Strategic Departure Decisions and Correlation in Dynamic Congestion Games

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

IMS Program on Stochastic Methods in Game Theory Congestion Games Workshop Dec 14-18

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.
- Wishes to depart as late as possible.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.
- Wishes to depart as late as possible.
- But, pays a large penalty cost if she arrives after time a^{\star}.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.
- Wishes to depart as late as possible.
- But, pays a large penalty cost if she arrives after time a^{\star}.
- Traffic: Want to depart as late as possible before work.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.
- Wishes to depart as late as possible.
- But, pays a large penalty cost if she arrives after time a^{\star}.
- Traffic: Want to depart as late as possible before work.
- Seasonal Joint Production: Want to gather information about tastes.

Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^{\star}.
- Utilizing a common fixed capacity network.
- Player i strategically chooses a departure time $d_{i}<a^{\star}$.
- Wishes to depart as late as possible.
- But, pays a large penalty cost if she arrives after time a^{\star}.
- Traffic: Want to depart as late as possible before work.
- Seasonal Joint Production: Want to gather information about tastes.

In this talk

- Single origin, single destination, single edge of length 1 , capacity 1 .

In this talk

- Single origin, single destination, single edge of length 1 , capacity 1.
- Arrival time $a^{\star}=0$, departure time $d_{i} \in \mathbb{Z}_{-}$.

In this talk

- Single origin, single destination, single edge of length 1 , capacity 1.
- Arrival time $a^{\star}=0$, departure time $d_{i} \in \mathbb{Z}_{-}$.
- Uniform Random Priority: Ties are broken uniformly.
- But, earlier departures have priority over later departures.

In this talk

- Single origin, single destination, single edge of length 1 , capacity 1.
- Arrival time $a^{\star}=0$, departure time $d_{i} \in \mathbb{Z}_{-}$.
- Uniform Random Priority: Ties are broken uniformly.
- But, earlier departures have priority over later departures.
- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

In this talk

- Single origin, single destination, single edge of length 1 , capacity 1.
- Arrival time $a^{\star}=0$, departure time $d_{i} \in \mathbb{Z}_{-}$.
- Uniform Random Priority: Ties are broken uniformly.
- But, earlier departures have priority over later departures.
- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- Assume without loss $r_{i}\left(d_{i}\right)=-d_{i}$.

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.
- Examples:
- $f\left(a_{i}, C\right)=a_{i} \cdot C$; pay C for each period you are late.

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.
- Examples:
- $f\left(a_{i}, C\right)=a_{i} \cdot C$; pay C for each period you are late.
- $f\left(a_{i}, C\right)=a_{i}+C$; pay C once, pay for additional periods in transit.

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.
- Examples:
- $f\left(a_{i}, C\right)=a_{i} \cdot C$; pay C for each period you are late.
- $f\left(a_{i}, C\right)=a_{i}+C$; pay C once, pay for additional periods in transit.
- $f\left(a_{i}, C\right)=a_{i}+\sqrt{a_{i}} \cdot C$

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.
- Examples:
- $f\left(a_{i}, C\right)=a_{i} \cdot C$; pay C for each period you are late.
- $f\left(a_{i}, C\right)=a_{i}+C$; pay C once, pay for additional periods in transit.
- $f\left(a_{i}, C\right)=a_{i}+\sqrt{a_{i}} \cdot C$
- We assume $f\left(a_{i}, C\right)=C, C$ large, and obtain results robust to model selection.

Penalty Costs

- Cost of player $i \in I=\{1, \ldots, n\}$ under pure profile d :

$$
R_{i}\left(d_{i}, d_{-i}\right)=r_{i}\left(d_{i}\right)+\mathbb{1}_{a_{i}>0} \cdot f\left(a_{i}, C\right)
$$

- $f\left(a_{i}, C\right)$ penalty increasing in arrival time a_{i} and $C ; f(1, C)=C$.
- Examples:
- $f\left(a_{i}, C\right)=a_{i} \cdot C$; pay C for each period you are late.
- $f\left(a_{i}, C\right)=a_{i}+C$; pay C once, pay for additional periods in transit.
- $f\left(a_{i}, C\right)=a_{i}+\sqrt{a_{i}} \cdot C$
- We assume $f\left(a_{i}, C\right)=C, C$ large, and obtain results robust to model selection.
- IMPORTANT: We consider fixed n and assume C is large w.r.t. n.

