Zero-sum Revision Games

Fabien Gensbittel 1 , Stefano Lovo 2, Jerome Renault 1 and $$\rm Tristan Tomala^2$$

¹TSE

²HEC, Paris

Tutorial and Workshop on Stochastic Games (NUS), Singapore December 2015

(ㅁ) (종) (종) (종) (종)

Revision Games

- Players have to prepare their actions in a pre-play phase preceding the payoff-relevant play in a one shot game,
- During the pre-play phase:
 - prepared actions are commonly observed.
 - Prepared actions can be change only at the bell of a Poisson clock.
- Only the last prepared action profile matters for the payoff.

Some examples

- Preopening in the stock market (Nasdaq, Euronext, Toronto SE, daily from 7a.m. to 9 a.m.)
- Interaction through internet servers (e-bay auctions).
- Preparatory meetings to negotiate the terms of a treaty.
- Armies deploying their troops on the ground

• ...

<ロ> < 同> < 同> < 三> < 三> 三 三

Component game: Zero-sum game

2 players.

0

- X_i: player *i*'s finite set of actions.
- $U: X_1 \times X_2 \to \mathbb{R}$: player 1's payoff matrix (generic).

$$BR_1^U(x) := \arg \max_{y_1} U(y_1, x_2); \ BR_2^U(x) := \arg \min_{y_2} U(x_1, y_2)$$

• Stackelberg payoff where 1 plays first:

$$S_1 = \max_{x_1 \in X_1} \min_{x_2 \in X_2} U(x_1, x_2)$$

Stackelberg payoff where 2 plays first

$$S_2 = \min_{x_2 \in X_2} \max_{x_1 \in X_1} U(x_1, x_2)$$

• Value of the game: V

$$S_1 \leq V \leq S_2$$

with equality if pure Nash.

Gensbittel , Lovo , Renault, Tomala

イロン 不同 とくほう 不良 とうほ

- At t = 0, starting prepared action $x(0) \in X$ exogenous.
- Between time 0 and *T*, Poisson arrivals of revision times independent for each player (Asynchronous moves).
- Each player can change his prepared actions only at his revision times.
- At *T* players get their only payoff and this results from players playing, in the component game, their last prepared actions.

Revision game as a stochastic game

- Finite time horizon [0, *T*].
- Game $\Gamma_{[\tau,T]}(x)$ with $\tau < T$ and $x \in X$.
- Time η is drawn from an exponential distribution with parameter λ .
- If $\eta + \tau > T$, then the game is over and players' payoff is $\{U(x), -U(x)\}$
- if $\eta + \tau < T$, then
 - With Pr $q \in (0, 1)$ player 1 chooses an action $y_1 \in X_1$ and the game $\Gamma_{[\tau+\eta, T]}(y_1, x_2)$ starts.
 - With Pr 1 − q player 2 chooses an action y₂ ∈ X₂ and the game Γ_[τ+η,T](x₁, y₂) starts.
- Initial game: $\Gamma_{[0,T]}(x(0))$

《日》《聞》《臣》《臣》 []]

Related literature

• Non-zero sum revision game: Kamda and Kandori 2009; Lovo and Tomala (2015).

Calcagno, Kamada, Lovo and Sugaya (2014): In 2 \times 2 conflicting interest games (generic Battle of the sexes),

- the revision game equilibrium is unique;
- the slow players has an advantage over the fast players;
- revision game equilibrium payoff = component game Nash equilibrium payoff;
- All action occurs at the beginning of the revision game.
- Cheap talk games: Farrell (1987), Rabin (1994), Aumann and Hart (2003), ...
- Switching cost games: Lipman and Wang (2000) and Caruana and Einav (2008), ...

イロン 不同 とくほう 不良 とうほ

What are we after?

- Under what conditions does a player prefer to play the revision game rather than the straight zero-sum game?
- Chracterization of equilibrium payoff.
- Characterization of equilibrium behavior.

《日》《圖》《문》《臣》 [] 臣

- Preliminaries
- ② General results
- $3 2 \times 2$ equilibrium chracterization

《口》《聞》《臣》《臣》 [] 臣

 Set of states: player who can revise and the resulting new profile of action

$$\mathsf{K} = \{\mathsf{1},\mathsf{2}\} imes \mathsf{X}$$

History of past revision time and chosen actions

$$h_n = \{x, \tau_1, k_1, \dots, \tau_n, k_n\} \in X \times ([0, T] \times K)^n$$

 Strategy: mapping histories and revision times into a (mixed) action

$$\sigma_i:\cup_{n\geq 0}(H_n imes [0,T]) o \Delta X_i$$

A Markov strategy is a measurable mapping

$$\sigma_i: X \times [0, T] \rightarrow \Delta X_i$$

• Expected payoff given σ :

$$u_{\sigma}(T,x) := \mathbb{E}_{\sigma}[U(x(T))|x(0) = x]$$

where x(T) is the last prepared action profile at time T.

