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Foreword

• work in progress, very preliminary, and incomplete in many re-

spects

• my current purpose is just to explain what I am going to do,

rather than to sell what I have done so far

• hope it sounds interesting
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Repeated Prisoners’ Dilemma (PD)

player 1

player 2

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

• we assume g > 0, l > 0, and g − l < 1

♠ defection is dominant, but mutual cooperation uniquely max-
imizes total payoffs

• perpetual play of mutual cooperation is an equilibrium outcome
if

δ ≥ g

g + 1

♠ the equilibrium payoff (average, discounted total stage pay-
offs) is 1
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A Variation: Imperfect Public Monitoring

player 1

player 2

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

• let us now assume that the other player’s action is unobservable

• there is an imperfect signal of the actions, success (G) or failure
(B)

• player i’s stage payoff depends on his action ai ∈ {C, D} and
the signal y ∈ {G, B}, denoted by vi(ai, y)

• we assume

p ≡Prob(B|C, C) < Prob(B|C, D) = Prob(B|D, C)≡ q
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player 1

player 2

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

• here, the payoff matrix expresses the expected payoffs given an

action pair (a1, a2)

♠ it thus holds that

ui(a1, a2) = Prob(G|a1, a2)vi(ai, G) + Prob(B|a1, a2)vi(ai, B)

♠ you can’t say, for example, a cooperator can tell the other

guy’s action, depending on whether his payoff is 1 or −l
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Multimarket Contact

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0
· · ·

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

• there are M games of this kind, simultaneously played in each
period

• the signals are assumed to be independent across the M games

• can an equilibrium per-game payoff of the M repeated games
exceed that of a single repeated game?

♠ easy to attain the same value (playing a single-game equi-
librium independently)
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Multimarket Contact in Its True Sense

• in this paper, multimarket contact is M repeated prisoners’
dilemma, but this is of course not its true meaning

• the original question is: does the very fact that oligopolistic
firms simultaneously compete over multiple markets facilitate
collusion in itself?

• multimarket contact is abundant in reality

♠ nationwide firms compete over local markets (airlines)

♠ conglomerates compete over several industries

• important implications on evaluation of mergers and interpre-
tation of concentration indexes
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Some Existing Debates

• a famous claim: multimarket contact facilitates collusion

♠ Corwin Edwards, in his 1957 testimony before the U.S. Sen-

ate Anti-Trust and Monopoly Subcommittee:

The multiplicity of their contacts may blunt the edge

of their competition. A prospect of advantage from

vigorous competition in one market may be weighted

against the danger of retaliatory forays by the competi-

tor in other markets.

♠ cited by, for instance, Scherer’s textbook on IO and authors

on multimarket contact
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• one theoretical rebuttal: the “irrelevance result” by Bernheim

and Whinston (1990)

• their point: why not vigorously compete in all markets?

♠ Edward’s deviation, where a firm price-cuts only in one mar-

ket, is not an optimal deviation

• if all markets are identical, then multimarket contact simply

multiplies both the deviation gain and future punishments by

the same size

♠ therefore the per market profit should not change

• Bernheim and Whinston assumes perfect monitoring
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Support for Edwards’ Argument

• the irrelevance result does not extend to imperfect public mon-
itoring

• Matsushima (2001): for any discount factor where full collusion
is sustainable in its perfect monitoring counterpart (except for
the threshold level), the per-market profit under full collusion is
approximately sustained if the number of markets is sufficiently
large

♠ conglomerates can collude as if monitoring were perfect

• Kobayashi and Ohta (2012): the most collusive per-market
PPE payoff when the discount factor is arbitrarily close to 1 is
increasing in the number of markets

♠ a free-lunch result: the increase in the total payoffs equals
the level when the added market has perfect monitoring
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• Sekiguchi (in preparation): given a number of markets and a

discount factor where non-zero collusion is sustainable, adding

one more market never decreases the per-market payoff under

the most collusive PPE

♠ a generic result: for almost-all those situations, the per-

market payoff increases

• adding two or more markets under those situations always in-

creases the per-market payoff

♠ cover the case of moderate discounting, where the free-lunch

result does not hold

♠ I am just eating ordinarily-priced lunch

10



Today’s Talk: Multimarket Contact under Private Monitoring

• based on Iwasaki, Sekiguchi, Yamamoto and Yokoo (in prepare-
tion)

• the same issue, for the framework of imperfect private moni-
toring

• the other player’s action is unobservable

• this time, there is an imperfect and private signal of the other
player’s action, which is either g or b

♠ the other player’s signal is unobservable

• player i’s payoff depends on his action ai ∈ {C, D} and his signal
yi ∈ {G, B}, denoted by vi(ai, yi)
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player 1

player 2

C D

C 1,1 −l,1 + g

D 1 + g,−l 0,0

• let pi(yi|a1, a2) be the probability with which player i’s signal is
yi under an action pair a = (a1, a2) ∈ {C, D}2