A 3-player Example

A 3-player Example

A 3-player Example

Departures
$d \quad P 1$

A 3-player Example

A 3-player Example

A 3-player Example

Departures
$d \quad P 1$

A 3-player Example

A 3-player Example

Departures
$d \quad P 1$

- No player is ever late $\Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

Departures
$d \quad P 1$

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

$$
\begin{array}{lll}
-3 & -2 & -1 \tag{0}
\end{array}
$$

Departures
d

$P 1, P 2, P 3$

A 3-player Example

Departures
d $\quad P 1$

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

Departures
$d \quad P 1$

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

$$
\begin{array}{lll}
-3 & -2 & -1 \tag{0}
\end{array}
$$

Departures
d

$P 1, P 2, P 3$

A 3-player Example

Departures
d $\quad P 1$

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

Departures
d

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

Departures
d

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

A 3-player Example

Departures

- No player is ever late $\quad \Longrightarrow \quad R_{1}=3, R_{2}=R_{3}=2$.

- Each player is late with prob $\frac{1}{3} \Longrightarrow R_{1}=R_{2}=R_{3}=2+\frac{1}{3} \cdot C$

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- $\sigma^{\text {opt }}$; one player departs at each time $t \in\{-n,-(n-1), \ldots,-1\}$.

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- $\sigma^{\text {opt }}$; one player departs at each time $t \in\{-n,-(n-1), \ldots,-1\}$.

$$
\begin{array}{llll}
-3 & -2 & -1 & 0
\end{array}
$$

Departures
$\sigma^{o p t}$
P1
P2
P3

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- $\sigma^{\text {opt }}$; one player departs at each time $t \in\{-n,-(n-1), \ldots,-1\}$.

$$
\begin{array}{lll}
-3 & -2 & -1
\end{array}
$$

Departures
$\sigma^{o p t}$

P2

- $\sigma^{o p t}$ is not a Nash Equilibrium.

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- $\sigma^{\text {opt }}$; one player departs at each time $t \in\{-n,-(n-1), \ldots,-1\}$.

$$
\begin{array}{lll}
-3 & -2 & -1
\end{array}
$$

Departures
$\sigma^{\text {opt }}$

Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- $\sigma^{\text {opt }}$; one player departs at each time $t \in\{-n,-(n-1), \ldots,-1\}$.

- $\sigma^{o p t}$ is not a Nash Equilibrium.
- Deviation: P1 can deviation to time -2 .
- P3 is late, but P1 and P2 are not.

Nash Equilibrium Results

- We present our results for the class of games with $C>n$.

Nash Equilibrium Results

- We present our results for the class of games with $C>n$.
- Result 1: There are no pure Nash Equilibrium.

Nash Equilibrium Results

- We present our results for the class of games with $C>n$.
- Result 1: There are no pure Nash Equilibrium.
- Result 2: For all $C>n$, the worst NE payoff is obtained by $\sigma^{\text {wst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{\text {wst }}\right)=\{-n,-(n-1)\} \quad \text { for all } i \in I
$$

Nash Equilibrium Results

- We present our results for the class of games with $C>n$.
- Result 1: There are no pure Nash Equilibrium.
- Result 2: For all $C>n$, the worst NE payoff is obtained by $\sigma^{\text {wst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{\text {wst }}\right)=\{-n,-(n-1)\} \quad \text { for all } i \in I
$$

- $\sigma^{w s t}$ is characterized by the symmetric strategy:

$$
\sigma_{i}^{\text {wst }}(n)=1-\left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma_{i}^{w s t}(n-1)=\left(\frac{n}{C}\right)^{\frac{1}{n-1}}
$$

Nash Equilibrium Results

- We present our results for the class of games with $C>n$.
- Result 1: There are no pure Nash Equilibrium.
- Result 2: For all $C>n$, the worst NE payoff is obtained by $\sigma^{\text {wst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{\text {wst }}\right)=\{-n,-(n-1)\} \quad \text { for all } i \in I
$$

- $\sigma^{w s t}$ is characterized by the symmetric strategy:

$$
\sigma_{i}^{\text {wst }}(n)=1-\left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma_{i}^{\text {wst }}(n-1)=\left(\frac{n}{C}\right)^{\frac{1}{n-1}}
$$

- (Sketch of Proof):
- Time $-n$ is a safe time so $R_{i}(\sigma) \leq n$ in any equilibrium σ.
- $\sigma^{\text {wst }}$ is a NE that gives each player a payoff of exactly n.

