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• AC-Treuhand AG

– organizing meetings of the cartel members;

– distributing agreed market shares;

– calculating deviations;

– collecting and verifying data;

– acting as a modelator in case of tensions between 
cartel members;

– reshaping the arrangement

• Trade Associations perform the role of a third-party 
facilitator.

The Mediator in the Real Example



• Sugaya (2014) establishes the folk theorem with private 

monitoring if identifiability conditions are satisfied.

• The remaining question is what happens if a sufficient 

condition for the folk theorem is violated:

– Discount factor is less than 1.

– Identifiability conditions are not satisfied.

A Big Picture



• A general case is very hard to analyze…

• Special cases:

– An upper bound with a fixed discount factor (but 

monitoring is not fixed): Sugaya and Wolitzky (2015).

– A tight characterization of correlated equilibria with 

cheap talk with a fixed monitoring (but 𝛿 → 1).
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Model



• There are 𝑁 players: 𝐼 = {1, … , 𝑁}.

• For each 𝑖 , a set of actions is 𝐴𝑖 ∋ 𝑎𝑖.

Model



• There are 𝑁 players: 𝐼 = {1, … , 𝑁}.

• For each 𝑖 , a set of actions is 𝐴𝑖 ∋ 𝑎𝑖.

• For each 𝑖 , a set of private signals is 𝑌𝑖 ∋ 𝑦𝑖.

Model



• There are 𝑁 players: 𝐼 = {1, … , 𝑁}.

• For each 𝑖 , a set of actions is 𝐴𝑖 ∋ 𝑎𝑖.

• For each 𝑖 , a set of private signals is 𝑌𝑖 ∋ 𝑦𝑖.

• For each 𝑖 , ex ante utility from action profile 𝑎 ≡

𝑎1, … , 𝑎𝑁 is 𝑢𝑖(𝑎).

Model



• There are 𝑁 players: 𝐼 = {1, … , 𝑁}.

• For each 𝑖 , a set of actions is 𝐴𝑖 ∋ 𝑎𝑖.

• For each 𝑖 , a set of private signals is 𝑌𝑖 ∋ 𝑦𝑖.

• For each 𝑖 , ex ante utility from action profile 𝑎 ≡

𝑎1, … , 𝑎𝑁 is 𝑢𝑖(𝑎).

• Given 𝑎 ≡ 𝑎1, … , 𝑎𝑁 , the joint conditional distribution 

of 𝑦 ≡ 𝑦1, … , 𝑦𝑁 is determined by 𝑞(𝑦 ∣ 𝑎).

Model



• There are 𝑁 players: 𝐼 = {1, … , 𝑁}.

• For each 𝑖 , a set of actions is 𝐴𝑖 ∋ 𝑎𝑖.

• For each 𝑖 , a set of private signals is 𝑌𝑖 ∋ 𝑦𝑖.

• For each 𝑖 , ex ante utility from action profile 𝑎 ≡

𝑎1, … , 𝑎𝑁 is 𝑢𝑖(𝑎).

• Given 𝑎 ≡ 𝑎1, … , 𝑎𝑁 , the joint conditional distribution 

of 𝑦 ≡ 𝑦1, … , 𝑦𝑁 is determined by 𝑞(𝑦 ∣ 𝑎).

• Common discount factor 𝛿 < 1.

Model



• We consider the correlated equilibrium in the repetition 

of this stage game.  The reason is …

Correlated Equilibrium



• Possibly correlated private signals offer endogenous 

correlation device to the players in Nash equilibrium.

• What correlation is possible depends on monitoring 

structure and possible equilibrium strategy (<- this is 

what we want to characterize first of all!).
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• Possibly correlated private signals offer endogenous 

correlation device to the players in Nash equilibrium.

• What correlation is possible depends on monitoring 

structure and possible equilibrium strategy (<- this is 

what we want to characterize first of all!).

• We consider correlated equilibrium directly.

Correlated Equilibrium



• The continuation strategy profile from a history profile 

does not have to be a correlated equilibrium of the 

original game:

Difficulty: No Recursive Structure

{∅}

𝑎𝑖=1,𝑡=1, 𝑎𝑖=2,𝑡=1, 𝑦𝑖=1,𝑡=1, 𝑦𝑖=2,𝑡=1

𝑎𝑖=1,𝑡=1, 𝑎𝑖=2,𝑡=1
′ , 𝑦𝑖=1,𝑡=1, 𝑦𝑖=2,𝑡=1

′

𝑎𝑖=1,𝑡=1
′ , 𝑎𝑖=2,𝑡=1, 𝑦𝑖=1,𝑡=1

′ , 𝑦𝑖=2,𝑡=1

𝑎𝑖=1,𝑡=1
′ , 𝑎𝑖=2,𝑡=1

′ , 𝑦𝑖=1,𝑡=1
′ , 𝑦𝑖=2,𝑡=1

′



Main Result

Characterizing a set 𝑄

∪: always include

The set of sequential equilibria with a mediator 𝐸med(𝛿)

∪: always include

The set of sequential correlated equilibria with cheap talk 𝐸corr(𝛿)

∪: always include

The set of sequential equilibria 𝐸(𝛿)

∪ if observable realized own payoffs

The set of limit sequential equilibria with a mediator lim
𝛿→1
𝐸med(𝛿)
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1. The mediator recommends an action 𝑟𝑖,𝑡 to each 
player 𝑖.

