is announced thus the next value of the
state, ztn+1 = Φδn(ztn ; in, jn) is known.
The corresponding maxmin w−

Π
(resp. minmax w+

Π
) satisfies the

recursive formula:

w−
Π
(tn,ztn) = sup

I
inf

J
[
∫ tn+1

tn
g(zs, i, j)k(s)ds+w−

Π
(tn+1, ztn+1)] (2)

The fonction w−
Π
(.,z)) is extended by linearity to [0,+∞).



The next results follow from Evans and Souganidis (1984), see
also Bardi and Capuzzo-Dolcetta (1996).

Proposition (A1)
The family {w−

Π
} is equicontinuous in both variables.

Theorem (A2)
Any accumulation point of the family {w−

Π
}, as the mesh δ of Π

goes to zero, is a viscosity solution of:

0 =
d
dt

w−(t,z)+ sup
I

inf
J
[ g(z, i, j)k(t)+ 〈f (z, i, j),∇w−(t,z)〉]. (3)

Theorem (A3)
Equation (3) has a unique viscosity solution.
Crandall and Lions, see Crandall, Ishii and Lions (1992).

Corollary (A4)
The family {w−

Π
} converges to some w−.



Let w−∞ be the maxmin (lower value) of the differential game Γ

played using non anticipative strategies with delay.
From Evans and Souganidis (1984), Cardaliaguet (2010), one
obtains:

Theorem (A5)
1) w−∞ is a viscosity solution of (3).
2)

w−∞ = w−.

Obviously similar properties hold for w+
Π

and w+
∞ .



Define Isaacs’s condition (I0) on I× J by :

sup
I

inf
J
[ g(z, i, j)k(t)+ 〈f (z, i, j),p〉]

= inf
J

sup
I

[ g(z, i, j)k(t)+ 〈f (z, i, j),p〉], ∀t ∈ R+,∀z ∈ Z,∀p ∈ Rn.

Proposition
Assume condition (I0).
Then the limit value exists:

w− = w+(= w−∞ = w+
∞)



2. Mixed extension
Given a partition Π we introduce two discrete time games
related to γ and played on X = ∆(I) and Y = ∆(Y) (set of
probabilities on I and J respectively).
2.1. Deterministic moves
The first game is defined as above were X and Y are now the
sets of moves (this corresponds to “relaxed controls").
The dynamics f (hence the flow Φ) and the payoff g are defined
by the expectation w.r.t. x and y:

f (z,x,y) =
∫

I×J
f (z, i, j)x(di)y(dj)

g(z,x,y) =
∫

I×J
g(z, i, j)x(di)y(dj).

We consider the associate discrete time game ΓΠ where on
each interval [tn, tn+1) players use constant moves (xn, yn) in
X×Y. This defines the dynamics. At time tn+1, (xn,yn) is
announced and the current value of the state,
ztn+1 = Φδn(ztn ; xn, yn) is known.



The maxmin W−
Π

satisfies:

W−
Π
(tn,ztn) = sup

X
inf
Y

[
∫ tn+1

tn
g(zs,x,y)k(s)ds+W−

Π
(tn+1,ztn+1)].

The analysis of the previous paragraph applies, leading to :

Proposition
The family {W−

Π
} is equicontinuous in both variables.

Theorem
1) Any accumulation point of the family {W−

Π
}, as the mesh δ of

Π goes to zero, is a viscosity solution of:

0 =
d
dt

W−(t,z)+ sup
X

inf
Y

[ g(z,x,y)k(t)+ 〈f (z,x,y),∇W−(t,z)〉] (4)

2) The family {W−
Π
} converges to some W−.
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Due to the bilinear extension, Isaacs’s condition on X×Y is now
(I ):

sup
X

inf
Y
[g(z,x,y)k(t)+ 〈f (z,x,y),p〉]

= inf
Y

sup
X
[g(z,x,y)k(t)+ 〈f (z,x,y),p〉], ∀t ∈ R+,∀z ∈ Z,∀p ∈ Rn.

and always holds.

Proposition
The limit value exists:

W− = W+,

and is also the value of the differential game played on X×Y.

