The Characterization of the Limit Correlated Equilibrium Payoff Set with General Monitoring

Takuo Sugaya Stanford Graduate School of Business

The Mediator in the Real Example

- AC-Treuhand AG
 - organizing meetings of the cartel members;
 - distributing agreed market shares;
 - calculating deviations;
 - collecting and verifying data;
 - acting as a modelator in case of tensions between cartel members;
 - reshaping the arrangement
- Trade Associations perform the role of a third-party facilitator.

A Big Picture

- Sugaya (2014) establishes the folk theorem with private monitoring if identifiability conditions are satisfied.
- The remaining question is what happens if a sufficient condition for the folk theorem is violated:
 - Discount factor is less than 1.
 - Identifiability conditions are not satisfied.

A Big Picture

- A general case is very hard to analyze...
- Special cases:
 - An upper bound with a fixed discount factor (but monitoring is not fixed): Sugaya and Wolitzky (2015).
 - A tight characterization of correlated equilibria with cheap talk with a fixed monitoring (but $\delta \rightarrow 1$).

• There are N players: $I = \{1, \dots, N\}$.

- There are N players: $I = \{1, \dots, N\}$.
- For each i, a set of actions is $A_i \ni a_i$.

- There are N players: $I = \{1, \dots, N\}$.
- For each i, a set of actions is $A_i \ni a_i$.
- For each *i* , a set of private signals is $Y_i \ni y_i$.

- There are N players: $I = \{1, \dots, N\}$.
- For each i, a set of actions is $A_i \ni a_i$.
- For each *i* , a set of private signals is $Y_i \ni y_i$.
- For each *i*, ex ante utility from action profile $a \equiv (a_1, ..., a_N)$ is $u_i(a)$.

- There are N players: $I = \{1, \dots, N\}$.
- For each i, a set of actions is $A_i \ni a_i$.
- For each *i* , a set of private signals is $Y_i \ni y_i$.
- For each *i*, ex ante utility from action profile $a \equiv (a_1, ..., a_N)$ is $u_i(a)$.
- Given $a \equiv (a_1, ..., a_N)$, the joint conditional distribution of $y \equiv (y_1, ..., y_N)$ is determined by $q(y \mid a)$.

- There are N players: $I = \{1, \dots, N\}$.
- For each i, a set of actions is $A_i \ni a_i$.
- For each *i* , a set of private signals is $Y_i \ni y_i$.
- For each *i*, ex ante utility from action profile $a \equiv (a_1, ..., a_N)$ is $u_i(a)$.
- Given $a \equiv (a_1, ..., a_N)$, the joint conditional distribution of $y \equiv (y_1, ..., y_N)$ is determined by $q(y \mid a)$.
- Common discount factor $\delta < 1$.

Correlated Equilibrium

• We consider the correlated equilibrium in the repetition of this stage game. The reason is ...

Correlated Equilibrium

- Possibly correlated private signals offer endogenous correlation device to the players in Nash equilibrium.
- What correlation is possible depends on monitoring structure and possible equilibrium strategy (<- this is what we want to characterize first of all!).

Correlated Equilibrium

- Possibly correlated private signals offer endogenous correlation device to the players in Nash equilibrium.
- What correlation is possible depends on monitoring structure and possible equilibrium strategy (<- this is what we want to characterize first of all!).
- We consider correlated equilibrium directly.

Difficulty: No Recursive Structure

 The continuation strategy profile from a history profile does not have to be a correlated equilibrium of the original game:

Main Result

The set of limit sequential correlated equilibria with cheap talk $\lim_{\delta \to 1} E^{\operatorname{corr}}(\delta)$ || if observable realized own payoffs The set of limit sequential equilibria with a mediator $\lim_{\delta \to 1} E^{\operatorname{med}}(\delta)$ U if observable realized own payoffs Characterizing a set Q U: always include

The set of sequential equilibria with a mediator $E^{med}(\delta)$

U: always include

The set of sequential correlated equilibria with cheap talk $E^{\rm corr}(\delta)$

U: always include

The set of sequential equilibria $E(\delta)$

Main Result

The set of limit sequential correlated equilibria with cheap talk $\lim_{\delta \to 1} E^{\rm corr}(\delta)$ || if observable realized own payoffs The set of limit sequential equilibria with a mediator $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ U if observable realized own payoffs Characterizing a set QU: always include The set of sequential equilibria with a mediator $E^{\text{med}}(\delta)$ U: always include The set of sequential correlated equilibria with cheap talk $E^{\rm corr}(\delta)$ U: always include

The set of sequential equilibria $E(\delta)$

Timing of the Game with a Mediator

1. The mediator recommends an action $r_{i,t}$ to each player *i*.

Timing of the Game

- 1. The mediator recommends an action $r_{i,t}$ to each player *i*.
- 2. Player *i* takes an action $a_{i,t}$ (= $r_{i,t}$ on eqm path).

Timing of the Game

- 1. The mediator recommends an action $r_{i,t}$ to each player *i*.
- 2. Player *i* takes an action $a_{i,t}$ (= $r_{i,t}$ on eqm path).
- 3. Player *i* observes $y_{i,t}$.