2. Player 𝑖 takes an action 𝑎𝑖,𝑡 (= 𝑟𝑖,𝑡 on eqm path).

3. Player 𝑖 observes 𝑦𝑖,𝑡.

4. Player 𝑖 reports 𝑚𝑖,𝑡 (= 𝑦𝑖,𝑡 on eqm path).



Ex Ante Recursive Structure
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′
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′ , 𝑎𝑖=2,𝑡=1, 𝑦𝑖=1,𝑡=1

′ , 𝑦𝑖=2,𝑡=1
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′ , 𝑦𝑖=1,𝑡=1
′ , 𝑦𝑖=2,𝑡=1

′

𝜇1 ∈ Μ1: Set of rec. dist. supportable in equilibrium in 
period 1. 
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dist. supportable in equilibrium in period 2. 
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Ex Ante Recursive Structure

• Μ2
𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ1.

• Each player has more information in period 2 than in 
period 1.

• Incentive compatibility constraint is tightened in period 
2.

• This inclusion is not true in Nash equilibrium: More 
endogenous correlation is available in period 2.
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• Μ2
𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ1.

• Each player has more information in period 1 than in 
period 2.

• Incentive compatibility constraint is tightened in period 
2.

• 𝜇 ∈ Μ1 should satisfy the following constraint:

• For each 𝑖 ∈ 𝐼 and 𝜎𝑖 such that

Pr 𝑚 𝑟 = Pr(𝑚|𝜎𝑖 , 𝑟) for all 𝑟 ∈ supp(𝜇) and 𝑚 ∈ 𝑌,

we have

𝑢𝑖(𝜎𝑖 , 𝜇) ≤ 𝑢𝑖(𝜇).

all support-𝜇 undetectable deviation is non profitable



Characterization

• Given ⋯ ⊆ Μ3
𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ2

𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ1, we have

𝐸med(𝛿) ⊆ ℳ

with ℳ ≡ {𝑢 𝜇 : 𝜇 ∈ Δ 𝐴 , all support−𝜇 undetectable
deviation is non profitable}.



• Given ⋯ ⊆ Μ3
𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ2

𝑒𝑥 𝑎𝑛𝑡𝑒 ⊆ Μ1, we have

𝐸med(𝛿) ⊆ ℳ

With ℳ ≡ {𝑢 𝜇 : 𝜇 ∈ Δ 𝐴 , all support−𝜇 undetectable
deviation is non profitable}.

• If we calculate ℳ with perfect monitoring, we get the 
set of feasible payoff set.

• Some constraint about punishment payoffs is missing.

Characterization



Characterization of an Upper Bound

Theorem:

Define 𝑄 ≡ ℳ ∩𝒫.  We have 𝐸 𝛿 ⊂ 𝑄 for each 𝛿 ≤ 1.



Characterization of an Upper Bound

Theorem:

Define 𝑄 ≡ ℳ ∩𝒫.  We have 𝐸 𝛿 ⊂ 𝑄 for each 𝛿 ≤ 1.

A constraint about punishment payoff taken from
Renault and Tomala (2004), which is introduced
in the context of repeated games without discounting.



• An Example: Two public signals 𝑦 ∈ {𝑔, 𝑏}

• 𝐶, 𝐶 is not in ℳ but as soon as it is mixed with (𝐶, 𝐷) and 
(𝐷, 𝐶), it will be in ℳ.

• For each 𝑖 ∈ 𝐼 and 𝜎𝑖 such that

Pr 𝑚 𝑟 = Pr(𝑚|𝜎𝑖 , 𝑟) for all 𝑟 ∈ supp(𝜇) and 𝑚 ∈ 𝑌,

we have

𝑢𝑖(𝜎𝑖 , 𝜇) ≤ 𝑢𝑖(𝜇).

How to Calculate ℳ

𝐶 𝐷

𝐶 2,2 −1,3

𝐷 3,−1 0,0

𝐶 𝐷

𝐶 .5 .5

𝐷 .5 .3

Payoff Prob of 𝑦 = 𝑔



Main Result

Characterizing a set 𝑄

∪: always include

The set of sequential equilibria with a mediator 𝐸med(𝛿)

∪: always include

The set of sequential correlated equilibria with cheap talk 𝐸corr(𝛿)

∪: always include

The set of sequential equilibria 𝐸(𝛿)

∪ if observable realized own payoffs

The set of limit sequential equilibria with a mediator lim
𝛿→1
𝐸med(𝛿)

|| if observable realized own payoffs

The set of limit sequential correlated equilibria with cheap talk
lim
𝛿→1
𝐸corr(𝛿)



Anti Folk Theorem
Why lim
𝛿→1
𝐸med(𝛿) is smaller than Q if the realized own payoffs are 

not observable? 

