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The Mediator in the Real Example

* AC-Treuhand AG
— organizing meetings of the cartel members;
— distributing agreed market shares;
— calculating deviations;
— collecting and verifying data;

— acting as a modelator in case of tensions between
cartel members;

— reshaping the arrangement

* Trade Associations perform the role of a third-party
facilitator.



A Big Picture

e Sugaya (2014) establishes the folk theorem with private
monitoring if identifiability conditions are satisfied.

* The remaining question is what happens if a sufficient
condition for the folk theorem is violated:

— Discount factor is less than 1.

— |Identifiability conditions are not satisfied.



A Big Picture

* A general case is very hard to analyze...
e Special cases:

— An upper bound with a fixed discount factor (but
monitoring is not fixed): Sugaya and Wolitzky (2015).

— A tight characterization of correlated equilibria with
cheap talk with a fixed monitoring (but 6 — 1).
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Model

There are N players: I = {1, ...,N}.
For each i, a set of actions is 4; 3 a;.

For each i, a set of private signalsis Y; 3 y;.

For each i, ex ante utility from action profile a =
(aq, ..., ay) isu;(a).
Given a = (a4, ..., ay), the joint conditional distribution

of y = (yq, ..., Yn) is determined by g(y | a).
Common discount factor 6 < 1.



Correlated Equilibrium

* We consider the correlated equilibrium in the repetition
of this stage game. The reasoniis ...
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Correlated Equilibrium

* Possibly correlated private signals offer endogenous
correlation device to the players in Nash equilibrium.

 What correlation is possible depends on monitoring
structure and possible equilibrium strategy (<- this is
what we want to characterize first of alll).

* We consider correlated equilibrium directly.



Difficulty: No Recursive Structure

* The continuation strategy profile from a history profile
does not have to be a correlated equilibrium of the
original game:

Ai=1,t=1,Ai=2t=1,Yi=1,t=1,Yi=2,t=1

/ !/
Ai=1,t=1> Aj=2 t=1YVi=1,t=1 Vi=2,t=1

!/ !
{Q} ai:l)t:l; ai:Z,t=1) yizl,tzll yl'=2,t:1

!/ 4 !/ !/
Ai—1t=1Ai=2¢t=1Yi=1t=1Yi=2,t=1
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Timing of the Game with a Mediator

1. The mediator recommends an action r; ; to each
player i.
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Timing of the Game

ne mediator recommends an action r; ; to each
ayer [.

ayer i takes an action a;; (= r; on eqm path).

ayer i observes y; ;.

ayer [ reports m; ; (= y; on eqm path).



Ex Ante Recursive Structure
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Ex Ante Recursive Structure

Ai=1t=1,Ai=2t=1,Yi=1,t=1,Yi=2,t=1

/ !/
Ai=1,t=1> Aj=2t=1YVi=1,t=1 Vi=2,t=1

/ /
{Q} ai:1,t:1' ai=2,t=1’ yi:1,t:1' yi=2,t=1
!/ !/ ! !/
Ai—1,t=1 Ai=2t=1YVi=1t=10Vi=2,t=1

11 € Mj: Set of rec. dist. supportable in equilibrium in
period 1.

U, € ME*¥4M€: 110 is an ex ante dist. of rec., calculated by
using the dist of (=1 ¢=1, Ai=2,t=1, Vi=1,t=1, Vi=2,6=1)-



Ex Ante Recursive Structure

ng ante - Ml'

Each player has more information in period 2 than in
period 1.

Incentive compatibility constraint is tightened in period
2.

This inclusion is not true in Nash equilibrium: More
endogenous correlation is available in period 2.



Ex Ante Recursive Structure

ng ante - Ml'

Each player has more information in period 1 than in
period 2.

Incentive compatibility constraint is tightened in period
2.

1 € My should satisfy the following constraint:
For each i € I and g; such that
Pr(m|r) = Pr(m|o;,r) forallr € supp(u) andm €Y,
we have
u;(op, 1) < u(u).

‘all support-u undetectable deviation is non profitable ‘




Characterization

 Given .- C Mg*¥ante ¢ Mex ante ¢ M, , we have
Emed(5y c M

with M = {u(u): u € A(A), all support-u undetectable
deviation is non profitable}.