Timing of the Game

- 1. The mediator recommends an action $r_{i,t}$ to each player *i*.
- 2. Player *i* takes an action $a_{i,t}$ (= $r_{i,t}$ on eqm path).
- 3. Player *i* observes $y_{i,t}$.
- 4. Player *i* reports $m_{i,t}$ (= $y_{i,t}$ on eqm path).

$$\{\emptyset\} \qquad \qquad a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1} \\ a_{i=1,t=1}, a_{i=2,t=1}', y_{i=1,t=1}, y_{i=2,t=1}', y_{i=2,t=1}', a_{i=1,t=1}', a_{i=2,t=1}', y_{i=1,t=1}', y_{i=2,t=1}', y_{i=2,t=1}$$

 $\mu_1 \in M_1$: Set of rec. dist. supportable in equilibrium in period 1.

 $\mu_2 \in M_2(a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1})$: Set of rec. dist. supportable in equilibrium in period 2.

$$\{\emptyset\} \qquad \qquad a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1} \\ a_{i=1,t=1}, a_{i=2,t=1}', y_{i=1,t=1}, y_{i=2,t=1}', y_{i=2,t=1}', a_{i=1,t=1}', a_{i=2,t=1}', y_{i=1,t=1}', y_{i=2,t=1}', y_{i=2,t=1}$$

 $\mu_1 \in M_1$: Set of rec. dist. supportable in equilibrium in period 1.

 $M_1 \neq M_2(a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1})$

 $\mu_2 \in M_2(a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1})$: Set of rec. dist. supportable in equilibrium in period 2.

$$\{\emptyset\} \qquad \qquad a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1} \\ a_{i=1,t=1}, a_{i=2,t=1}', y_{i=1,t=1}, y_{i=2,t=1}', y_{i=2,t=1}', a_{i=1,t=1}', a_{i=2,t=1}', y_{i=1,t=1}', y_{i=2,t=1}', y_{i=2,t=1}$$

 $\mu_1 \in M_1$: Set of rec. dist. supportable in equilibrium in period 1.

 $\mu_2 \in M_2^{ex \ ante}$: μ_2 is an ex ante dist. of rec., calculated by using the dist of $(a_{i=1,t=1}, a_{i=2,t=1}, y_{i=1,t=1}, y_{i=2,t=1})$.

- $M_2^{ex \ ante} \subseteq M_1$.
- Each player has more information in period 2 than in period 1.
- Incentive compatibility constraint is tightened in period
 2.
- This inclusion is not true in Nash equilibrium: More endogenous correlation is available in period 2.

- $M_2^{ex \ ante} \subseteq M_1$.
- Each player has more information in period 1 than in period 2.
- Incentive compatibility constraint is tightened in period
 2.
- $\mu \in M_1$ should satisfy the following constraint:
- For each *i* ∈ *I* and σ_i such that
 Pr(m|r) = Pr(m|σ_i, r) for all r ∈ supp(μ) and m ∈ Y, we have

$$u_i(\sigma_i,\mu) \leq u_i(\mu).$$

all support- μ undetectable deviation is non profitable

Characterization

• Given $\dots \subseteq M_3^{ex \ ante} \subseteq M_2^{ex \ ante} \subseteq M_1$, we have $E^{\text{med}}(\delta) \subseteq \mathcal{M}$

with $\mathcal{M} \equiv \{u(\mu): \mu \in \Delta(A), \text{ all support}-\mu \text{ undetectable}$ deviation is non profitable}.

Characterization

• Given $\dots \subseteq M_3^{ex \ ante} \subseteq M_2^{ex \ ante} \subseteq M_1$, we have $E^{\text{med}}(\delta) \subseteq \mathcal{M}$

With $\mathcal{M} \equiv \{u(\mu): \mu \in \Delta(A), \text{ all support}-\mu \text{ undetectable deviation is non profitable}\}.$

- If we calculate ${\mathcal M}$ with perfect monitoring, we get the set of feasible payoff set.
- Some constraint about punishment payoffs is missing.

Characterization of an Upper Bound

Theorem:

Define $Q \equiv \mathcal{M} \cap \mathcal{P}$. We have $E(\delta) \subset Q$ for each $\delta \leq 1$.

Characterization of an Upper Bound

Theorem:

Define $Q \equiv \mathcal{M} \cap \mathcal{P}$. We have $E(\delta) \subset Q$ for each $\delta \leq 1$. A constraint about punishment payoff taken from Renault and Tomala (2004), which is introduced in the context of repeated games without discounting.