U M D Ud T B

U 6,6 -10,8 -10,4 -10,6 0,0 0,0

M 8,-10 0,0 0,0 0,0 0,0 0,0

D 4,-10 0,0 0,0 0,0 0,0 0,0

Ud 6,-10 0,0 0,0 0,0 1,0 1,0

T 0,0 0,0 0,0 0,1 8,2 0,0

B 0,0 0,0 0,0 0,1 0,0 2,8

𝑞 𝑦 𝑎 = 

𝑖∈𝐼

𝑞𝑖
1(𝑦𝑖
1|𝑎𝑗) 

𝑖∈𝐼

𝑞𝑖
2(𝑦𝑖
2|𝑎𝑖 , 𝑦𝑗

1)

𝑞𝑖
1 𝑦𝑖
1 = 𝑔𝑖

1 𝑎𝑗 =

3

4
if 𝑎𝑗 = 𝐷

1

4
if 𝑎𝑗 = 𝑀

1

2
otherwise

𝑞𝑖
2(𝑦𝑖
2 = 𝑔𝑖

2|𝑎𝑖 , 𝑦𝑗
1) =

3

4
if 𝑎𝑖 = 𝑈𝑑 and 𝑦𝑗

1 = 𝑔𝑗
1

1

4
if𝑎𝑖 = 𝑈𝑑 and 𝑦𝑗

1 = 𝑏𝑗
1

1

2
otherwise

𝑦𝑖
1 ∈ 𝑔𝑖

1, 𝑏𝑖
1 , 𝑦𝑖
2 ∈ {𝑔𝑖

2, 𝑏𝑖
2}
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Signal about the other player’s action
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Anti Folk Theorem
Why lim
𝛿→1
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(U,U) becomes common knowledge
when it is recommended
since otherwise Ud is better.

𝑞𝑖
1 𝑦𝑖
1 = 𝑔𝑖

1 𝑎𝑗 =

3

4
if 𝑎𝑗 = 𝐷

1

4
if 𝑎𝑗 = 𝑀

1

2
otherwise

𝑞𝑖
2(𝑦𝑖
2 = 𝑔𝑖

2|𝑎𝑖 , 𝑦𝑗
1) =

3

4
if 𝑎𝑖 = 𝑈𝑑 and 𝑦𝑗

1 = 𝑔𝑗
1

1

4
if𝑎𝑖 = 𝑈𝑑 and 𝑦𝑗

1 = 𝑏𝑗
1

1

2
otherwise



Anti Folk Theorem
Why lim
𝛿→1
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not observable? 
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U 6,6 -10,8 -10,4 -10,6 0,0 0,0
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Ud 6,-10 0,0 0,0 0,0 1,0 1,0

T 0,0 0,0 0,0 0,1 8,2 0,0
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1(𝑦𝑖
1|𝑎𝑗) 

𝑖∈𝐼

𝑞𝑖
2(𝑦𝑖
2|𝑎𝑖 , 𝑦𝑗

1)

The continuation play after (U,U) 
is belief-free
since otherwise Ud is better
⇒(6,6) is not supportable.

𝑞𝑖
1 𝑦𝑖
1 = 𝑔𝑖

1 𝑎𝑗 =

3

4
if 𝑎𝑗 = 𝐷

1

4
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1
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1

1
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A Sufficient Condition

• Problem: deviation to Ud from U is profitable and non 
detectable, but hurts the opponent.

• If the opponent can observe her realized own payoff, 
such deviation must be statistically detected by the 
different distribution of the realized payoff.

• In general, with observable realized own payoff, Q ⊂

lim
𝛿→1
𝐸med(𝛿).



Observable Own Payoffs

• The realized payoff is 𝑢𝑖 𝑎𝑖 , 𝑦𝑖 .

• The ex ante payoff is 𝑢𝑖 𝑎 =  𝑦 𝑞(𝑦|𝑎) 𝑢𝑖 𝑎𝑖 , 𝑦𝑖 .



Observable Own Payoffs

• The realized payoff is 𝑢𝑖 𝑎𝑖 , 𝑦𝑖 .

• The ex ante payoff is 𝑢𝑖 𝑎 =  𝑦 𝑞(𝑦|𝑎) 𝑢𝑖 𝑎𝑖 , 𝑦𝑖 .

• For example,

– 𝑦𝑖 ∈ {𝑔𝑖 , 𝑏𝑖},

– 𝑞𝑖 𝑔𝑖|𝑎 = .6 if 𝑎𝑗 = 𝐶𝑗 and .4 if 𝑎𝑗 = 𝐷𝑗,

– 𝑢𝑖 𝑎𝑖 , 𝑦𝑖 = −7 + 15 × 1 𝑦𝑖=𝑔𝑖 + 1 𝑎𝑖=𝐷𝑖 .

– Ex ante payoff matrix is

𝐶2 𝐷2

𝐶1 2,2 −1,3

𝐷1 3,−1 0,0



Observable Own Payoffs

Theorem:

If 𝑄 has full dimension and each player observes her 

own realized payoff, then we have

lim
𝛿→1
𝐸 𝛿 = 𝑄. 



Intuition

• Player 𝑖’s undetectable deviation from 𝜇 can be 
problematic because

– (i) it may affect the other players’ payoffs;

– (ii) it may affect how player 𝑖 monitors the other 
players.
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• (i) observable realized own payoffs tell us that all the 
undetectable deviations are “harmless.”



Intuition

• Player 𝑖’s undetectable deviation from 𝜇 can be 
problematic because

– (i) it may affect the other players’ payoffs;

– (ii) it may affect how player 𝑖 monitors the other 
players.

• (i) observable realized own payoffs tell us that all the 
undetectable deviations are “harmless.”

• (ii) the undetectable deviation gives the same 
distribution of the messages regardless of the other 
players’ actions: works equally effective as monitoring.



Intuition

• Perturb 𝜇 so that the recommendation has a full 

support: 𝜇full = (1 − 𝜀)𝜇 + 𝜀  𝑎∈𝐴
𝑎

𝐴
.