Characterization

* Given .- C Mg*¥ante ¢ Me* ante ¢ M, , we have
Emed(5y c M

With M = {u(u): u € A(A), all support-u undetectable
deviation is non profitable}.

* If we calculate M with perfect monitoring, we get the
set of feasible payoff set.

* Some constraint about punishment payoffs is missing.
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Characterization of an Upper Bound

Theorem:
Define Q = M N P. We have E(§) c Q foreach § < 1.

A constraint about punishment payoff taken from
Renault and Tomala (2004), which is introduced
in the context of repeated games without discounting.




How to Calculate M

An Example: Two public signals y € {g, b}

C D C D

c | 22 |-—1,3 C 5 5
3,—1 | 0,0 D 5 3
Payoff Probofy =g

(C,C) is not in M but as soon as it is mixed with (C, D) and
(D, C), it will be in M.
For each i € I and g; such that

Pr(m|r) = Pr(m|o;,r) forallr € supp(u) andm €Y,
we have

ui(og, ) < u;(u).
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Anti Folk Theorem

Why (lgirriEmed@) is smaller than Q if the realized own payoffs are

not observable?

U M D ud T B
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D [4-10| 00 | 00 | 00 |00 | 00 7 ifa;=D
ud | 6,-10 | 0,0 0,0 0,0 1,0 | 1,0 1
ql'l(yl'l :gi1|aj) = 1 7 ifaj =M
T 0,0 0,0 0,0 0,1 8,2 | 00 1
00 | 00 | 00 | 01 | 00| 2,8 2 otherwise
: . (3
The continuation play after (U,U) ~ ifa: = U, and vl = gt
is belief-free ‘i l ¢ i =9
since ot‘herwise Ud is better qf (vf = gi2|ai,yj1) =4 — ifa; = U, and yjl = bjl
=(6,6) is not supportable. 4
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A Sufficient Condition

* Problem: deviation to Ud from U is profitable and non
detectable, but hurts the opponent.

* |If the opponent can observe her realized own payoff,
such deviation must be statistically detected by the
different distribution of the realized payoff.

* In general, with observable realized own payoff, Q C

: med
LimE™e4(8),
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* The realized payoff is u;(a;, y;).
* The ex ante payoffis u;(a) = X, q(y|a) u;(a;, y;).



Observable Own Payoffs

* The realized payoff is u;(a;, y;).
* The ex ante payoffis u;(a) = X, q(y|a) u;(a;, y;).
* For example,
- ¥ € {91 bi},
- q;(g;la) = .6ifa; = Cjand 4 ifa; = D;,
—u;(a;,y;)) = =7+ 15X 1y, —g3 + Lig,=p,-

— Ex ante payoff matrix is

CZ DZ
c,| 22 |-13
D,|3,—-1] 0,0




Observable Own Payoffs

Theorem:

If Q has full dimension and each player observes her
own realized payoff, then we have

(lsi_r)r}E(6) = Q.



Intuition

Player i’s undetectable deviation from u can be
problematic because

— (i) it may affect the other players’ payoffs;

— (ii) it may affect how player i monitors the other
players.



Intuition

* Player i’s undetectable deviation from u can be
problematic because

— (i) it may affect the other players’ payoffs;

— (ii) it may affect how player i monitors the other
players.

* (i) observable realized own payoffs tell us that all the
undetectable deviations are “harmless.”



Intuition

* Player i’s undetectable deviation from u can be
problematic because

— (i) it may affect the other players’ payoffs;

— (ii) it may affect how player i monitors the other
players.

* (i) observable realized own payoffs tell us that all the
undetectable deviations are “harmless.”

* (ii) the undetectable deviation gives the same
distribution of the messages regardless of the other
players’ actions: works equally effective as monitoring.



Intuition

* Perturb u so that the recommendation has a full
a
support: "' = (1 —)u+ X4 ar

full yndetectable:

* 0; issupport-u
Pr(m|r) = Pr(m|o;, 1) for all v € supp(uf'!!) = 4 and

meY.