The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $S C(\sigma):=\sum_{i \in I} R_{i}(\sigma)$.

$$
S C\left(\sigma^{o p t}\right)=\frac{n(n+1)}{2} \quad S C\left(\sigma^{w s t}\right)=n^{2}
$$

The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $S C(\sigma):=\sum_{i \in I} R_{i}(\sigma)$.

$$
S C\left(\sigma^{o p t}\right)=\frac{n(n+1)}{2} \quad S C\left(\sigma^{w s t}\right)=n^{2}
$$

- Corollary [The Price of Anarchy]:

$$
P \circ A:=\frac{S C\left(\sigma^{w s t}\right)}{S C\left(\sigma^{o p t}\right)}=2-\frac{2}{n+1}
$$

The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $S C(\sigma):=\sum_{i \in I} R_{i}(\sigma)$.

$$
S C\left(\sigma^{o p t}\right)=\frac{n(n+1)}{2} \quad S C\left(\sigma^{w s t}\right)=n^{2}
$$

- Corollary [The Price of Anarchy]:

$$
P \circ A:=\frac{S C\left(\sigma^{w s t}\right)}{S C\left(\sigma^{o p t}\right)}=2-\frac{2}{n+1}
$$

- Conclusion: The worst equilibrium costs are roughly twice the optimum.

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\} \text { and } \operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\} \text { for all } j \neq i
$$

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\} \text { and } \operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\} \text { for all } j \neq i
$$

- (Sketch of Proof):

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with

$$
\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\} \text { and } \operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\} \text { for all } j \neq i
$$

- (Sketch of Proof):
- If no player departs at time $-n$ then at least one player is late for sure.

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with $\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\}$ and $\operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\}$ for all $j \neq i$.
- (Sketch of Proof):
- If no player departs at time $-n$ then at least one player is late for sure.
- As $C \rightarrow \infty$ the risk of being late becomes too large so there is a deviation to $-n$.

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with $\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\}$ and $\operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\}$ for all $j \neq i$.
- (Sketch of Proof):
- If no player departs at time $-n$ then at least one player is late for sure.
- As $C \rightarrow \infty$ the risk of being late becomes too large so there is a deviation to $-n$.
- Hence for large C, there exists $i \in I$ such that $-n \in \operatorname{supp}\left(\sigma_{i}^{b s t}\right)$.

The Price of Stability

- Result 3: There exists $\bar{C} \in\left(n, n^{2}\right)$ such that for all $C>\bar{C}$ the best equilibrium payoffs are obtained by $\sigma^{\text {bst }}$ with $\operatorname{supp}\left(\sigma_{i}^{b s t}\right)=\{-n\}$ and $\operatorname{supp}\left(\sigma_{j}^{b s t}\right)=\{-(n-1),-(n-2)\}$ for all $j \neq i$.
- (Sketch of Proof):
- If no player departs at time $-n$ then at least one player is late for sure.
- As $C \rightarrow \infty$ the risk of being late becomes too large so there is a deviation to $-n$.
- Hence for large C, there exists $i \in I$ such that $-n \in \operatorname{supp}\left(\sigma_{i}^{b s t}\right)$.
- But then, at least $n-1$ players must mix over time $-(n-1)$.

The Price of Stability

- Corollary [Price of Stability]: There exists $\bar{C} \in\left(n, n^{2}\right]$ such that for all $C>\bar{C}$

$$
P o S:=\frac{S C\left(\sigma^{b s t}\right)}{S C\left(\sigma^{o p t}\right)}=\frac{n+(n-1)^{2}}{\frac{n(n+1)}{2}}=2+\frac{2}{n(n+1)}-\frac{4}{n+1}
$$

The Price of Stability

- Corollary [Price of Stability]: There exists $\bar{C} \in\left(n, n^{2}\right.$] such that for all $C>\bar{C}$

$$
P o S:=\frac{S C\left(\sigma^{b s t}\right)}{S C\left(\sigma^{o p t}\right)}=\frac{n+(n-1)^{2}}{\frac{n(n+1)}{2}}=2+\frac{2}{n(n+1)}-\frac{4}{n+1}
$$

- Conclusion: The best Nash equilibrium cost is also roughly twice the social optimum.