• 𝜎𝑖 is support-𝜇full undetectable:

Pr 𝑚 𝑟 = Pr(𝑚|𝜎𝑖 , 𝑟) for all 𝑟 ∈ supp 𝜇full = 𝐴 and 

𝑚 ∈ 𝑌.



Main Result

Characterizing a set 𝑄

∪: always include

The set of sequential equilibria with a mediator 𝐸med(𝛿)

∪: always include

The set of sequential correlated equilibria with cheap talk 𝐸corr(𝛿)

∪: always include

The set of sequential equilibria 𝐸(𝛿)

∪ if observable realized own payoffs

The set of limit sequential equilibria with a mediator lim
𝛿→1
𝐸med(𝛿)

|| if observable realized own payoffs

The set of limit sequential correlated equilibria with cheap talk
lim
𝛿→1
𝐸corr(𝛿)



• Idea: initial correlation contains the information of 

history-contingent recommendations.

• Cryptography:

– The information is encoded so that the players do not 

know future recommendations.

– Cheap talk communication decodes the 

recommendation of the next period.

– A lie in cheap talk creates a miscoordination in future: 

leading to minimaxing the deviator (the other players 

do not realize the deviation).

No mediator



• Ultimate goal:  Characterize an equilibrium payoff set 

with general discount factor and general monitoring.

• Toward this goal, we explore the tractable structure of 

the correlated equilibrium, and obtain a tight 

characterization of correlated equilibria as 𝛿 → 1 when 

realized payoffs are observable.

• More work to be done…

Conclusion



Appendix



Similar Deviations

• For a subset of players 𝐽 ⊂ 𝑁, the set of “similar 
deviations”𝑆𝐷(𝐽) is defined as follows:

• 𝑆𝐷(𝐽) is the set of deviations such that the mediator 
cannot distinguish who in 𝐽 is more likely to be guilty:



Similar Deviations

• For a subset of players 𝐽 ⊂ 𝑁, the set of “similar 
deviations”𝑆𝐷(𝐽) is defined as follows:

• 𝑆𝐷(𝐽) is the set of deviations such that the mediator 
cannot distinguish who in 𝐽 is more likely to be guilty:

𝑆𝐷 𝐽 ≡ 𝜎𝑖 𝑖∈𝐽:

∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽

Pr 𝑚 𝜎𝑖 , 𝑟 = Pr(𝑚|𝜎𝑗 , 𝑟)

for all 𝑟 ∈ 𝐴,𝑚 ∈ 𝑌

.



Most Severe Punishment

• For 𝜆 with 𝜆𝑖 ≤ 0 for each 𝑖 ∈ 𝐼, we define the “most 
severe punishment payoff” as

𝑙 𝜆 ≡ min
𝜏∈Δ 𝐴

max
𝜎∈𝑆𝐷 supp 𝜆

 𝑟∈𝐴 𝜏 𝑟  𝑖∈𝑁 |𝜆𝑖| 𝑢𝑖(𝑟, 𝜎𝑖).
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Most Severe Punishment

• For 𝜆 with 𝜆𝑖 ≤ 0 for each 𝑖 ∈ 𝐼, we define the “most 
severe punishment payoff” as

𝑙 𝜆 ≡ min
𝜏∈Δ 𝐴

max
𝜎∈𝑆𝐷 supp 𝜆

 𝑟∈𝐴 𝜏 𝑟  𝑖∈𝑁 |𝜆𝑖| 𝑢𝑖(𝑟, 𝜎𝑖).

• Since the mediator cannot distinguish whom to punish 

when deviations are in 𝑆𝐷 supp 𝜆 , we need to 

punish all at the same time.

• This implies that, for 𝜆 with 𝜆𝑖 ≤ 0 for each 𝑖 ∈ 𝐼, we 
should have  𝑖∈𝐼 𝜆𝑖 𝑣𝑖 ≥ 𝑙(𝜆).

• That is, 𝜆 ∙ 𝑣 ≤ −𝑙(𝜆).
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Relationship with the Characterization of the 
Repeated Game Without Discounting 

• Without discounting, Renault and Tomala (2013) offer 
the characterization of the set of equilibrium payoffs, 
𝐸(1).

• In their characterization, we change the definition of 
𝑘 𝜆 as follows:

𝑘nodiscount 𝜆 = max
𝜇∈Δ(𝐴)
𝜆 ∙ 𝑢(𝜇)

subject that

• For each 𝑖 ∈ 𝐼 and 𝜎𝑖 such that

Pr 𝑚 𝑟 = Pr(𝑚|𝜎𝑖 , 𝑟) for all 𝑟 ∈ 𝐴 and 𝑚 ∈ 𝑌,

we have

𝑢𝑖(𝜎𝑖 , 𝜇) ≤ 𝑢𝑖(𝜇).

We had 𝑟 ∈ supp(𝜇) here.
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Relationship with the Characterization of the 
Repeated Game Without Discounting 

• The following example shows that

 𝛿<1𝐸 𝛿 ⊂ 𝑄 ⊊ 𝐸(1).

• We show that 𝑢 𝑈, 𝐿 ∈ 𝐸(1) but 𝑢 𝑈, 𝐿 ∉  𝛿<1𝐸 𝛿 .

𝐿 𝑅 𝐿’ 𝑅’

𝑈 2,2 0,3 0,2 0,3

𝐷 0,0 0,0 0,1 0,1



Relationship with the Characterization of the 
Repeated Game Without Discounting 

• 𝑢 𝑈, 𝐿 ∈ 𝐸(1) but 𝑢 𝑈, 𝐿 ∉  𝛿<1𝐸 𝛿 .