Main Result

The set of limit sequential correlated equilibria with cheap talk

: COorr
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Characterizing a set Q
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The set of sequential equilibria with a mediator E™€9(§)

U: always include
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U: always include

The set of sequential equilibria E(0)



No mediator

* Idea: initial correlation contains the information of
history-contingent recommendations.

* Cryptography:
— The information is encoded so that the players do not

know future recommendations.

— Cheap talk communication decodes the
recommendation of the next period.

— A lie in cheap talk creates a miscoordination in future:
leading to minimaxing the deviator (the other players
do not realize the deviation).



Conclusion

e Ultimate goal: Characterize an equilibrium payoff set
with general discount factor and general monitoring.

* Toward this goal, we explore the tractable structure of
the correlated equilibrium, and obtain a tight
characterization of correlated equilibria as 6 — 1 when
realized payoffs are observable.

e More work to be done...



Appendix
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deviations”SD (J) is defined as follows:
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cannot distinguish who in J is more likely to be guilty:



Similar Deviations

* For a subset of players ] € N, the set of “similar
deviations”SD (J) is defined as follows:

 SD(J) is the set of deviations such that the mediator
cannot distinguish who in J is more likely to be guilty:

(

SD(J) =1 (0y)ie;: Pr(m|ay, v) = Pr(m|oj, 1)

\

Vi€eJ VjE]

forallre4Ad,mey

\

.

J
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Most Severe Punishment

* ForAwithA; < 0foreachi € I, we define the “most
severe punishment payoff” as

(1) = rérilﬁ)aesp?éﬁﬁp ) 2reaT(r) Lien i ui (r, 0y).

* Since the mediator cannot distinguish whom to punish
when deviations are in SD(supp(1)), we need to
punish all at the same time.

* This implies that, for A with A; < 0 foreachi € I, we
should have }.;¢,|4;|v; = L(1).

* Thatis, A-v < —I(A).
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Relationship with the Characterization of the
Repeated Game Without Discounting

* Without discounting, Renault and Tomala (2013) offer
the characterization of the set of equilibrium payoffs,

E(1).
* In their characterization, we change the definition of
k(A1) as follows:

nodiscount — .
k (D) = max A-u(u)

subject that
* Foreachi €I and g; such that
Pr(m|r) = Pr(m|o;,r) forallr e Aandm €Y,
we have We had r € supp(u) here.

u;(o;, 1) < u;(u).
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Relationship with the Characterization of the
Repeated Game Without Discounting

* The following example shows that
Us<1 E(6) € Q & E(1).

L R L R’
U 2,2 103 1] 02| 03
D 00 00 01 ] 01

* We show that u(U,L) € E(1) butu(U,L) € Ug., E(J).




Relationship with the Characterization of the
Repeated Game Without Discounting

« u(U,L) e E(1) butu(U,L) & Ug., E(6).

L R L R’
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* Player 1 has y; € {[, 7}, which distinguishes whether player 2
takes “L or L'” or “R or R"” only if player 1 takes D:

qg(llay,a,) =1ifa; =D anda, € {R,R'}
q(llaq,a,) = 0 otherwise.



Relationship with the Characterization of the
Repeated Game Without Discounting

u(U,L) e E(1) butu(U,L) &€ Ug., E(6).

L R L R’
U 2,2 103 1] 02 | 03
D 00 00 01 ] 01

Player 1 has y; € {[, 7}, which distinguishes whether player 2
takes “L or L'” or “R or R"” only if player 1 takes D:

qg(llay,a,) =1ifa; =D anda, € {R,R'}
q(llaq,a,) = 0 otherwise.

If player 2 does not take L unless a; = D with a positive
prob.

If a;, = D with a positive prob, player 2 prefers L' to L.



Sequential Rationality of T

* Intuitively, T is used to punish players after reports
statistically indicate a deviation.

Do we need to require 7 is sequentially rational?

(D) = T pesoTaX ) 2rea T(1) Lien |4il ui (1, 0y).
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* Intuitively, T is used to punish players after reports
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Do we need to require 7 is sequentially rational?
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e Coming up with a “proper” restriction is hard:



Sequential Rationality of T

* Intuitively, T is used to punish players after reports
statistically indicate a deviation.

Do we need to require 7 is sequentially rational?