The Price of Stability

- Corollary [Price of Stability]: There exists $\bar{C} \in\left(n, n^{2}\right.$] such that for all $C>\bar{C}$

$$
P o S:=\frac{S C\left(\sigma^{b s t}\right)}{S C\left(\sigma^{o p t}\right)}=\frac{n+(n-1)^{2}}{\frac{n(n+1)}{2}}=2+\frac{2}{n(n+1)}-\frac{4}{n+1}
$$

- Conclusion: The best Nash equilibrium cost is also roughly twice the social optimum.
- Question: Is there any way to coordinate the players actions to obtain an outcome closer to the social optimum?

Correlated Equilibrium Example

- The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_{i}.

Correlated Equilibrium Example

- The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_{i}.
- If playing s_{i} is optimal for each $i \in I$ and s_{i} in the support of Q
- Given beliefs about s_{-i} formed using $s \sim Q$.

Correlated Equilibrium Example

- The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_{i}.
- If playing s_{i} is optimal for each $i \in I$ and s_{i} in the support of Q
- Given beliefs about s_{-i} formed using $s \sim Q$.
- Then Q is a correlated equilibrium.

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$s^{\prime}:=$	$P 1$	$P 2$	$P 3$	$P 4$
$s^{\prime \prime}:=$	$P 1$	$P 2$	$P 3, P 4$	
$s^{\prime \prime \prime}:=$	$P 1$	$P 2, P 3, P 4$		

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$$
\begin{array}{lcccc}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & P 1 & P 2 & P 3 \\
& s^{\prime \prime}:= & P 1 & P 2 & P 3, P 4 \\
& s^{\prime \prime \prime}:= & P 1 & P 2, P 3, P 4 &
\end{array}
$$

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$$
\begin{array}{llccc}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & P 1 & P 2 & P 3 \\
Q^{\star}\left(s^{\prime \prime}\right)=\frac{21}{100} & s^{\prime \prime}:= & P 1 & P 2 & P 3, P 4 \\
& s^{\prime \prime \prime}:= & P 1 & P 2, P 3, P 4 &
\end{array}
$$

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$Q^{\star}\left(s^{\prime}\right)=\frac{59}{100}$	$s^{\prime}:=$	$P 1$	$P 2$	$P 3$	$P 4$
$Q^{\star}\left(s^{\prime \prime}\right)=\frac{21}{100}$	$s^{\prime \prime}:=$	$P 1$	$P 2$	$P 3, P 4$	
$Q^{\star}\left(s^{\prime \prime \prime}\right)=\frac{20}{100}$	$s^{\prime \prime \prime}:=$	$P 1$	$P 2, P 3, P 4$		

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$$
\begin{array}{lllcc}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & P 1 \longrightarrow & P 2 & P 3
\end{array}
$$

- Claim: No deviation by P1 to time -3.

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$$
\begin{array}{lllcc}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & P 1 \longrightarrow & P 2 & P 3
\end{array}
$$

- Claim: No deviation by P1 to time -3.

$$
R_{1}\left(Q^{\star}\right)=4
$$

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{cccc}
-4 & -3 & -2 & -1 \\
& & \\
& P 1, P 2 & P 3 & P 4 \\
& P 1, P 2 & P 3, P 4 \\
& \\
& \\
&
\end{array}
$$

Departures

$$
\begin{array}{lll}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & \longrightarrow P 1, P 2
\end{array}
$$

- Claim: No deviation by P1 to time -3.

$$
R_{1}\left(Q^{\star}\right)=4 \leq 3+\frac{20}{100} \cdot \frac{C}{4}
$$

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{ccc}
-4 & -3 & -2 \\
& & -1 \\
& P P 1, P 2 & P 3
\end{array}
$$

Departures

$$
\begin{array}{lllc}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & \longrightarrow P 1, P 2 & P 3 \\
Q^{\star}\left(s^{\prime \prime}\right)=\frac{21}{100} & s^{\prime \prime}:= & \longrightarrow P 4 \\
Q^{\star}\left(s^{\prime \prime \prime}\right)=\frac{20}{100} & s^{\prime \prime \prime}:= & \rightarrow P 1, P 2, P 3, P 4
\end{array}
$$

- Claim: No deviation by P1 to time -3.

$$
R_{1}\left(Q^{\star}\right)=4 \leq 3+\frac{20}{100} \cdot \frac{C}{4}=4=R_{1}\left(-3, Q_{-1}^{\star}\right)
$$