Theorem

(Lovo and Tomala (2015)) The revision game has a Markov perfect equilibrium. With

- t is the remaining time.
- u(x, t): equilibrium payoff of the game of length t with starting action profile x.

•
$$u(t) := \{u(t, x)\}_{x \in X}$$

•
$$\sigma_i(t,x) \in BR_i^{u(t)}(x_{-i})$$

(日) < (日) < (日) < (日) < (日) = (日) < (日) = (1

Remark that u(t, x) is Lipschitz.

Let

$$u^+(t,x) := \max_{y_1 \in X_1} u(t,y_1,x_2)$$
; $u^-(t,x) := \min_{y_2 \in X_2} u(t,x_1,y_2);$
 $\lambda_1 := \lambda q$; $\lambda_2 := \lambda(1-q)$

Then

$$u(t,x) = U(x)e^{-\lambda t} + \int_{s=0}^{t} e^{-\lambda(t-s)} \left(\lambda_1 u^+(s,x) + \lambda_2 u^-(s,x)\right) ds,$$

$$\frac{\partial u(t,x)}{\partial t} = \lambda_1 (u^+(t,x) - u(t,x)) + \lambda_2 (u^-(t,x) - u(t,x)),$$

$$u(0,x) = U(x).$$

《口》《聞》《臣》《臣》 [] 臣

Proposition

- The revision game has a Markov perfect equilibrium in pure strategy.
- 2 The equilibrium payoff u(t, x) is Lipschitz in t, U and is continuous in (q, λ) ∈ (0, 1) × (0, ∞).
- 3 The equilibrium payoff u(t, x) is non-decreasing in q.

(日) < (日) < (日) < (日) < (日) = (日) < (日) = (1

Take a MPE and suppose that for some time t, $\sigma_i(t, x)$ is not pure. For this t replace $\sigma_i(t, x)$ by a pure action in $\sigma'_i(t, x) \in BR_i^{u(t)}(x)$. Observe that u^+ and u^- do not change with σ or σ' . Hence

$$u(t,x) = u(x)e^{-\lambda t} + \int_{s=0}^{t} e^{-\lambda(t-s)} \left(\lambda_1 u^+(s,x) + \lambda_2 u^-(s,x)\right) ds$$

is the same under σ and σ' . Zero sum structure is crucial.

イロン 不同 とくほう 不良 とうほ

• 1-Lipschitz in *t*:

$$|u(t,x) - u(t + \varepsilon, x)| \le ||u(t)||(1 - e^{-\lambda\varepsilon})|$$

• 1-Lipschitz in U: Take $U' \neq U$, then

$$|u(t,x) - u'(t,x)| \le \max_{y \in X} |U(y) - U'(y)|$$

• Continuous in λ , take $\lambda' \neq \lambda$, then

$$u(t,x)|_{\lambda} = u\left(\frac{\lambda'}{\lambda}t',x\right)\Big|_{\lambda'}$$

• Continuous in *q*: Payoff continuously depends on the distribution of revision time that is continuous in *q*.

ヘロン 不得 とくほう 不良 とうほう

General results Monotonicity of u(t, x) in q: sketch of the proof

Let q' < q. $\frac{\partial u(t,x)}{\partial t} = \lambda(qu^+(t,x) + (1-q)u^-(t,x) - u(t,x))$

If for some t, $u(t,x)|_{q'} = u(t,x)|_q$, then

$$\frac{\partial u(t,x)}{\partial t}\Big|_{q'} \leq \frac{\partial u(t,x)}{\partial t}\Big|_{q}$$

implying $u(\tau, x)|_q \le u(\tau, x)|_{q'}$, for some $\varepsilon > 0$, and all $\tau \in (t, t + \varepsilon)$. but

$$|u(0,x)|_{q'} = u(0,x)|_q = U(x)$$

so it can never be that

$$|u(\tau, x)|_{q'} > u(\tau, x)|_{q}$$

シック・ヨー イヨシ イヨシ 一日 - シック

Consider a revision game where the starting action profile is *x* and let

$$\underline{R}(x) := \liminf_{t \to \infty} u(t, x) \text{ and } \overline{R}(x) := \limsup_{t \to \infty} u(t, x)$$