(1) = T eso 2% o) 2rea T(1) Lien |4il ui (1, 0y).

e Coming up with a “proper” restriction is hard:

— Some players may not realize that there was a
deviation.

— It also depends on whether the mediator can tremble
when we construct a consistent belief system: which
ohe is more appropriate?



Example 1: Some Players Do Not Realize Deviations

* Four-player game:

[ r [ r
Uul221)|221 vl 1,41 |0,2,—1
D|2,21]|221 D|20,—-1|20 -1

L R

* Players 1-3 do not observe anything.
* Player 4 is a dummy player who can monitor a perfectly.



Example 1: Some Players Do Not Realize Deviations

* Four-player game:

[ r [ r
Uul221)|221 vl 1,41 |0,2,—1
D|2,21]|221 D|20,—-1|20 -1

L R

* Player 3’s equilibrium payoff should be no less than 1.

* Aslongasv; = 1, player 1 can guarantee the payoff of
2 by taking D.

* Nonetheless, we can support (U, [, R).



Example 2: Trembles of the Mediator Matters

 Two-player game:

L

R

L’

R,

U

5,5

0,6

5,5

0,6

M

1,0

1,0

1,1

1,1

D

1,6

1,6

2,6

2,6

 Player 1 has two signals {I,r}: q;(lla) = 1ifa, €

{L,L'}; gq(rla) =1ifa, € {R,R'}.
* Player 2 does not observe anything.




Example 2: Trembles of the Mediator Matters
L|R|L |R
U|55(06|55|06
M|1,0/10|1,1|1,1
D|1,6]16]|2,6|2,6

 Two-player game:

 Player 1 has two signals {I,r}: q;(lla) = 1ifa, €
{L,L'}; gq(rla) =1ifa, € {R,R'}.

* Player 2 does not observe anything.

* vwithv; +v, =10

— cannot be supported if the mediator cannot tremble
in the definition of sequential equilibrium.

— can be supported if the mediator can.



Dispensability of Mediation

* If there exists at least five players, then we can replace
mediation with private communication among players.



Dispensability of Mediation

* |If there exists at least five players, then we can replace
mediation with private communication among players.
 Why five?

— To keep the result of correlation about a_; secret to
player i, we need to exclude player i from some step
of the communication.

— We need at least three players involved in each step
of communication so that we can use the majority
rule to identify a liar (if any).

— To create a correlation between 1; and 7;, we need
another player to “relate” r; and ;.



The Proof of (lsin}E(6) =

* We explain how to approximately support v €

argmax,rcoA - v' forA = (1, ..., 1).



Easy Case

Two-player prisoners’ dilemma.
v~ (1(C,0)),_,-

For each player, there are two signals Y; = {g;, b;}.
g; indicates more cooperation:

qi(gi | ai,Cj) > qi(gi | ai,Dj)for all a;.
That is, individual full rank holds and |Y;| = |A_;].



Modified LR

 Forasmallp > 0,withu=(1-p)(C,C)+ PZaEAl%l'
and x(r,y) such that
1. Promise Keeping:
v =u(u) + E[x(,y)lul.

2. Strict incentive compatibility: For each i and non-
faithful o;,

Elu;(r) + x;(r, y)|ul
> Elu;(a;, r—y) + x;(r,my, y_) oy, 1]
3. Ex-ante self generation:
E[A-x(r,y)|u] < 0.



The Proof of (lsin}E(cY) =

* We see the repeated game as the repetition of T-period
review phases.

Period 1 ... Period T Period T + 1 ... Period 2T Period 2T + 1 ... Period 3T ...

\ J | )
| f | | }

First Review Phase Second Review Phase Third Review Phase




Review Phase

* We see the repeated game as the repetition of T-period
review phases.

Period 1 ... Period T Period T + 1 ... Period 2T Period 2T + 1 ... Period 3T ...

\ J | )
| f | | )

First Review Phase Second Review Phase Third Review Phase

\ ) | J
| |

Current Phase Continuation Play




Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 7%
according to u i.i.d. across
periods.
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Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 7%
according to u i.i.d. across
periods.

Player i yields
instantaneous utilities

ZZ=1 5t_1ui(at)



Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 13
according to u i.i.d. across
periods.