Remark that due to (I ), (4) can be written as

0=
d
dt

W(t,z)+valX×Y

∫
I×J

[g(z, i, j)k(t)+〈f (z, i, j),∇W(t,z)〉]x(di)y(dj)

(5)



2.2 Random moves
We define another game Γ̂Π where on [tn, tn+1) the moves
(in, jn) ∈ I× J are constant, chosen at random according to xn

and yn, and announced at time tn+1. The new state is thus, if
(in, jn) = (i, j), zij

tn+1 = Φδn(ztn ; i, j) and is known.
The next dynamic programming property holds:

Proposition
The game Γ̂Π has a value VΠ which satisfies:

VΠ(tn,ztn) = valX×YEx,y[
∫ tn+1

tn
g(zs, i, j)k(s)ds+VΠ(tn+1,z

ij
tn+1)]

and as above:

Proposition
The family {VΠ(t,z),Π} is equicontinuous in both variables.



Moreover one has:

Proposition
1) Any accumulation point of the family {VΠ}, as the mesh δ of
Π goes to zero, is a viscosity solution of the same equation (5).
2) The family {VΠ} converges to W.
Proof
1) Standard from the recursive equation.
2) The proof of uniqueness was done above.
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Stochastic games with vanishing stage duration

Assume that the state Zt follows a continuous time Markov
process on R+ = [0,+∞) with values in a finite set Ω.
We study in this section the model were the process Zt is
controlled by both players and observed by both (there is no
assumptions on the signals on the actions).
This corresponds to a stochastic game in continuous time
analyzed trough a discretization Π.
References include Zachrisson (1964), Tanaka and Wakuta
(1977), Guo and Hernandez-Lerma (2003), Prieto-Rumeau and
Hernandez-Lerma (2012), Neyman (2013) ...



The process is specified by a transition rate q ∈M : q is a real
continuous map on I× J×Ω×Ω with q(i, j)[ω,ω ′]≥ 0 if ω ′ 6= ω

and ∑ω ′∈Ω q(i, j)[ω,ω ′] = 0.
The transition is given by:

Ph(i, j)[ω,ω ′] = Prob(Zt+h = ω|Zt = ω, is = i, js = j, t ≤ s≤ t+h)

= 1{ω}(ω ′)+h q(i, j)[ω,ω ′]+o(h)

thus
Ṗh = Phq = q Ph

and
Ph = eh q.



Given a partition Π = {tn}, the time interval Ln = [tn−1, tn[ (which
corresponds to stage n) has duration δn = tn− tn−1.
The law of Zt on Ln is determined by Ztn−1 and the choices (in, jn)
of the players at time tn−1, that last for stage n.
In particular, starting from ζn = Ztn−1 , the law of the new state
ζn+1 = Ztn is a function of ζn, the choices (in, jn) and the duration
δn.
The payoff at time t in stage n (t ∈ Ln ⊂ R+) is defined trough a
map g from Ω× I× J to R:

gΠ(t) = g(Zt; in, jn)

Given a probability density k(t) on R+ the evaluation along a
play is:

γΠ =
∫ +∞

0
gΠ(t)k(t)dt

and this defines the game GΠ.
One considers the asymptotics of the game GΠ as the mesh
δ = supδn of the partition vanishes.
Note that here again the “evaluation” k(t) is given and fixed.
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Proposition

The value vΠ(t,z) satisfies the following recursive equation:

vΠ(tn−1,Ztn−1) = valX×Y Ex,y[
∫ tn

tn−1

g(Zs,x,y)k(s)ds+ vΠ(tn,Ztn)]

= valX×Y Ex,y[
∫ tn

tn−1

g(Zs,x,y)k(s)ds)

+Pδn(x,y)[Ztn−1 , .]◦ vΠ(tn, .)]

where
µ[z, .]◦ f (·) = ∑

z′
µ[z,z′]f (z′)

Proposition

The family of values {vΠ,k}Π has at least an accumulation point
as δ̄ goes to 0.



Let wΠ(t,ζ ) = 〈ζ ,vΠ(t, .)〉= ∑ω ζ (ω)vΠ(t,ω).
Define X = XΩ and Y = YΩ and

f (ζ ,x,y)(z) = ∑
ω∈Ω

ζ (ω)q(x(ω),y(ω))[ω,z]

Proposition
wΠ(t,ζ ) satisfies:

wΠ(tn−1,ζtn−1) = valX×Y [
∫ tn

tn−1

〈ζs,g(.,x(.),y(.))〉k(s)ds

+wΠ(tn,ζtn)]