• Player 1 has 𝑦1 ∈ {𝑙, 𝑟}, which distinguishes whether player 2 
takes “𝐿 or 𝐿′” or “𝑅 or 𝑅′” only if player 1 takes 𝐷:

𝑞 𝑙 𝑎1, 𝑎2 = 1 if 𝑎1 = 𝐷 and 𝑎2 ∈ 𝑅, 𝑅
′

𝑞 𝑙 𝑎1, 𝑎2 = 0 otherwise.

𝐿 𝑅 𝐿’ 𝑅’

𝑈 2,2 0,3 0,2 0,3

𝐷 0,0 0,0 0,1 0,1



Relationship with the Characterization of the 
Repeated Game Without Discounting 

• 𝑢 𝑈, 𝐿 ∈ 𝐸(1) but 𝑢 𝑈, 𝐿 ∉  𝛿<1𝐸 𝛿 .

• Player 1 has 𝑦1 ∈ {𝑙, 𝑟}, which distinguishes whether player 2 
takes “𝐿 or 𝐿′” or “𝑅 or 𝑅′” only if player 1 takes 𝐷:

𝑞 𝑙 𝑎1, 𝑎2 = 1 if 𝑎1 = 𝐷 and 𝑎2 ∈ 𝑅, 𝑅
′

𝑞 𝑙 𝑎1, 𝑎2 = 0 otherwise.

• If player 2 does not take 𝐿 unless 𝑎1 = 𝐷 with a positive 
prob.

• If 𝑎1 = 𝐷 with a positive prob, player 2 prefers 𝐿′ to 𝐿.

𝐿 𝑅 𝐿’ 𝑅’

𝑈 2,2 0,3 0,2 0,3

𝐷 0,0 0,0 0,1 0,1



Sequential Rationality of 𝜏

• Intuitively, 𝜏 is used to punish players after reports 
statistically indicate a deviation.

• Do we need to require 𝜏 is sequentially rational?

𝑙 𝜆 ≡ min
𝜏∈Δ 𝐴

max
𝜎∈𝑆𝐷 supp 𝜆

 𝑟∈𝐴 𝜏 𝑟  𝑖∈𝑁 |𝜆𝑖| 𝑢𝑖(𝑟, 𝜎𝑖).
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Sequential Rationality of 𝜏

• Intuitively, 𝜏 is used to punish players after reports 
statistically indicate a deviation.

• Do we need to require 𝜏 is sequentially rational?

𝑙 𝜆 ≡ min
𝜏∈Δ 𝐴

max
𝜎∈𝑆𝐷 supp 𝜆

 𝑟∈𝐴 𝜏 𝑟  𝑖∈𝑁 |𝜆𝑖| 𝑢𝑖(𝑟, 𝜎𝑖).

• Coming up with a “proper” restriction is hard:

– Some players may not realize that there was a 
deviation.

– It also depends on whether the mediator can tremble 
when we construct a consistent belief system: which 
one is more appropriate?



Example 1: Some Players Do Not Realize Deviations

𝐿 𝑅

𝑙 𝑟

𝑈 2,2,1 2,2,1

𝐷 2,2,1 2,2,1

𝑙 𝑟

𝑈 1,4,1 0,2, −1

𝐷 2,0, −1 2,0, −1

• Four-player game:

• Players 1-3 do not observe anything.

• Player 4 is a dummy player who can monitor 𝑎 perfectly.



Example 1: Some Players Do Not Realize Deviations

𝐿 𝑅

𝑙 𝑟

𝑈 2,2,1 2,2,1

𝐷 2,2,1 2,2,1

𝑙 𝑟

𝑈 1,4,1 0,2, −1

𝐷 2,0, −1 2,0, −1

• Four-player game:

• Player 3’s equilibrium payoff should be no less than 1.

• As long as 𝑣3 ≥ 1, player 1 can guarantee the payoff of 
2 by taking 𝐷.

• Nonetheless, we can support (𝑈, 𝑙, 𝑅).



Example 2: Trembles of the Mediator Matters

• Two-player game:

• Player 1 has two signals {𝑙, 𝑟}: 𝑞1 𝑙 𝑎 = 1 if 𝑎2 ∈
𝐿, 𝐿′ ; 𝑞1 𝑟 𝑎 = 1 if 𝑎2 ∈ 𝑅, 𝑅

′ .

• Player 2 does not observe anything.

𝐿 𝑅 𝐿’ 𝑅’

𝑈 5,5 0,6 5,5 0,6

𝑀 1,0 1,0 1,1 1,1

𝐷 1,6 1,6 2,6 2,6



Example 2: Trembles of the Mediator Matters

• Two-player game:

• Player 1 has two signals {𝑙, 𝑟}: 𝑞1 𝑙 𝑎 = 1 if 𝑎2 ∈
𝐿, 𝐿′ ; 𝑞1 𝑟 𝑎 = 1 if 𝑎2 ∈ 𝑅, 𝑅

′ .

• Player 2 does not observe anything.

• 𝑣 with 𝑣1 + 𝑣2 ≥ 10

– cannot be supported if the mediator cannot tremble 
in the definition of sequential equilibrium.

– can be supported if the mediator can.