Player i yields
instantaneous utilities

Yi=16u;(ay)

The mediator observes
the history (1., m;)!_;.



Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 1} The mediator switches to
according to u i.i.d. across

- a punishment phase
periods.

with a probability

o contingent on (1., m;)1_4
Player i yields

instantaneous utilities
D=1 6y (ay)

The mediator observes
the history (1., m;)!_;.



Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 1} The mediator switches to
according to u i.i.d. across

- a punishment phase
periods.

with a probability
contingent on (1, m;)1_4
to implement
the decrease in
Y _ 8 u;(ay) . o
t=1 A player i’s continuation payoff
x;((re, me){=1) < 0.

Player i yields
instantaneous utilities

The mediator observes
the history (1., m;)!_;.



Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 7y according to u
i.i.d. across periods.

Player i maxmizes
IE[ZL 5t_1ui(at) + 5Txi((rt;mt){=1)]-



Review Phase

Period 1 ... Period T Continuation Play

\ J
|

The mediator recommends 7y according to u
i.i.d. across periods.

Player i maxmizes

E[EL u;(ae) + x;((r¢, mt){=1)]
(Player i’s incentive is strict)



Sufficient Condition

e Foreach e > 0, find x such that
1. Promise Keeping:

1
A- ;E[Z%;l u(ry) + x((rtrmt)’{:l)] = A-v—E€.
2. Incentive compatibility: For each i, for any strategy g;,
E[Xfq ui () + x;((ry, m)i=1)]
> E| Z=1 u;(r) + xi((rt;mt)zzl)lo-i]-
3. Self generation:

A x((ry, mp)i=1) < 0 forall (r, me) .



Information Aggregation

e Pool (1, m;)!_; during a block, and create the score

score; = Y4 x;(r,, my) — €T.

Score A T Period

>
Initial score ./} x1 (11, mq)
—eI ¥




Information Aggregation

e Pool (1, m;)!_; during a block, and create the score

score; = Y4 x;(r,, my) — €T.

Score A 7 T Per)iod

Initial score
—eT

Xi (Tz, mZ)




e Pool (1, m,)}

Score

Information Aggregation

—1 during a block, and create the score

score; = Y4 x;(r,, my) — €T.

A

T Period

Initial score
—eT

'/\'

e

score; = 21_. x;(r,, m;) — €T.



Law of Large Numbers

Pool (r,, m;)I_; during a block, and create the score
score; = Y4 x;(r,, my) — €T.
By LLN, we have score; < 0 after most of the histories.

If we could use this score; directly, then we would be
done.

But we have to deal with erroneous histories with
score; > 0...



Irregular Rec.

e The mediator classifies her history (1, m;)I_; as
follows:

1. Irregular rec: The frequency of periods withr; = a is
slightly far from u(a) for some a € A.

2. Regular rec: Otherwise.



Adjustment of x((ry, m) i)

e The mediator changes x;((ry, m;)I_,) as follows:
1. Ifirregular rec is the case, then, foreachi € I,
xi((rt:mt)z;:l) = Z=1(xi(rt'mt) - X)
with large X so that
A x((r,, me)I_1) < 0 after each history.
2. If regular rec is the case, then, for each i € I,

x;((ry, m¢){=1) = min{}{_; x;(ry, m;) — €T, 0}.



Adjustment of x((ry, m) i)

* Whether the recommendation is regular or irregular is
out of player i’s control: No issue of incentive.

* We need to make sure that taking minimum in
min{ZZ:l x;(re, my) — €T, 0}.
after regular rec does not affect player i’s incentive.

 We will show that, whenever player i believes that
Y x;(r,, m;) — €T may be positive, player i believes
that irregular rec is the case.



Classify Player i’s History

* To verify player i’s incentive, we classify her history into
the following two categories:

1. If player i’s recommendation is irregular, she knows
that irregular rec is the case: Incentive OK.

2. If player i’s recommendation is regular, ...
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Frequency of y;
in periods
when y;; = 1;



Regions where player i believes that

the score is non positive

with probability 1 — exp(—T),

if player i’s signal observation is in this region
given each recommendation ;.

A

R
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Frequency of y;
in periods
when u; = 1;



Determined by €
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Regions where player i believes that

the score is non positive

with probability 1 — exp(—T),

if player i’s signal observation is in this region
given each recommendation ;.