♠ the marginal distribution of the signal pairs

• again, the payoff matrix expresses the expected payoffs

ui(a1, a2) = pi(g|a1, a2)vi(ai, g) + pi(b|a1, a2)vi(ai, b)

• we assume a single parameter p ∈ (1/2,1) describes the moni-
toring structure: for any i, any yi and any a

pi(yi|a) =

⎧⎨
⎩p if (aj, yi) ∈

{
(C, g), (D, b)

}
1 − p otherwise
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• consider an infinitely repeated game where M PDs with imper-
fect private monitoring are simultaneously played

• the information player i gets in one period is an element of
Ii ≡ {C, D}M × {g, b}M

• player i’s private history at period t (t ≥ 0) is an element of
Ht

i ≡ (Ii)
t

♠ H0
i is a singleton

• let Hi = ∪t≥0Ht
i , which is the set of player i’s histories

• player i’s strategy is a mapping from Hi to the set of probability
distributions over {C, D}M

• a player’s payoff of a strategy pair is the average, δ-discounted
sum of the stage-game payoffs
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Two-State Pure-Action Automaton Strategy

• we will limit attention to a particular equilibrium concept by a

particular class of strategies

♠ not limiting the strategy space

• the strategy is characterized by the following parameter set

(i) two elements of {C, D}M : denoted by aR and aP

(ii) two functions from {C, D}M × {g, b}M to [0,1]: denoted by

εR and εP

♠ called state transition functions
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• it corresponds to the following automaton strategy

(i) the player is always at either state R or state P

♠ the initial state is R

(ii) the player plays aR at state R, and plays aP at state P

(iii) if the player is at state R, and if the current outcome is

(aM
i , yM

i ) ∈ {C, D}M ×{g, b}M , the state in the next period is

P with probability εR(aM
i , yM

i )

(iv) if the player is at state P , and if the current outcome is

(aM
i , yM

i ) ∈ {C, D}M ×{g, b}M , the state in the next period is

R with probability εP (aM
i , yM

i )
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• like this:

P(unish)R(eward)

PLAY aR

εP (aM
i , yM

i )

1 − εP (aM
i , yM

i )

(aM
i , yM

i )

START

PLAY aP

(aM
i , yM

i )

1 − εR(aM
i , yM

i )

εR(aM
i , yM

i )

• since the state transition is stochastic, it is not a pure strategy

in general
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Belief-Free Equilibrium

• Ely and Valimaki (2002), Ely, Horner and Olszewski (2005)

Definition 1 A two-state pure-action automaton strategy pair is a

belief-free equilibrium if any player’s continuation strategy at any

state is optimal against the other player’s continuation strategy at

any state.

• a belief-free equilibrium is a sequential equilibrium

• even if a player were to learn the other player’s state, his con-

tinuation strategy continues to be optimal

♠ make the task of computing beliefs irrelevant
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The Case of M = 1: Ely-Valimaki Equilibrium

• hereafter, our solution concept is a belief-free equilibrium by

two-state pure-action automaton strategies

• the following result is due to Ely and Valimaki (2002)

Proposition 1 Suppose M = 1. If

δ
[
2p − 1 − (1 − p)(g + l) + max{g, l}

]
≥ max{g, l} (1)

holds, there exists a symmetric belief-free equilibrium which gives

each player

1 − (1 − p)g

2p − 1
. (2)
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Comments: Ely-Valimaki Equilibrium

• the equilibrium strategy has the following parameter set

aR = C, aP = D, εR(·, g) = εP (·, b) = 0.

εR(·, b) =
(1 − δ)g

δ
{
2p − 1 − (1 − p)(g + l)

},

εP (·, g) =
(1 − δ)l

δ
{
2p − 1 − (1 − p)(g + l)

}

• (1) may fail even when δ is arbitrarily large

♠ if 2p − 1 ≤ (1 − p)(g + l), no δ satisfies (1)

• if p is close to one 1 (nearly perfect monitoring), such an equi-
librium exists and its payoff is nearly efficient
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• the equilibrium payoff has a particular form:

1 − (1 − p)g

2p − 1

• the payoff of mutual cooperation minus the welfare loss due to
imperfect observability

• the size of the loss is proportional to g, and inversely propor-
tional to the likelihood ratio of moving from state R to P

1 − p

2p − 1
=

1
p

1−p − 1
,

p

1 − p
− 1 =

p1(b|·, D)

p1(b|·, C)
− 1 =

p1(b|·, D) − p1(b|·, C)

p1(b|·, C)

• the private monitoring counterpart of the Abrue-Milgrom-Pearce
value (for the most cooperative equilibrium payoff under public
monitoring)
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EV-Type Equilibrium with M Markets

• let us examine presence of multimarket contact effects

♠ is there any equilibrium per-market payoff greater than the
EV equilibrium payoff?