Example: 4 players, $\mathrm{C}=20$.

$$
\begin{array}{llll}
-4 & -3 & -2 & -1
\end{array}
$$

Departures

$$
\begin{array}{llll}
Q^{\star}\left(s^{\prime}\right)=\frac{59}{100} & s^{\prime}:= & \longrightarrow P 1, P 2 & P 3 \\
Q^{\star}\left(s^{\prime \prime}\right)=\frac{21}{100} & s^{\prime \prime}:= & \longrightarrow P 1, P 2 & P 3, \rho_{4} 4 \\
Q^{\star}\left(s^{\prime \prime \prime}\right)=\frac{20}{100} & s^{\prime \prime \prime}:= & \rightarrow P 1, P 2, P 3, P 4
\end{array}
$$

- Claim: No deviation by P1 to time -3.

$$
R_{1}\left(Q^{\star}\right)=4 \leq 3+\frac{20}{100} \cdot \frac{C}{4}=4=R_{1}\left(-3, Q_{-1}^{\star}\right)
$$

- Q^{\star} is a CE that yields the best SC:

$$
S C\left(\sigma^{b s t}\right)=13 \quad S C\left(\sigma^{o p t}\right)=10 \quad S C\left(Q^{\star}\right)=10.81
$$

Characterizing Best Correlated Equilibrium

- $S=\mathbb{Z}_{-}^{n}$, we look for $C E Q \in \Delta(S)$ that minimize

$$
S C(Q):=\sum_{s \in S} Q(s) S C(s)
$$

- Only interested in $Q \in \Delta\left(S^{Y}\right)$: set of outcomes where no player is late.
- Enforcing strategies: $s \in S$ enforces time k for player i if when i is told to depart at time k, she is late with positive probability when departing at time $k-1$ instead, when others play s_{-i}.
- $Z^{i, k}$ set of strategies that enforce k for player i.
- $S^{i, k}=\left\{s \in S: s_{i}=k\right\}$.
- Lemma: $Q \in \Delta\left(S^{Y}\right)$ is a correlated equilibrium of $S D$ game with penalty C if and only if for all $i \in I$

$$
\sum_{s \in Z^{i, k}} Q(s) \geq \frac{k}{C}\left[\sum_{s \in S^{i, k}} Q(s)\right] \quad \text { for } k=2, \ldots, n
$$

- Proof:
- Lemma: $Q \in \Delta\left(S^{\curlyvee}\right)$ is a correlated equilibrium of $S D$ game with penalty C if and only if for all $i \in I$

$$
\sum_{s \in Z^{i}, k} Q(s) \geq \frac{k}{C}\left[\sum_{s \in S^{i}, k} Q(s)\right] \quad \text { for } k=2, \ldots, n
$$

- Proof:
- $s \in Z^{i, k}$ means exactly $k-1$ other players depart at time $-(k-1)$.
- Lemma: $Q \in \Delta\left(S^{\curlyvee}\right)$ is a correlated equilibrium of $S D$ game with penalty C if and only if for all $i \in I$

$$
\sum_{s \in Z^{i}, k} Q(s) \geq \frac{k}{C}\left[\sum_{s \in S^{i}, k} Q(s)\right] \quad \text { for } k=2, \ldots, n
$$

- Proof:
- $s \in Z^{i, k}$ means exactly $k-1$ other players depart at time $-(k-1)$.
- Hence, if the outcomes is s and player i departs instead at $-(k-1)$ he is late with probability $\frac{1}{k}$.
- Lemma: $Q \in \Delta\left(S^{\curlyvee}\right)$ is a correlated equilibrium of $S D$ game with penalty C if and only if for all $i \in I$

$$
\sum_{s \in Z^{i}, k} Q(s) \geq \frac{k}{C}\left[\sum_{s \in S^{i}, k} Q(s)\right] \quad \text { for } k=2, \ldots, n
$$

- Proof:
- $s \in Z^{i, k}$ means exactly $k-1$ other players depart at time $-(k-1)$.
- Hence, if the outcomes is s and player i departs instead at $-(k-1)$ he is late with probability $\frac{1}{k}$.
- So player i, being told to depart at $-k$ does not want to deviate to $-(k-1)$ only if

$$
k \leq k-1+\mathbb{P}\left(s \in Z^{i, k} \mid s_{i}=-k\right) \cdot \frac{C}{k}
$$