How to Calculate ${\mathcal M}$

• An Example: Two public signals $y \in \{g, b\}$

	С	D
С	.5	.5
D	.5	.3

Payoff

Prob of y = g

- (C, C) is not in M but as soon as it is mixed with (C, D) and (D, C), it will be in M.
- For each $i \in I$ and σ_i such that $\Pr(m|r) = \Pr(m|\sigma_i, r)$ for all $r \in \operatorname{supp}(\mu)$ and $m \in Y$, we have

 $u_i(\sigma_i,\mu) \leq u_i(\mu).$

Main Result

The set of limit sequential correlated equilibria with cheap talk $\lim_{\delta \to 1} E^{\operatorname{corr}}(\delta)$ || if observable realized own payoffs The set of limit sequential equilibria with a mediator $\lim_{\delta \to 1} E^{\operatorname{med}}(\delta)$ U if observable realized own payoffs Characterizing a set Q

U: always include

The set of sequential equilibria with a mediator $E^{med}(\delta)$

U: always include

The set of sequential correlated equilibria with cheap talk $E^{\rm corr}(\delta)$

U: always include

The set of sequential equilibria $E(\delta)$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В
U	6,6	-10,8	-10,4	-10,6	0,0	0,0
Μ	8,-10	0,0	0,0	0,0	0,0	0,0
D	4,-10	0,0	0,0	0,0	0,0	0,0
Ud	6,-10	0,0	0,0	0,0	1,0	1,0
Т	0,0	0,0	0,0	0,1	8,2	0,0
В	0,0	0,0	0,0	0,1	0,0	2,8

$$y_{i}^{1} \in \{g_{i}^{1}, b_{i}^{1}\}, y_{i}^{2} \in \{g_{i}^{2}, b_{i}^{2}\}$$

$$q(y|a) = \prod_{i \in I} q_{i}^{1}(y_{i}^{1}|a_{j}) \prod_{i \in I} q_{i}^{2}(y_{i}^{2}|a_{i}, y_{j}^{1})$$

$$q_{i}^{1}(y_{i}^{1} = g_{i}^{1}|a_{j}) = \begin{cases} \frac{3}{4} & \text{if } a_{j} = D\\ \frac{1}{4} & \text{if } a_{j} = M\\ \frac{1}{2} & \text{otherwise} \end{cases}$$

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod q_i^1(y_i^1 a_j) \prod q_i^2(y_i^2 a_i, y_j^1)$
Μ	8,- eff	icient	0,0	0,0	0,0	0,0	$i \in I$ $i \in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a^{1}(v^{1} = a^{1} a_{i}) = \begin{cases} 1 \\ \frac{1}{2} & \text{if } a_{i} = M \end{cases}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{vmatrix} q_i(y_i & g_i(u_j) \\ 4 \\ 1 \end{vmatrix}$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\left(\frac{1}{2}\right)$ otherwise

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod q_i^1(y_i^1 a_j) \prod q_i^2(y_i^2 a_i, y_j^1)$
М	8,-10	0,0	0,0	0,0	0,0	0,0	$i \in I$ $i \in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a_{i}^{1}(y_{i}^{1} = a_{i}^{1} a_{i}) = \begin{cases} 1 \\ \frac{1}{2} & \text{if } a_{i} = M \end{cases}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{vmatrix} q_i (y_i - g_i q_j) - \\ 4 \\ 1 \end{vmatrix} = \begin{bmatrix} 1 \\ q_j - m \\ 1 \end{bmatrix}$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\frac{1}{2}$ otherwise

Signal about the other player's action

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{1}{4} & \text{if } a_i = 0_d \text{ and } y_j = y_j \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В
U	6,6	-10,8	-10,4	-10,6	0,0	0,0
М	8,-10	0,0	0,0	0,0	0,0	0,0
D	4,-10	0,0	0,0	0,0	0,0	0,0
Ud	6,-10	0,0	0,0	0,0	1,0	1,0
Т	0,0	0,0	0,0	0,1	8,2	0,0
В	0,0	0,0	0,0	0,1	0,0	2,8

$$q(y|a) = \prod_{i \in I} q_i^1(y_i^1|a_j) \prod_{i \in I} q_i^2(y_i^2|a_i, y_j^1)$$
$$q_i^1(y_i^1 = g_i^1|a_j) = \begin{cases} \frac{3}{4} & \text{if } a_j = D\\ \frac{1}{4} & \text{if } a_j = M\\ 1 & \text{if } a_j = M \end{cases}$$

Signal about the other player's signal

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	Μ	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod q_i^1(y_i^1 a_j) \prod q_i^2(y_i^2 a_i, y_j^1)$
Μ	8,-10	0,0	0,0	0,0	0,0	0,0	$i \in I$ $i \in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\int \frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a_{i}^{1}(v_{i}^{1} = a_{i}^{1} a_{i}) = \begin{cases} 1\\ \frac{1}{2} & \text{if } a_{i} = M \end{cases}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{vmatrix} q_i(y_i & g_i(a_j) \\ 4 \\ 1 \end{vmatrix}$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\left(\frac{1}{2}\right)$ otherwise
							·

Static Nash

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

(2
Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod q_i^1(y_i^1 a_j) \prod q_i^2(y_i^2 a_i, y_j^1)$
Μ	8,-10	0,0	0,0	0,0	0,0	0,0	i∈I i∈I
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a^{1}(v^{1} = a^{1} a_{i}) = \begin{cases} 1 \\ 1 \\ - & \text{if } a_{i} - M \end{cases}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\frac{1}{2}$ otherwise

 $(\mathsf{U},\mathsf{U})\in\mathcal{M}$

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod_{i=1}^{n} q_i^1(y_i^1 a_j) \prod_{i=1}^{n} q_i^2(y_i^2 a_i, y_j^1)$
М	8,-10	0,0	0,0	0,0	0,0	0,0	$i\in I \qquad i\in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\int \frac{3}{4} \text{ if } a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a_{i}^{1}(v_{i}^{1} = a_{i}^{1} a_{i}) = \begin{cases} 1 \\ \frac{1}{2} \\ \frac{1}{2}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{bmatrix} q_i(y_i g_i(u_j)) \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\left(\frac{1}{2}\right)$ otherwise
B,B							()