Let w(t,ζ ) = 〈ζ ,v(t, .)〉= ∑ω ζ (ω)v(t,ω) where v(t, .) is an
accumulation point of the family of values {vΠ}.
Proposition
w(t,ζ ) is a viscosity solution of:

0=
d
dt

w(t,ζ )+valX×Y [〈ζ ,g(.,x(.),y(.))〉k(t)+〈f (ζ ,x,y),∇w(t,ζ )〉]
(6)



The recursive equation (6) is similar to the one induced by the
discretization of a deterministic differential game G on R+

defined as follows:
1) the state space is ∆(Ω),
2) the action spaces are X = XΩ and Y = YΩ,
3) the dynamics on ∆(Ω)×R+ is:

ζ̇t(z) = ∑
ω∈Ω

ζt(ω)q(x(ω),y(ω))[ω,z]

of the form:
ζ̇t = f (ζt,x,y)

4) the current payoff is given by:

〈ζ ,g(.,x(.),y(.))〉= ∑
ω∈Ω

ζ (ω)g(ω,x(ω),y(ω)).

5) the total evaluation is ∫ +∞

0
γt k(t)dt

where γt is the payoff at time t.



In GΠ the state is deterministic and at each time tn the players
know ζtn and choose xn (resp. yn). Let VΠ(t,ζ ) be the
associated value.

Proposition

VΠ(tn−1,ζtn−1) = valX×Y [
∫ tn

tn−1

〈ζs,g(.,x(.),y(.))〉k(s)ds

+VΠ(tn,ζtn)] (7)

Proposition
The next equation has a unique viscosity solution:

0=
d
dt

U(t,ζ )+valX×Y [〈ζ ,g(.,x(.),y(.))〉k(t)+〈f (ζ ,x,y),∇U(t,ζ )〉]
(8)



Corollary
Both families wΠ and vΠ converge to some w and v with

w(t,ζ ) = ∑
ω

ζ (ω)v(t,ω).

v is a viscosity solution of

0 =
d
dt

v(t,z)+valX×Y{g(z,x,y)k(t)+q(x,y)[z, .]◦ v(t, ·)}. (9)



Stationary case
If k(t) = ρe−ρt, v(t,z) = e−ρtν(z) satisfies (9) iff ν(z) satisfies:

ρ νρ(z) = valX×Y [ρ g(z,x,y)+q(x,y)[z, .]◦ νρ(.)] (10)

Guo and Hernandez-Lerma (2003), Prieto-Rumeau and
Hernandez-Lerma (2012), Neyman (2013), Sorin and Vigeral
(2015).



State controlled and not observed: no signals

In the current framework the process Zt is controlled by both
players but not observed.
The moves are observed: we are thus is the symmetric case
were the new state variable is ζt ∈ ∆(Ω), the law of Zt.
Similar framework for differential games in Cardaliaguet and
Quincampoix (2008).
Even in the stationary case there is no explicit smooth solution
to the basic equation hence a direct approach for proving
convergence is not available.

Proposition

The value VΠ satisfies the following recursive equation:

VΠ(tn−1,ζtn−1) = valX×Y Ex,y[
∫ tn

tn−1

g(ζs,x,y)k(s)ds+VΠ(tn,ζtn)]



Proposition

The family of values {VΠ} has at least an accumulation point as
δ̄ goes to 0.

Proposition

Any accumulation point V of the family of values {VΠ} is a
viscosity solution of:

0 =
d
dt

V(t,ζ )+valX×Y [g(ζ ,x,y)k(t)+ 〈ζ ∗q(x,y),∇V(t,ζ )]. (11)

with
ζ ∗µ(z) = ∑

ω∈Ω

ζ (ω)µ[ω,z].



The previous computation shows that the limit behavior is the
same that the one of the discretization of the differential game
with moves X and Y, dynamics on ∆(Ω)×R+ given by:

ζ̇t = ζt ∗q(x,y).

current payoff g(ζ ,x,y) and evaluation k.

Proposition
Equation (11) has a unique viscosity solution hence the family
of values VΠ converge.



Stationary case
In this case one has V(ζ , t) = e−ρtU(ζ ) hence (11) becomes

ρU(ζ ) = valX×Y [ρ g(ζ ,x,y)+ 〈ζ ∗q(x,y),∇U(ζ )〉] (12)



Extensions and comments

Incomplete information
Cardaliaguet, Rainer, Rosenberg and Vieille (2015)

General signals

k→ ∞

continuous time, Neyman (2012)
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