- Lemma: $Q \in \Delta\left(S^{\curlyvee}\right)$ is a correlated equilibrium of $S D$ game with penalty C if and only if for all $i \in I$

$$
\sum_{s \in Z^{i, k}} Q(s) \geq \frac{k}{C}\left[\sum_{s \in S^{i, k}} Q(s)\right] \quad \text { for } k=2, \ldots, n
$$

- Proof:
- $s \in Z^{i, k}$ means exactly $k-1$ other players depart at time $-(k-1)$.
- Hence, if the outcomes is s and player i departs instead at $-(k-1)$ he is late with probability $\frac{1}{k}$.
- So player i, being told to depart at $-k$ does not want to deviate to $-(k-1)$ only if

$$
k \leq k-1+\mathbb{P}\left(s \in Z^{i, k} \mid s_{i}=-k\right) \cdot \frac{C}{k}
$$

and

$$
\mathbb{P}\left(s \in Z^{i, k} \mid s_{i}=-k\right)=\frac{\sum_{s \in Z^{i, k}} Q(s)}{\sum_{s \in S^{i, k}} Q(s)}
$$

From Strategies to Outcomes

$$
s=(4,3,3,3) \rightarrow y^{s}=(1,3,0,0)
$$

- Working with strategies is difficult so we switch to distributions $Q^{\circ} \in \Delta(Y)$. Y outcomes where no one is late.

From Strategies to Outcomes

$$
s=(4,3,3,3) \rightarrow y^{s}=(1,3,0,0)
$$

- Working with strategies is difficult so we switch to distributions $Q^{\circ} \in \Delta(Y)$. Y outcomes where no one is late.
- Implementation: Draw y from $Q^{\circ} \in \Delta(Y)$.

From Strategies to Outcomes

$$
s=(4,3,3,3) \rightarrow y^{s}=(1,3,0,0)
$$

- Working with strategies is difficult so we switch to distributions $Q^{\circ} \in \Delta(Y)$. Y outcomes where no one is late.
- Implementation: Draw y from $Q^{\circ} \in \Delta(Y)$.
- Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.

From Strategies to Outcomes

$$
s=(4,3,3,3) \rightarrow y^{s}=(1,3,0,0)
$$

- Working with strategies is difficult so we switch to distributions $Q^{\circ} \in \Delta(Y)$. Y outcomes where no one is late.
- Implementation: Draw y from $Q^{\circ} \in \Delta(Y)$.
- Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.
- If $y=(1,3,0,0)$ then

$$
S(y)=\{(4,3,3,3),(3,4,3,3),(3,3,4,3),(3,3,3,4)\}
$$

From Strategies to Outcomes

$$
s=(4,3,3,3) \rightarrow y^{s}=(1,3,0,0)
$$

- Working with strategies is difficult so we switch to distributions $Q^{\circ} \in \Delta(Y)$. Y outcomes where no one is late.
- Implementation: Draw y from $Q^{\circ} \in \Delta(Y)$.
- Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.
- If $y=(1,3,0,0)$ then

$$
S(y)=\{(4,3,3,3),(3,4,3,3),(3,3,4,3),(3,3,3,4)\}
$$

- We show it is without loss to restrict attention to distributions over outcomes with this implementation.

A Best Correlated Equilibrium

- Let $y^{k}=(1, \ldots, 1, k-1,0, \ldots, 0) . y^{2}$ is the socially optimal outcome.

A Best Correlated Equilibrium

- Let $y^{k}=(1, \ldots, 1, k-1,0, \ldots, 0) . y^{2}$ is the socially optimal outcome.

Theorem: There exists \bar{C} such that for all $C>\bar{C}$, the best correlated equilibrium payoff is generated by $Q^{\star} \in \Delta\left(S^{Y}\right)$:

$$
Q^{\star}(s)=\frac{1}{\left|S\left(y^{s}\right)\right|} \hat{Q}^{o}\left(y^{s}\right)
$$

and $\hat{Q}^{\circ}(y) \in \Delta(Y)$ satisfies

$$
\begin{gathered}
\hat{Q}^{o}\left(y^{k}\right)=\frac{k}{C}\left[k \hat{Q}^{o}\left(y^{k+1}\right)+\sum_{j=2}^{k} \hat{Q}^{o}\left(y^{j}\right)\right] \text { for } k=3, \ldots, n \\
\hat{Q}^{o}\left(y^{2}\right)=1-\sum_{j=3}^{n} \hat{Q}^{o}\left(y^{j}\right)
\end{gathered}
$$

A Best Correlated Equilibrium

- Let $y^{k}=(1, \ldots, 1, k-1,0, \ldots, 0) . y^{2}$ is the socially optimal outcome.