A

R
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Frequency of y;
in periods
when u; = 1;



Determined by €

!

Regions where player i believes that

the score is non positive

with probability 1 — exp(—T),

if player i’s signal observation is in this region
given each recommendation ;.

\
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Frequency of y;
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Determined by €

!

Regions where player i believes that

the score is non positive

with probability 1 — exp(—T),

if player i’s signal observation is in this region
given each recommendation ;.

\
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Frequency of y;
q;(y; | 11, D_;) g;(y; | 1;,C_;) inperiods
\ J when p; ¢ = 1;

)

Determined by p



Determined by €

!

Regions where player i believes that

the score is non positive

with probability 1 — exp(—T),

if player i’s signal observation is in this region
given each recommendation ;.

Case 2

1 1
q;(y; | ri:”—ilri)
Frequency of y;

q;(y; | r;,D_;) q;(y; | 15, C_;) in periods
\ J when p; , = 1;

)

Determined by p




Classifying player i’s histories

* There exists r; such that player i’s signal frequency during
periods when player i took 7; is in Case 2 or Case 3.

* For each 1, player i’s signal frequency during periods
when player i took 7; is in Case 1.



Classifying player i’s histories

There exists 1; such that player i’s signal frequency during
periods when player i took 7; is in Case 2 or Case 3.

Player i believes that irregular rec. is the case.

For each r;, player i’s signal frequency during periods
when player i took r; is in Case 1.



Classifying player i’s histories

There exists 1; such that player i’s signal frequency during
periods when player i took 7; is in Case 2 or Case 3.

Player i believes that irregular rec. is the case.

For each r;, player i’s signal frequency during periods
when player i took r; is in Case 1.

Player i believes that the score is non-positive.



What If [Y;] > |A_;|?

* |If player i’s signal observation given r; is not close to

aff({qi(yi |77, a_i)}a_ieA_i) for some r;, the mediator

subtracts a large constant from players —i’s score, so that

> e x({rs, V1) is non positive.

* This does not affect players —i’s incentive.



The Proof of (lsirr}E(c?) = (): General Case

* We explain how to approximately support v €
argmax,rcoA - v' forA = (1, ..., 1).
* There exist u and x(r, y) such that
1. Promise Keeping:
v=u(w + E[x(r,y)|ul.

2. Incentive compatibility: For each i and oy,

Elu(r) + x(r,y)|ul

> Elula;, r—;) + x(r,my, y_;)|o;, ul.

3. Ex-ante self generation:

E[A-x(r,y)|ul <0.



Perturbation

e Perturb u so that ™! has full support:

1
Hfull =(1—-8u+ EZaEA

Al

Mediator’s History

(r,m)



Perturbation

e Perturb u so that ™! has full support:

Hfull =(1—-8u+ EZaEA

/\

Pr(r,m|a;, u™")
0

1
Al

Mediator’s History

@ PI‘(T, m"ufull)
@

(r,m)



Perturbation

* |Instead of ,ufu“, the mediator allows player i to take o;
with probability Pr(o;) such that Pr(r,m‘uf““) =

Y., Pr(o;)Pr(r, m|u™) for all r,m.

Pr(r, m|o;, u!")

Mediator’s History




Perturbation

* We take o; such that Pr(r, m|o;, u™!) is an extreme
point.

* We can make sure that player i has the strict incentive
to follow the equilibriu%‘é\egy.

Pr(r,m|o;, ,ufu“)

Mediator’s History




Given this Operation, ...

There exist u and x(r, y) such that
1. Promise Keeping:
v =u(w) + Elx(r,y)|ul.

2. Strict incentive compatibility: For each i and non
faithful o;,

Elu;(r) + x;(r, y)|u]
> Elu;(a;, r—y) + x;(r,my, y_i)|oy, 1]
3. For eachr; € supp(y;), the affine hull of Pr(y;|r;, 7_;)

with respect to 7_; € supp(u_;|,) is equal to the
affine hull of Pr(y;|r;, _;) with respecttor_; € A_;.

4. Ex-ante self generation:
E[A-x(r,y)|u] < 0.