𝐿 𝑅 𝐿’ 𝑅’

𝑈 5,5 0,6 5,5 0,6

𝑀 1,0 1,0 1,1 1,1

𝐷 1,6 1,6 2,6 2,6



• If there exists at least five players, then we can replace 

mediation with private communication among players.

Dispensability of Mediation



• If there exists at least five players, then we can replace 

mediation with private communication among players.

• Why five?

– To keep the result of correlation about 𝑎−𝑖 secret to 
player 𝑖, we need to exclude player 𝑖 from some step 
of the communication.

– We need at least three players involved in each step 
of communication so that we can use the majority 
rule to identify a liar (if any).

– To create a correlation between 𝑟𝑖 and 𝑟𝑗, we need 

another player to “relate” 𝑟𝑖 and 𝑟𝑗.

Dispensability of Mediation



• We explain how to approximately support 𝑣 ∈

argmax𝑣′∈𝑄𝜆 ⋅ 𝑣′ for 𝜆 = (1,… , 1).

The Proof of lim
𝛿→1
𝐸 𝛿 = 𝑄



• Two-player prisoners’ dilemma.

• 𝑣 ≈ 𝑢𝑖 𝐶, 𝐶 𝑖∈𝐼 .

• For each player, there are two signals 𝑌𝑖 = 𝑔𝑖 , 𝑏𝑖 .

• 𝑔𝑖 indicates more cooperation:

𝑞𝑖 𝑔𝑖 𝑎𝑖 , 𝐶𝑗 > 𝑞𝑖 𝑔𝑖 𝑎𝑖 , 𝐷𝑗 for all 𝑎𝑖.

• That is, individual full rank holds and 𝑌𝑖 = |𝐴−𝑖|.

Easy Case



• For a small 𝜌 > 0, with 𝜇 = 1 − 𝜌 𝐶, 𝐶 + 𝜌 𝑎∈𝐴
𝑎

|𝐴|
,  

and 𝑥 𝑟, 𝑦 such that

1. Promise Keeping:

𝑣 = 𝑢 𝜇 + 𝔼 𝑥 𝑟, 𝑦 |𝜇 . 

2. Strict incentive compatibility:  For each 𝑖 and non-
faithful 𝜎𝑖,

𝔼 𝑢𝑖 𝑟 + 𝑥𝑖 𝑟, 𝑦 |𝜇

> 𝔼 𝑢𝑖 𝑎𝑖 , 𝑟−𝑖 + 𝑥𝑖 𝑟,𝑚𝑖 , 𝑦−𝑖 |𝜎𝑖 , 𝜇 .

3. Ex-ante self generation:

𝔼 𝜆 ∙ 𝑥 𝑟, 𝑦 |𝜇 ≤ 0.

Modified LR



• We see the repeated game as the repetition of 𝑇-period 

review phases.

The Proof of lim
𝛿→1
𝐸 𝛿 = 𝑄

Period 1 …   Period 𝑇 Period 𝑇 + 1 … Period 2𝑇 Period 2𝑇 + 1 … Period 3𝑇 …  

First Review Phase Second Review Phase Third Review Phase



• We see the repeated game as the repetition of 𝑇-period 

review phases.

Review Phase

Period 1 …   Period 𝑇 Period 𝑇 + 1 … Period 2𝑇 Period 2𝑇 + 1 … Period 3𝑇 …  

First Review Phase Second Review Phase Third Review Phase

Continuation PlayCurrent Phase



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator recommends 𝑟𝑡
according to 𝜇 i.i.d. across 

periods.



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator recommends 𝑟𝑡
according to 𝜇 i.i.d. across 

periods.

Player 𝑖 yields
instantaneous utilities 
 𝑡=1
𝑇 𝛿𝑡−1𝑢𝑖(𝑎𝑡)



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator recommends 𝑟𝑡
according to 𝜇 i.i.d. across 

periods.

Player 𝑖 yields
instantaneous utilities 
 𝑡=1
𝑇 𝛿𝑡−1𝑢𝑖(𝑎𝑡)

The mediator observes
the history (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇 .



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator switches to
a punishment phase

with a probability
contingent on (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇

The mediator recommends 𝑟𝑡
according to 𝜇 i.i.d. across 

periods.

Player 𝑖 yields
instantaneous utilities 
 𝑡=1
𝑇 𝛿𝑡−1𝑢𝑖(𝑎𝑡)

The mediator observes
the history (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇 .



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator switches to
a punishment phase

with a probability
contingent on (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇

to implement
the decrease in

player 𝑖’s continuation payoff
𝑥𝑖 (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇 ≤ 0.

The mediator recommends 𝑟𝑡
according to 𝜇 i.i.d. across 

periods.

Player 𝑖 yields
instantaneous utilities 
 𝑡=1
𝑇 𝛿𝑡−1𝑢𝑖(𝑎𝑡)

The mediator observes
the history (𝑟𝑡 , 𝑚𝑡)𝑡=1

𝑇 .



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator recommends 𝑟𝑡 according to 𝜇
i.i.d. across periods.

Player 𝑖 maxmizes
𝔼  𝑡=1
𝑇 𝛿𝑡−1𝑢𝑖 𝑎𝑡 + 𝛿

𝑇𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 .



Review Phase

Period 1 …   Period 𝑇 Continuation Play

The mediator recommends 𝑟𝑡 according to 𝜇
i.i.d. across periods.