U,U is included in Q. T,T $q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$q(y a) = \prod_{i=1}^{n} q_i^1(y_i^1 a_j) \prod_{i=1}^{n} q_i^2(y_i^2 a_i, y_j^1)$
Μ	8,-10	0,0	0,0	0,0	0,0	0,0	$i \in I$ $i \in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\int \frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a^{1}(v^{1} = a^{1} a_{i}) = \begin{cases} 1 \\ \frac{1}{2} & \text{if } a_{i} = M \end{cases}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{vmatrix} q_i(y_i & g_i(u_j) \\ 4 \\ 1 \end{vmatrix}$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\left(\frac{1}{2}\right)$ otherwise

(U,U) becomes common knowledge when it is recommended since otherwise Ud is better.

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

Why $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ is smaller than Q if the realized own payoffs are not observable?

	U	М	D	Ud	Т	В	
U	6,6	-10,8	-10,4	-10,6	0,0	0,0	$\left[q(y a) = \prod q_i^1(y_i^1 a_j) \prod q_i^2(y_i^2 a_i, y_j^1) \right]$
Μ	8,-10	0,0	0,0	0,0	0,0	0,0	$i \in I$ $i \in I$
D	4,-10	0,0	0,0	0,0	0,0	0,0	$\int \frac{3}{4}$ if $a_j = D$
Ud	6,-10	0,0	0,0	0,0	1,0	1,0	$a_{i}^{1}(v_{i}^{1} = a_{i}^{1} a_{i}) = \begin{cases} 1 \\ \frac{1}{2} \\ \frac{1}{2}$
Т	0,0	0,0	0,0	0,1	8,2	0,0	$\begin{vmatrix} q_i (y_i - y_i a_j) - \\ 4 \\ 1 \end{vmatrix} = M$
В	0,0	0,0	0,0	0,1	0,0	2,8	$\left[\frac{1}{2}\right]$ otherwise

The continuation play after (U,U) is belief-free since otherwise Ud is better \Rightarrow (6,6) is not supportable.

$$q_i^2(y_i^2 = g_i^2 | a_i, y_j^1) = \begin{cases} \frac{3}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = g_j^1 \\ \frac{1}{4} & \text{if } a_i = U_d \text{ and } y_j^1 = b_j^1 \\ \frac{1}{2} & \text{otherwise} \end{cases}$$

A Sufficient Condition

- Problem: deviation to Ud from U is profitable and non detectable, but hurts the opponent.
- If the opponent can observe her realized own payoff, such deviation must be statistically detected by the different distribution of the realized payoff.
- In general, with observable realized own payoff, $Q \subset \lim_{\delta \to 1} E^{\text{med}}(\delta)$.

Observable Own Payoffs

- The realized payoff is $u_i(a_i, y_i)$.
- The exante payoff is $u_i(a) = \sum_y q(y|a) u_i(a_i, y_i)$.

Observable Own Payoffs

- The realized payoff is $u_i(a_i, y_i)$.
- The exante payoff is $u_i(a) = \sum_y q(y|a) u_i(a_i, y_i)$.
- For example,

$$-y_i \in \{g_i, b_i\},\$$

$$-q_i(g_i|a) = .6 \text{ if } a_j = C_j \text{ and } .4 \text{ if } a_j = D_j,\$$

$$-u_i(a_i, y_i) = -7 + 15 \times 1_{\{y_i = g_i\}} + 1_{\{a_i = D_i\}}.$$

– Ex ante payoff matrix is

Observable Own Payoffs

Theorem:

If Q has full dimension and each player observes her own realized payoff, then we have

 $\lim_{\delta\to 1} E(\delta) = Q.$

- Player *i*'s undetectable deviation from μ can be problematic because
 - (i) it may affect the other players' payoffs;
 - (ii) it may affect how player *i* monitors the other players.

- Player *i*'s undetectable deviation from μ can be problematic because
 - (i) it may affect the other players' payoffs;
 - (ii) it may affect how player *i* monitors the other players.
- (i) observable realized own payoffs tell us that all the undetectable deviations are "harmless."

- Player *i*'s undetectable deviation from μ can be problematic because
 - (i) it may affect the other players' payoffs;
 - (ii) it may affect how player *i* monitors the other players.
- (i) observable realized own payoffs tell us that all the undetectable deviations are "harmless."
- (ii) the undetectable deviation gives the same distribution of the messages regardless of the other players' actions: works equally effective as monitoring.

- Perturb μ so that the recommendation has a full support: $\mu^{\text{full}} = (1 \varepsilon)\mu + \varepsilon \sum_{a \in A} \frac{a}{|A|}$.
- σ_i is support- μ^{full} undetectable: $\Pr(m|r) = \Pr(m|\sigma_i, r)$ for all $r \in \operatorname{supp}(\mu^{\text{full}}) = A$ and $m \in Y$.