If $\underline{R}(x) = \overline{R}(x) = R(x)$ then we say that the *revision game* value is R(x)

(日) < (日) < (日) < (日) < (日) = (日) < (日) = (1

Proposition

 Irrelevance of revision when V is achieved with purestrategies:

$$S_1 \leq \underline{R}(x) \leq \overline{R}(x) \leq S_2$$

② Ergodicity:

4

$$\underline{R}(x) = \overline{R}(x) = R, \forall x \in X$$

for some constant C

③ *R* is 1-Lipschitz in *U*, and continuous in $(q, \lambda) \in (0, 1) \times (0, \infty)$.

$$\lim_{q \to 1} = S_2 \text{ and } \lim_{q \to 0} = S_1$$

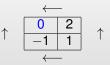
Let
$$X_1 = X_2 = \{\alpha, \beta\}.$$

$$\begin{array}{c|c} \alpha & \beta \\ \hline \alpha & U(\alpha, \alpha) & U(\alpha, \beta) \\ \beta & U(\beta, \alpha) & U(\beta, \beta) \end{array}$$

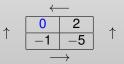
Then the component game where *U* is generic, implying $x \neq x' \Rightarrow U(x) \neq U(x')$.

《口》《聞》《臣》《臣》 [] 臣

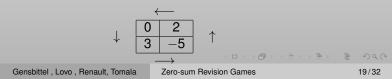
• Scenario DD: Each player has a dominant action. For example:



• Scenario DN: One player, has a dominant action whereas the other player does not. For example:



• Scenario NN: No pure Nash Eq. For example:



Proposition

2

3

Suppose U is in scenario DD, and let \hat{x}_i be player i's dominant action in the component game. Then for all t,

u(t) is in scenario DD

$$\sigma_i, (t, \mathbf{x}) = \hat{\mathbf{x}}_i, \forall \mathbf{x} \in \mathbf{X}$$

$$R = V$$

《口》《聞》《臣》《臣》 [] 臣

Intuition:

- By continuity with respect to *t* each player prepares his dominant action when *t* is close to 0.
- If for for all \(\tau > t\) the other player uses a fixed action no matter what you do, then you strictly prefer preparing your dominant action at t.

Algebraic:

Solve the ODE and verify that $BR_i^{u(t)}(x)$ does not depend on *t*.

《日》《圖》《문》《臣》 [] 臣

Proposition

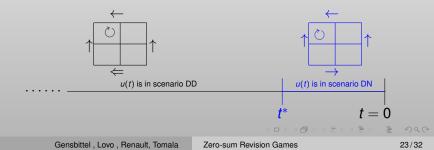
```
Suppose U is in scenario DN, and \hat{x}_1 is player 1's dominant
action in the component game. Then there is t* finite such that
 1 For t < t^*:

    u(t) is in scenario DN

         • \sigma_1(t, x) = \hat{x}_1, \forall x
        • \sigma_2(t,x) = BR_2^U(x_1)
 2 For t > t*:
         • u(t) is in scenario DD
         • \sigma_1(t, x) = \hat{x}_1, \forall x
        • \sigma_2(t,x) = BR_2^U(\hat{x}_1), \forall x
 3
                                         R = V
```

ヘロン 不得 とくほう 不良 とうほう

 t > t*: At the beginning of the revision phase players prepare the action forming the component game pure Nash equilibrium.
 t < t*: Once reached these actions they do not move.



Proposition

If U is in NN scenario, then there are $0 < t^{**} < t^*$, i^* and $x_{i^*}^*$ such that:

① *For t* < *t***:

u(*t*) is in scenario NN
 σ_i(*t*, *x*) = *BR_i^U*(*x*_{-i})

2) *For*
$$t^{**} < t < t^*$$
:

• u(t) is in scenario DN

③ *For* $t \ge t^*$:

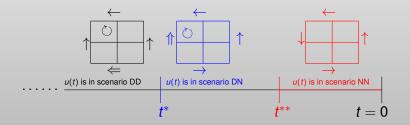
• u(t) is in scenario DD

④ Generically

$$R = u(t^{**}, x^*) \neq V$$

surplice and wrestle

- t > t**: At the beginning of the revision phase players prepare a "surplace" action, that they keep until t*
- 2 $t < t^*$: starting to t^* players actions cycle