Player 𝑖 maxmizes
𝔼  𝑡=1
𝑇 𝑢𝑖 𝑎𝑡 + 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1

𝑇

(Player 𝑖’s incentive is strict)



Sufficient Condition

• For each 𝜖 > 0, find 𝑥 such that

1. Promise Keeping:

𝜆 ⋅
1

𝑇
𝔼  𝑡=1
𝑇 𝑢 𝑟𝑡 + 𝑥 𝑟𝑡 , 𝑚𝑡 𝑡=1

𝑇 ≥ 𝜆 ⋅ 𝑣 − 𝜖.

2. Incentive compatibility:  For each 𝑖, for any strategy 𝜎𝑖,

𝔼  𝑡=1
𝑇 𝑢𝑖 𝑟 + 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1

𝑇

≥ 𝔼  𝑡=1
𝑇 𝑢𝑖 𝑟 + 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1

𝑇 |𝜎𝑖 .

3. Self generation:

𝜆 ∙ 𝑥 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 ≤ 0 for all 𝑟𝑡 , 𝑚𝑡 𝑡=1

𝑇 .



• Pool 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 during a block, and create the score

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇.

Initial score
−𝜖𝑇

𝑇 PeriodScore
1

𝑥1 𝑟1, 𝑚1

Information Aggregation



• Pool 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 during a block, and create the score

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇.

Initial score
−𝜖𝑇

𝑇 PeriodScore

Information Aggregation

1

𝑥𝑖 𝑟2, 𝑚2

2



• Pool 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 during a block, and create the score

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇.

Initial score
−𝜖𝑇

Score

Information Aggregation

1 𝑇 Period2

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇.



Law of Large Numbers

• Pool 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 during a block, and create the score

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇.

• By LLN, we have 𝑠𝑐𝑜𝑟𝑒𝑖 ≤ 0 after most of the histories.

• If we could use this 𝑠𝑐𝑜𝑟𝑒𝑖 directly, then we would be 

done.

• But we have to deal with erroneous histories with

𝑠𝑐𝑜𝑟𝑒𝑖 > 0…



Irregular Rec.

• The mediator classifies her history 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 as 

follows:

1. Irregular rec:  The frequency of periods with 𝑟𝑡 = 𝑎 is 
slightly far from 𝜇(𝑎) for some 𝑎 ∈ 𝐴.

2. Regular rec: Otherwise.



Adjustment of 𝑥 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇

• The mediator changes 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 as follows:

1. If irregular rec is the case, then, for each 𝑖 ∈ 𝐼,

𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 =  𝑡=1

𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝑋

with large 𝑋 so that

𝜆 ∙ 𝑥 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 ≤ 0 after each history.

2. If regular rec is the case, then, for each 𝑖 ∈ 𝐼,

𝑥𝑖 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇 = min  𝑡=1

𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇, 0 .



• Whether the recommendation is regular or irregular is 
out of player 𝑖’s control: No issue of incentive.

• We need to make sure that taking minimum in

min  𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇, 0 .

after regular rec does not affect player 𝑖’s incentive.

• We will show that, whenever player 𝑖 believes that 
 𝑡=1
𝑇 𝑥𝑖 𝑟𝑡 , 𝑚𝑡 − 𝜖𝑇 may be positive, player 𝑖 believes 

that irregular rec is the case.

Adjustment of 𝑥 𝑟𝑡 , 𝑚𝑡 𝑡=1
𝑇



• To verify player 𝑖’s incentive, we classify her history into 
the following two categories:

1. If player 𝑖’s recommendation is irregular, she knows 
that irregular rec is the case: Incentive OK.

2. If player 𝑖’s recommendation is regular, …

Classify Player 𝑖’s History



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1

Regions where player 𝑖 believes that
the score is non positive
with probability 1 − exp(−𝑇),
if player 𝑖’s signal observation is in this region
given each recommendation 𝑟𝑖.

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1

Regions where player 𝑖 believes that
the score is non positive
with probability 1 − exp(−𝑇),
if player 𝑖’s signal observation is in this region
given each recommendation 𝑟𝑖.

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖

Determined by 𝜖



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1

Regions where player 𝑖 believes that
the score is non positive
with probability 1 − exp(−𝑇),
if player 𝑖’s signal observation is in this region
given each recommendation 𝑟𝑖.

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖

Determined by 𝜖

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐷−𝑖 𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐶−𝑖



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1

Regions where player 𝑖 believes that
the score is non positive
with probability 1 − exp(−𝑇),
if player 𝑖’s signal observation is in this region
given each recommendation 𝑟𝑖.

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖

Determined by 𝜖

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐷−𝑖 𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐶−𝑖

Determined by 𝜌



Frequency of 𝑦𝑖
in periods
when 𝜇𝑖,𝑡 = 𝑟𝑖

0 1

Regions where player 𝑖 believes that
the score is non positive
with probability 1 − exp(−𝑇),
if player 𝑖’s signal observation is in this region
given each recommendation 𝑟𝑖.

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝜇−𝑖|𝑟𝑖

𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐷−𝑖 𝑞𝑖 𝑦𝑖 ∣ 𝑟𝑖 , 𝐶−𝑖

Determined by 𝜌

Case 3 Case 1 Case 2

Determined by 𝜖



• There exists 𝑟𝑖 such that player 𝑖’s signal frequency during 

periods when player 𝑖 took 𝑟𝑖 is in Case 2 or Case 3.

• For each 𝑟𝑖, player 𝑖’s signal frequency during periods 

when player 𝑖 took 𝑟𝑖 is in Case 1.