Main Result

The set of limit sequential correlated equilibria with cheap talk $\lim_{\delta \to 1} E^{\rm corr}(\delta)$ || if observable realized own payoffs The set of limit sequential equilibria with a mediator $\lim_{\delta \to 1} E^{\text{med}}(\delta)$ U if observable realized own payoffs Characterizing a set QU: always include The set of sequential equilibria with a mediator $E^{med}(\delta)$ U: always include

The set of sequential correlated equilibria with cheap talk $E^{corr}(\delta)$

U: always include

The set of sequential equilibria $E(\delta)$

No mediator

- Idea: initial correlation contains the information of history-contingent recommendations.
- Cryptography:
 - The information is encoded so that the players do not know future recommendations.
 - Cheap talk communication decodes the recommendation of the next period.
 - A lie in cheap talk creates a miscoordination in future: leading to minimaxing the deviator (the other players do not realize the deviation).

Conclusion

- Ultimate goal: Characterize an equilibrium payoff set with general discount factor and general monitoring.
- Toward this goal, we explore the tractable structure of the correlated equilibrium, and obtain a tight characterization of correlated equilibria as $\delta \rightarrow 1$ when realized payoffs are observable.
- More work to be done...

Appendix

Similar Deviations

- For a subset of players J ⊂ N, the set of "similar deviations"SD(J) is defined as follows:
- *SD*(*J*) is the set of deviations such that the mediator cannot distinguish who in *J* is more likely to be guilty:

Similar Deviations

- For a subset of players J ⊂ N, the set of "similar deviations"SD(J) is defined as follows:
- *SD*(*J*) is the set of deviations such that the mediator cannot distinguish who in *J* is more likely to be guilty:

$$SD(J) \equiv \begin{cases} \forall i \in J, \forall j \in J \\ (\sigma_i)_{i \in J} : \Pr(m | \sigma_i, r) = \Pr(m | \sigma_j, r) \\ \text{for all } r \in A, m \in Y \end{cases}$$

- For λ with $\lambda_i \leq 0$ for each $i \in I$, we define the "most severe punishment payoff" as
 - $l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$

• For λ with $\lambda_i \leq 0$ for each $i \in I$, we define the "most severe punishment payoff" as

$$l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$$

• Since the mediator cannot distinguish whom to punish when deviations are in $SD(supp(\lambda))$, we need to punish all at the same time.

• For λ with $\lambda_i \leq 0$ for each $i \in I$, we define the "most severe punishment payoff" as

$$l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$$

- Since the mediator cannot distinguish whom to punish when deviations are in $SD(supp(\lambda))$, we need to punish all at the same time.
- This implies that, for λ with $\lambda_i \leq 0$ for each $i \in I$, we should have $\sum_{i \in I} |\lambda_i| v_i \geq l(\lambda)$.

• For λ with $\lambda_i \leq 0$ for each $i \in I$, we define the "most severe punishment payoff" as

$$l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$$

- Since the mediator cannot distinguish whom to punish when deviations are in $SD(supp(\lambda))$, we need to punish all at the same time.
- This implies that, for λ with $\lambda_i \leq 0$ for each $i \in I$, we should have $\sum_{i \in I} |\lambda_i| v_i \geq l(\lambda)$.
- That is, $\lambda \cdot \nu \leq -l(\lambda)$.

 Without discounting, Renault and Tomala (2013) offer the characterization of the set of equilibrium payoffs, *E*(1).

- Without discounting, Renault and Tomala (2013) offer the characterization of the set of equilibrium payoffs, E(1).
- In their characterization, we change the definition of $k(\lambda)$ as follows:

$$k^{\text{nodiscount}}(\lambda) = \max_{\mu \in \Delta(A)} \lambda \cdot u(\mu)$$

subject that

- Without discounting, Renault and Tomala (2013) offer the characterization of the set of equilibrium payoffs, *E*(1).
- In their characterization, we change the definition of $k(\lambda)$ as follows:

$$k^{\text{nodiscount}}(\lambda) = \max_{\mu \in \Delta(A)} \lambda \cdot u(\mu)$$

subject that

• For each $i \in I$ and σ_i such that $Pr(m|r) = Pr(m|\sigma_i, r)$ for all $r \in A$ and $m \in Y$, we have We had $r \in supp(\mu)$ here.

 $u_i(\sigma_i,\mu) \leq u_i(\mu).$

• The following example shows that

 $\bigcup_{\delta < 1} E(\delta) \subset Q \subsetneq E(1).$

• The following example shows that

	L	R	L'	R'
U	2,2	0,3	0,2	0,3
D	0,0	0,0	0,1	0,1

$\bigcup_{\delta < 1} E(\delta) \subset$	$Q \subsetneq E(1).$
--	----------------------

• We show that $u(U,L) \in E(1)$ but $u(U,L) \notin \bigcup_{\delta < 1} E(\delta)$.

• $u(U,L) \in E(1)$ but $u(U,L) \notin \bigcup_{\delta < 1} E(\delta)$.