Ξ

If U is in NN scenario, then without loss of generality we have

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 0 & b \\ \beta & c & b+c-1 \end{array}$$

with

0 < b, c, < 1

《口》《聞》《臣》《臣》 三臣

$\begin{array}{l} 2\times 2 \ games \\ \text{Scenario NN: Sur-place action} \end{array}$

Let $\sigma := |\lambda_1^2 - 6\lambda_1\lambda_2 + \lambda_2^2|^{\frac{1}{2}}$ and let $\hat{t}(A, B, \lambda_1, \lambda_2)$ be the smallest positive *t* such that

$$e^{-\frac{\lambda_1+\lambda_2}{2}t} + A\cos\left(\frac{\sigma t}{2}\right) + \frac{(\lambda_2-\lambda_1)A + 2\lambda_2B}{\sigma}\sin\left(\frac{\sigma t}{2}\right) = 0$$
(1)

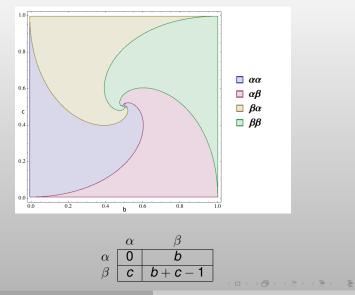
Set $\hat{t}(A, B, \lambda_1, \lambda_2)$ to infinity. Let

$$\begin{array}{rcl} t_{\alpha,\alpha} & = & \hat{t}(2c-1,2b-1,\lambda_{1},\lambda_{1}) \\ t_{\alpha,\beta} & = & \hat{t}(2b-1,1-2c,\lambda_{2},\lambda_{1}) \\ t_{\beta,\alpha} & = & \hat{t}(1-2b,2c-1,\lambda_{2},\lambda_{1}) \\ t_{\beta,\beta} & = & \hat{t}(1-2c,1-2b,\lambda_{1},\lambda_{1}) \end{array}$$

Then then

$$\hat{x} = rg \min_{\substack{y \in \{(lpha, lpha), (lpha, eta), (eta, lpha), (eta, eta)\}}} t_y$$
 $t_* = t_{\hat{x}}$

- E > - E > -



Theorem

If 0 < b, c < 1 and q = 1/2, then

• The value of the game is V = bc

• the revision game value is:

$$R = \frac{1}{4}(2c+2b-1) + \frac{1}{2}(c+b-1)(b-c)\sin(2\mu) + \frac{1}{4}(2b-1)(2c-1)\cos(2\mu),$$

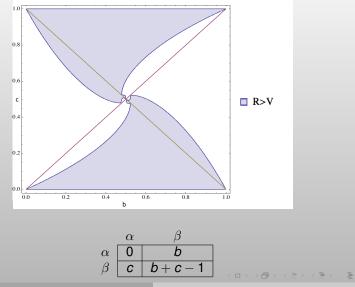
where μ is the smallest t in \mathbb{R}_+ satisfying:

 $e^{-t} = \max\{(1-2c)\cos(t) + (1-2b)\sin(t), (1-2b)\cos(t) - (1-2c)\sin(t), (1-2b)\cos(t) - (1-2b$

 $-(1-2b)\cos(t) + (1-2c)\sin(t), -(1-2c)\cos(t) - (1-2b)\sin(t)\}.$

ヘロト 不得 とくほ とくほん

2×2 games Scenario NN: *R* and *V* for q = 1/2 and 0 < b, c < 1

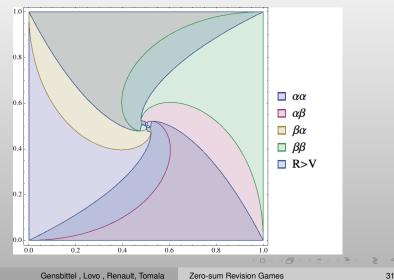


Gensbittel , Lovo , Renault, Tomala

Zero-sum Revision Games

2×2 games Scenario NN: Sur-place action, *R* and *V*

q = 1/2



- A zero-sum revision game always has a pure strategy equilibrium.
- When the component game Nash equilibrium is in pure, then players should be indifferent between paling the game with our without a (long) revision phase.
- When the component game Nash equilibrium is not pure, then
 - A player gain from being faster than the other player.
 - Generically the revision game value is different from the one-shot game value.
 - For 2×2 games, the unique equilibrium consists in players waiting on a sur-place action profile until the the deadline is close and then wrestle.

《日》《圖》《문》《臣》 [] 臣