Classifying player 𝑖’s histories



• There exists 𝑟𝑖 such that player 𝑖’s signal frequency during 

periods when player 𝑖 took 𝑟𝑖 is in Case 2 or Case 3.

• Player 𝑖 believes that irregular rec. is the case.

• For each 𝑟𝑖, player 𝑖’s signal frequency during periods 

when player 𝑖 took 𝑟𝑖 is in Case 1.

Classifying player 𝑖’s histories



• There exists 𝑟𝑖 such that player 𝑖’s signal frequency during 

periods when player 𝑖 took 𝑟𝑖 is in Case 2 or Case 3.

• Player 𝑖 believes that irregular rec. is the case.

• For each 𝑟𝑖, player 𝑖’s signal frequency during periods 

when player 𝑖 took 𝑟𝑖 is in Case 1.

• Player 𝑖 believes that the score is non-positive.

Classifying player 𝑖’s histories



• If player 𝑖’s signal observation given 𝑟𝑖 is not close to 

aff 𝑞𝑖 𝑦𝑖|𝑟𝑖 , 𝑎−𝑖 𝑎−𝑖∈𝐴−𝑖 for some 𝑟𝑖, the mediator 

subtracts a large constant from players −𝑖’s score, so that 

 𝑖∈𝐼 𝑥( 𝑟𝑡 , 𝑦𝑡 𝑡) is non positive.

• This does not affect players −𝑖’s incentive.

What If 𝑌𝑖 > 𝐴−𝑖 ?



• We explain how to approximately support 𝑣 ∈

argmax𝑣′∈𝑄𝜆 ⋅ 𝑣′ for 𝜆 = (1,… , 1).

• There exist 𝜇 and 𝑥 𝑟, 𝑦 such that

1. Promise Keeping:

𝑣 = 𝑢 𝜇 + 𝔼 𝑥 𝑟, 𝑦 |𝜇 . 

2. Incentive compatibility:  For each 𝑖 and 𝜎𝑖,
𝔼 𝑢 𝑟 + 𝑥 𝑟, 𝑦 |𝜇

≥ 𝔼 𝑢 𝑎𝑖 , 𝑟−𝑖 + 𝑥 𝑟,𝑚𝑖 , 𝑦−𝑖 |𝜎𝑖 , 𝜇 .

3. Ex-ante self generation:

𝔼 𝜆 ∙ 𝑥 𝑟, 𝑦 |𝜇 ≤ 0.

The Proof of lim
𝛿→1
𝐸 𝛿 = 𝑄: General Case



Perturbation

• Perturb 𝜇 so that 𝜇full has full support:

𝜇full = 1 − 𝜀 𝜇 + 𝜀  𝑎∈A
1

𝐴
.

Mediator’s History

(𝑟,𝑚)

Pr(𝑟,𝑚|𝜇full)



Perturbation

• Perturb 𝜇 so that 𝜇full has full support:

𝜇full = 1 − 𝜀 𝜇 + 𝜀  𝑎∈A
1

𝐴
.

Mediator’s History

(𝑟,𝑚)

Pr(𝑟,𝑚|𝜇full)

Pr(𝑟,𝑚|𝜎𝑖 , 𝜇
full)



Perturbation

• Instead of 𝜇full, the mediator allows player 𝑖 to take 𝜎𝑖
with probability Pr(𝜎𝑖) such that Pr 𝑟,𝑚 𝜇full =

 𝜎𝑖 Pr 𝜎𝑖 Pr(𝑟,𝑚|𝜇
full) for all 𝑟,𝑚.

Mediator’s History

(𝑟,𝑚)

Pr(𝑟,𝑚|𝜇full)

Pr(𝑟,𝑚|𝜎𝑖 , 𝜇
full)



Perturbation

• We take 𝜎𝑖 such that Pr(𝑟,𝑚|𝜎𝑖 , 𝜇
full) is an extreme 

point.

• We can make sure that player 𝑖 has the strict incentive 
to follow the equilibrium strategy.

Mediator’s History

(𝑟,𝑚)

Pr(𝑟,𝑚|𝜇full)

Pr(𝑟,𝑚|𝜎𝑖 , 𝜇
full)



There exist 𝜇 and 𝑥 𝑟, 𝑦 such that

1. Promise Keeping:

𝑣 = 𝑢 𝜇 + 𝔼 𝑥 𝑟, 𝑦 |𝜇 . 

2. Strict incentive compatibility:  For each 𝑖 and non 
faithful 𝜎𝑖,

𝔼 𝑢𝑖 𝑟 + 𝑥𝑖 𝑟, 𝑦 |𝜇

> 𝔼 𝑢𝑖 𝑎𝑖 , 𝑟−𝑖 + 𝑥𝑖 𝑟,𝑚𝑖 , 𝑦−𝑖 |𝜎𝑖 , 𝜇 .

3. For each 𝑟𝑖 ∈ supp(𝜇𝑖), the affine hull of Pr(𝑦𝑖|𝑟𝑖 , 𝑟−𝑖)
with respect to 𝑟−𝑖 ∈ supp(𝜇−𝑖|𝑟𝑖) is equal to the 
affine hull of Pr(𝑦𝑖|𝑟𝑖 , 𝑟−𝑖) with respect to 𝑟−𝑖 ∈ 𝐴−𝑖.

4. Ex-ante self generation:

𝔼 𝜆 ∙ 𝑥 𝑟, 𝑦 |𝜇 ≤ 0.

Given this Operation, …