	L	R	L'	R'
U	2,2	0,3	0,2	0,3
D	0,0	0,0	0,1	0,1

• Player 1 has $y_1 \in \{l, r\}$, which distinguishes whether player 2 takes "L or L'" or "R or R'" only if player 1 takes D:

 $q(l|a_1, a_2) = 1$ if $a_1 = D$ and $a_2 \in \{R, R'\}$ $q(l|a_1, a_2) = 0$ otherwise.

• $u(U,L) \in E(1)$ but $u(U,L) \notin \bigcup_{\delta < 1} E(\delta)$.

	L	R	L'	R'
U	2,2	0,3	0,2	0,3
D	0,0	0,0	0,1	0,1

• Player 1 has $y_1 \in \{l, r\}$, which distinguishes whether player 2 takes "L or L'" or "R or R'" only if player 1 takes D:

 $q(l|a_1, a_2) = 1$ if $a_1 = D$ and $a_2 \in \{R, R'\}$ $q(l|a_1, a_2) = 0$ otherwise.

- If player 2 does not take L unless a₁ = D with a positive prob.
- If $a_1 = D$ with a positive prob, player 2 prefers L' to L.

Sequential Rationality of τ

- Intuitively, τ is used to punish players after reports statistically indicate a deviation.
- Do we need to require τ is sequentially rational?
- $l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$

Sequential Rationality of τ

- Intuitively, τ is used to punish players after reports statistically indicate a deviation.
- Do we need to require τ is sequentially rational?
- $l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$
- Coming up with a "proper" restriction is hard:

Sequential Rationality of τ

- Intuitively, τ is used to punish players after reports statistically indicate a deviation.
- Do we need to require τ is sequentially rational?

 $l(\lambda) \equiv \min_{\tau \in \Delta(A)} \max_{\sigma \in SD(\operatorname{supp}(\lambda))} \sum_{r \in A} \tau(r) \sum_{i \in N} |\lambda_i| u_i(r, \sigma_i).$

- Coming up with a "proper" restriction is hard:
 - Some players may not realize that there was a deviation.
 - It also depends on whether the mediator can tremble when we construct a consistent belief system: which one is more appropriate?

Example 1: Some Players Do Not Realize Deviations

• Four-player game:

	l	r			l	r
U	2,2,1	2,2,1		U	1,4,1	0,2,-1
D	2,2,1	2,2,1		D	2,0, -1	2,0, -1
L					R	

- Players 1-3 do not observe anything.
- Player 4 is a dummy player who can monitor *a* perfectly.

Example 1: Some Players Do Not Realize Deviations

• Four-player game:

- Player 3's equilibrium payoff should be no less than 1.
- As long as v₃ ≥ 1, player 1 can guarantee the payoff of 2 by taking D.
- Nonetheless, we can support (U, l, R).

Example 2: Trembles of the Mediator Matters

• Two-player game:

	L	R	L'	<i>R</i> '
U	5,5	0,6	5,5	0,6
М	1,0	1,0	1,1	1,1
D	1,6	1,6	2,6	2,6

- Player 1 has two signals $\{l, r\}$: $q_1(l|a) = 1$ if $a_2 \in \{L, L'\}$; $q_1(r|a) = 1$ if $a_2 \in \{R, R'\}$.
- Player 2 does not observe anything.

Example 2: Trembles of the Mediator Matters

• Two-player game:

	L	R	L'	<i>R</i> '
U	5,5	0,6	5,5	0,6
М	1,0	1,0	1,1	1,1
D	1,6	1,6	2,6	2,6

- Player 1 has two signals $\{l, r\}$: $q_1(l|a) = 1$ if $a_2 \in \{L, L'\}$; $q_1(r|a) = 1$ if $a_2 \in \{R, R'\}$.
- Player 2 does not observe anything.
- v with $v_1 + v_2 \ge 10$
 - cannot be supported if the mediator cannot tremble in the definition of sequential equilibrium.
 - can be supported if the mediator can.
Dispensability of Mediation

• If there exists at least five players, then we can replace mediation with private communication among players.

Dispensability of Mediation

- If there exists at least five players, then we can replace mediation with private communication among players.
- Why five?
 - To keep the result of correlation about a_{-i} secret to player *i*, we need to exclude player *i* from some step of the communication.
 - We need at least three players involved in each step of communication so that we can use the majority rule to identify a liar (if any).
 - To create a correlation between r_i and r_j , we need another player to "relate" r_i and r_j .

The Proof of $\lim_{\delta \to 1} E(\delta) = Q$

• We explain how to approximately support $v \in$ $\operatorname{argmax}_{v' \in Q} \lambda \cdot v'$ for $\lambda = (1, \dots, 1)$.

Easy Case

- Two-player prisoners' dilemma.
- $v \approx (u_i(C, C))_{i \in I}$.
- For each player, there are two signals $Y_i = \{g_i, b_i\}$.
- g_i indicates more cooperation:

 $q_i(g_i \mid a_i, C_j) > q_i(g_i \mid a_i, D_j)$ for all a_i .

• That is, individual full rank holds and $|Y_i| = |A_{-i}|$.