Theorem: There exists \bar{C} such that for all $C>\bar{C}$, the best correlated equilibrium payoff is generated by $Q^{\star} \in \Delta\left(S^{\curlyvee}\right)$:

$$
Q^{\star}(s)=\frac{1}{\left|S\left(y^{s}\right)\right|} \hat{Q}^{o}\left(y^{s}\right)
$$

and $\hat{Q}^{\circ}(y) \in \Delta(Y)$ satisfies

$$
\begin{gathered}
\hat{Q}^{o}\left(y^{k}\right)=\frac{k}{C}\left[k \hat{Q}^{o}\left(y^{k+1}\right)+\sum_{j=2}^{k} \hat{Q}^{o}\left(y^{j}\right)\right] \text { for } k=3, \ldots, n \\
\hat{Q}^{o}\left(y^{2}\right)=1-\sum_{j=3}^{n} \hat{Q}^{o}\left(y^{j}\right)
\end{gathered}
$$

Corollary: As $C \rightarrow \infty, Q^{\star}\left(\sigma^{o p t}\right) \rightarrow 1$.

A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following toll pricing mechanism \mathcal{M}_{τ} : Any player exiting the road after time 0 pays a large toll of τ.

A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following toll pricing mechanism \mathcal{M}_{τ} : Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon>0$ there exists $\tau>0$ such that Q^{\star} is implementable with the mechanism \mathcal{M}_{τ} and

$$
Q^{\star}\left(\sigma^{o p t}\right)=1-\epsilon
$$

A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following toll pricing mechanism \mathcal{M}_{τ} : Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon>0$ there exists $\tau>0$ such that Q^{\star} is implementable with the mechanism \mathcal{M}_{τ} and

$$
Q^{\star}\left(\sigma^{o p t}\right)=1-\epsilon
$$

- Proof: \mathcal{M}_{τ} effectively increases $C \rightarrow C+\tau$.

A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following toll pricing mechanism \mathcal{M}_{τ} : Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon>0$ there exists $\tau>0$ such that Q^{\star} is implementable with the mechanism \mathcal{M}_{τ} and

$$
Q^{\star}\left(\sigma^{o p t}\right)=1-\epsilon
$$

- Proof: \mathcal{M}_{τ} effectively increases $C \rightarrow C+\tau$.
- Correlated Price of Stability:

$$
C P o S:=\frac{S C\left(Q^{\star}\right)}{S C\left(\sigma^{o p t}\right)}=1+\delta(C)
$$

- where $\delta(C) \rightarrow 0$ as $C \rightarrow \infty$.

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
C \leq 1 \quad \Longrightarrow \quad \operatorname{supp}\left(\sigma^{N E}\right)=\{0\}
$$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{ccc}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow & \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\}
\end{array}
$$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{cl}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\} \\
2<C<2.5 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,1,0\}
\end{array}
$$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{cl}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\} \\
2<C<2.5 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,1,0\} \\
2.5 \leq C<3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,0\}
\end{array}
$$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{cl}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\} \\
2<C<2.5 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,1,0\} \\
2.5 \leq C<3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,0\} \\
C=3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2\}
\end{array}
$$

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{cl}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\} \\
2<C<2.5 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,1,0\} \\
2.5 \leq C<3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,0\} \\
C=3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2\}
\end{array}
$$

- As C varies the equilibrium support varies. Exacerbated if $f\left(a_{i}, C\right) \neq C$.

Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium $\sigma^{N E}$

$$
\begin{array}{cl}
C \leq 1 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{0\} \\
1<C \leq 2 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{1,0\} \\
2<C<2.5 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,1,0\} \\
2.5 \leq C<3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2,0\} \\
C=3 & \Longrightarrow \operatorname{supp}\left(\sigma^{N E}\right)=\{2\}
\end{array}
$$

- As C varies the equilibrium support varies. Exacerbated if $f\left(a_{i}, C\right) \neq C$.

Corollary There exists $\bar{C} \in \mathbb{R}$ such that for all $C>\bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f\left(a_{i}, C\right)$.

Thank you!

thomas.rivera@hec.edu