• by the way, it is not so obvious whether the EV equilibrium
payoff can be sustained

♠ if M ≥ 2, independent play of the EV equilibrium strategy is
not a two-state automaton strategy

• the following result affirmatively answer this question

Proposition 2 For any M , if (1) holds, a symmetric belief-free
equilibrium exists with its payoff

M

{
1 − (1 − p)g

2p − 1

}
.
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• the equilibrium strategy has the following parameter set

aR = (C, C, . . . , C), aP = (D, D, . . . , D)

εR(·, yM
i ) =

(1 − δ)gk

Mδ
{
2p − 1 − (1 − p)(g + l)

},

εP (·, yM
i ) =

(1 − δ)l(M − k)

Mδ
{
2p − 1 − (1 − p)(g + l)

}

♠ k is the number of bad signals in yM
i

• the actions shifts between all C to all D

♠ accordingly, the marginal transition probabilities of a bad

signal are the benchmark levels divided by M
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• what kind of modification improves the EV-type equilibrium
payoff?

• among all two-state pure-action automaton strategies such that
aR = (C, C, . . . , C), the above strategy has the following two
features:

(i) aP = (D, D, . . . , D)

(ii) the transition probability from R to P is proportional to the
number of bad signals

• the next result indicates that part (ii) is essential

Proposition 3 Any equilibrium payoff by a strategy satisfying aR =
(C, C, . . . , C) and the condition (ii) above is at most

M

{
1 − (1 − p)g

2p − 1

}
.
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• if M = 2, the condition (i) is a constraint, too

Proposition 4 Let M = 2. Then any belief-free equilibrium payoff

with aR = (C, C) and aP = (D, D) is at most

2

{
1 − (1 − p)g

2p − 1

}
.

• in order to verify multimarket contact effects under M = 2, we

need to set aP = (C, D) and specify more complicated transition

probabilities

24



Multimarket Contact Effects when M = 2

Proposition 5 Let M = 2. If

δ ≥
max

{
g, (1 − p)(g + l)

}
pmax

{
g, (1 − p)(g + l)

}
+ (1 − p)(2p − 1)

(3)

holds, there exists a symmetric belief-free equilibrium whose payoff

is

2 − (1 − p)g

2p − 1
.

• a free-lunch result

• if (3) holds, the equilibrium condition for the EV equilibrium

also holds
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• (3) may fail even if δ is very large

♠ if 2p − 1 ≤ max
{
g, (1 − p)(g + l)

}
, no δ satisfies (3)

• even nearly perfect monitoring, (3) may fail

♠ if g ≥ 1, no p and δ satisfy (3)

• the equilibrium strategy is such that aR = (C, C) and aP =

(C, D)

♠ the transition probabilities depend on max
{
g, (1− p)(g + l)

}
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• if max
{
g, (1 − p)(g + l)

}
= g (namely, pg ≥ (1 − p)l), we set

εR(·, gg) = εR(·, gb) = εR(·, bg) = 0,

εR(·, bb) =
(1 − δ)g

δ(1 − p)(2p − 1 − g)

and

εP (·, gg) =
(1 − δ)(g + l)

δ(2p − 1 − g)
,

εP (·, gb) =
(1 − δ)

{
pg − (1 − p)l

}
δp(2p − 1 − g)

,

εP (·, bg) = εP (·, bb) = 0

• the state shifts form R to P , only when all signals are bad

♠ the most collusive equilibrium under public monitoring has

the same structure (Kobayashi-Ohta)
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• if max
{
g, (1− p)(g + l)

}
= (1− p)(g + l) (namely, pg ≤ (1− p)l),

we set

εR(·, gg) = εR(·, gb) = εR(·, bg) = 0,

εR(·, bb) =
(1 − δ)g

δ(1 − p)
{
2p − 1 − (1 − p)(g + l)

}
and

εP (·, gg) =
(1 − δ)(g + l)

δ
{
2p − 1 − (1 − p)(g + l)

},

εP (·, bg) =
(1 − δ)

{
(1 − p)l − pg

}
δ(1 − p)

{
2p − 1 − (1 − p)(g + l)

},

εP (·, gb) = εP (·, bb) = 0

• again, the same structure as the Kobayashi-Ohta equilibrium

• the two cases differ only in the transition probabilities from P
to R
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Remarks

• when the other player is at state R under the equilibrium, any
one-shot deviation where a player selects D in one PD attains
the same payoff as conforming to his strategy

• the one-shot deviation where he selects D in both PDs is sub-
optimal

♠ given that he is punished only when the other player’s signal
is all bad, defection in one PD makes him one step closer to
the punishment, which makes him reluctant to defect in the
other, too

• thus we virtually eliminate the full defection from the incentive
constraints, which helps to support a higher equilibrium payoff

29



• in order to attain the higher value, however, we need to carefully

design the transition probabilities from P to R, too

♠ otherwise, the punishment is not severe enough to provide

incentives to cooperate

• when the other player is at state P under the equilibrium, the

only suboptimal one-shot deviation is to defect in the first PD

and to cooperate in the second

♠ the player is indifferent among all other one-shot deviations

• thus we virtually eliminate this deviation from the incentive

constraints, which helps to design an effective punishment

30