Modified LR

- For a small $\rho > 0$, with $\mu = (1 \rho)(C, C) + \rho \sum_{a \in A} \frac{a}{|A|}$, and x(r, y) such that
- 1. Promise Keeping:

$$v = u(\mu) + \mathbb{E}[x(r, y)|\mu].$$

2. Strict incentive compatibility: For each i and non-faithful σ_i ,

$$\mathbb{E}[u_i(r) + x_i(r, y)|\mu]$$

> $\mathbb{E}[u_i(a_i, r_{-i}) + x_i(r, m_i, y_{-i})|\sigma_i, \mu].$

3. Ex-ante self generation:

 $\mathbb{E}[\lambda \cdot x(r, y)|\mu] \leq 0.$

The Proof of $\lim_{\delta \to 1} E(\delta) = Q$

• We see the repeated game as the repetition of *T*-period review phases.

• We see the repeated game as the repetition of *T*-period review phases.

Period 1 ... Period T

Continuation Play

The mediator recommends r_t according to μ *i.i.d.* across periods.

Period 1 ... Period T

The mediator recommends r_t according to μ *i.i.d.* across periods.

> Player *i* yields instantaneous utilities $\sum_{t=1}^{T} \delta^{t-1} u_i(a_t)$

Continuation Play

Period 1 ... Period T

The mediator recommends r_t according to μ *i.i.d.* across periods.

> Player *i* yields instantaneous utilities $\sum_{t=1}^{T} \delta^{t-1} u_i(a_t)$

The mediator observes the history $(r_t, m_t)_{t=1}^T$. **Continuation Play**

Period 1 ... Period T

The mediator recommends r_t according to μ *i.i.d.* across periods.

> Player *i* yields instantaneous utilities $\sum_{t=1}^{T} \delta^{t-1} u_i(a_t)$

The mediator observes the history $(r_t, m_t)_{t=1}^T$. **Continuation Play**

The mediator switches to a punishment phase with a probability contingent on $(r_t, m_t)_{t=1}^T$

Period 1 ... Period T

The mediator recommends r_t according to μ *i.i.d.* across periods.

> Player *i* yields instantaneous utilities $\sum_{t=1}^{T} \delta^{t-1} u_i(a_t)$

The mediator observes the history $(r_t, m_t)_{t=1}^T$. **Continuation Play**

The mediator switches to a punishment phase with a probability contingent on $(r_t, m_t)_{t=1}^T$ to implement the decrease in player *i*'s continuation payoff $x_i((r_t, m_t)_{t=1}^T) \leq 0.$

Period 1 ... Period T Continuation Play

The mediator recommends r_t according to μ *i.i.d.* across periods.

Player *i* maxmizes $\mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} u_i(a_t) + \delta^T x_i((r_t, m_t)_{t=1}^T)\right].$

Period 1 ... Period T Continuation Play

The mediator recommends r_t according to μ *i.i.d.* across periods.

Player *i* maxmizes $\mathbb{E}\left[\sum_{t=1}^{T} u_i(a_t) + x_i((r_t, m_t)_{t=1}^{T})\right]$ (Player *i*'s incentive is strict)

Sufficient Condition

- For each $\epsilon > 0$, find x such that
- 1. Promise Keeping:

$$\lambda \cdot \frac{1}{T} \mathbb{E}\left[\sum_{t=1}^{T} u(r_t) + x((r_t, m_t)_{t=1}^{T})\right] \ge \lambda \cdot v - \epsilon.$$

2. Incentive compatibility: For each *i*, for any strategy σ_i , $\mathbb{E}\left[\sum_{i=1}^{T} u_i(r) + x_i((r, m_i)_{i=1}^{T})\right]$

$$\geq \mathbb{E}[\sum_{t=1}^{T} u_i(r) + x_i((r_t, m_t)_{t=1}^{T}) | \sigma_i].$$

3. Self generation:

 $\lambda \cdot x((r_t, m_t)_{t=1}^T) \le 0 \text{ for all } (r_t, m_t)_{t=1}^T.$

Information Aggregation

• Pool $(r_t, m_t)_{t=1}^T$ during a block, and create the score $score_i = \sum_{t=1}^T x_i(r_t, m_t) - \epsilon T.$

Information Aggregation

• Pool $(r_t, m_t)_{t=1}^T$ during a block, and create the score $score_i = \sum_{t=1}^T x_i(r_t, m_t) - \epsilon T.$

Information Aggregation

• Pool $(r_t, m_t)_{t=1}^T$ during a block, and create the score $score_i = \sum_{t=1}^T x_i(r_t, m_t) - \epsilon T.$

Law of Large Numbers

- Pool $(r_t, m_t)_{t=1}^T$ during a block, and create the score $score_i = \sum_{t=1}^T x_i(r_t, m_t) - \epsilon T.$
- By LLN, we have $score_i \leq 0$ after most of the histories.
- If we could use this score_i directly, then we would be done.
- But we have to deal with erroneous histories with score_i > 0...

Irregular Rec.

- The mediator classifies her history $(r_t, m_t)_{t=1}^T$ as follows:
- 1. Irregular rec: The frequency of periods with $r_t = a$ is slightly far from $\mu(a)$ for some $a \in A$.
- 2. Regular rec: Otherwise.

Adjustment of $x((r_t, m_t)_{t=1}^T)$

- The mediator changes $x_i((r_t, m_t)_{t=1}^T)$ as follows:
- 1. If irregular rec is the case, then, for each $i \in I$,

$$x_i((r_t, m_t)_{t=1}^T) = \sum_{t=1}^T (x_i(r_t, m_t) - X)$$

with large X so that

 $\lambda \cdot x((r_t, m_t)_{t=1}^T) \leq 0$ after each history.

2. If regular rec is the case, then, for each $i \in I$, $x_i((r_t, m_t)_{t=1}^T) = \min\{\sum_{t=1}^T x_i(r_t, m_t) - \epsilon T, 0\}.$

Adjustment of $x((r_t, m_t)_{t=1}^T)$

- Whether the recommendation is regular or irregular is out of player *i*'s control: No issue of incentive.
- We need to make sure that taking minimum in $\min\{\sum_{t=1}^{T} x_i(r_t, m_t) \epsilon T, 0\}.$

after regular rec does not affect player *i*'s incentive.

• We will show that, whenever player *i* believes that $\sum_{t=1}^{T} x_i(r_t, m_t) - \epsilon T$ may be positive, player *i* believes that irregular rec is the case.

Classify Player *i*'s History

- To verify player *i*'s incentive, we classify her history into the following two categories:
- 1. If player *i*'s recommendation is irregular, she knows that irregular rec is the case: Incentive OK.
- 2. If player *i*'s recommendation is regular, ...

Regions where player *i* believes that the score is non positive with probability $1 - \exp(-T)$, if player *i*'s signal observation is in this region given each recommendation r_i .

in periods

when $\mu_{i,t} = r_i$

Determined by ϵ Regions where player *i* believes that the score is non positive with probability $1 - \exp(-T)$, if player *i*'s signal observation is in this region given each recommendation r_i .

Determined by ϵ Regions where player *i* believes that the score is non positive with probability $1 - \exp(-T)$, if player *i*'s signal observation is in this region given each recommendation r_i .

Classifying player *i*'s histories

• There exists r_i such that player *i*'s signal frequency during periods when player *i* took r_i is in Case 2 or Case 3.

 For each r_i, player i's signal frequency during periods when player i took r_i is in Case 1.

Classifying player *i*'s histories

- There exists r_i such that player *i*'s signal frequency during periods when player *i* took r_i is in Case 2 or Case 3.
- Player *i* believes that irregular rec. is the case.

 For each r_i, player i's signal frequency during periods when player i took r_i is in Case 1.

Classifying player *i*'s histories

- There exists r_i such that player *i*'s signal frequency during periods when player *i* took r_i is in Case 2 or Case 3.
- Player *i* believes that irregular rec. is the case.

- For each r_i, player i's signal frequency during periods when player i took r_i is in Case 1.
- Player *i* believes that the score is non-positive.

What If $|Y_i| > |A_{-i}|$?

- If player *i*'s signal observation given r_i is not close to $aff(\{q_i(y_i|r_i, a_{-i})\}_{a_{-i}\in A_{-i}})$ for some r_i , the mediator subtracts a large constant from players -i's score, so that $\sum_{i\in I} x(\{r_t, y_t\}_t)$ is non positive.
- This does not affect players -i's incentive.

The Proof of $\lim_{\delta \to 1} E(\delta) = Q$: General Case

- We explain how to approximately support $v \in$ $\operatorname{argmax}_{v' \in Q} \lambda \cdot v'$ for $\lambda = (1, \dots, 1)$.
- There exist μ and x(r, y) such that
- 1. Promise Keeping:

$$v = u(\mu) + \mathbb{E}[x(r, y)|\mu].$$

- 2. Incentive compatibility: For each *i* and σ_i , $\mathbb{E}[u(r) + x(r, y)|\mu]$ $\geq \mathbb{E}[u(a_i, r_{-i}) + x(r, m_i, y_{-i})|\sigma_i, \mu].$
- 3. Ex-ante self generation:

$$\mathbb{E}[\lambda \cdot x(r, y)|\mu] \leq 0.$$

Perturbation

• Perturb μ so that μ^{full} has full support:

Perturbation

• Perturb μ so that μ^{full} has full support:

Perturbation

Perturbation

- We take σ_i such that $\Pr(r, m | \sigma_i, \mu^{\text{full}})$ is an extreme point.
- We can make sure that player *i* has the strict incentive to follow the equilibrium strategy.

Given this Operation, ...

There exist μ and x(r, y) such that

1. Promise Keeping:

 $v = u(\mu) + \mathbb{E}[x(r, y)|\mu].$

2. Strict incentive compatibility: For each i and non faithful σ_i ,

$$\mathbb{E}[u_i(r) + x_i(r, y)|\mu]$$

> $\mathbb{E}[u_i(a_i, r_{-i}) + x_i(r, m_i, y_{-i})|\sigma_i, \mu].$

- 3. For each $r_i \in \operatorname{supp}(\mu_i)$, the affine hull of $\Pr(y_i | r_i, r_{-i})$ with respect to $r_{-i} \in \operatorname{supp}(\mu_{-i}|_{r_i})$ is equal to the affine hull of $\Pr(y_i | r_i, r_{-i})$ with respect to $r_{-i} \in A_{-i}$.
- 4. Ex-ante self generation:

 $\mathbb{E}[\lambda \cdot x(r, y)|\mu] \leq 0.$