Strategic Departure Decisions and Correlation in Dynamic Congestion Games

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

IMS Program on Stochastic Methods in Game Theory Congestion Games Workshop Dec 14-18

• Players wish to arrive at a destination prior to time a^* .

• Utilizing a common fixed capacity network.

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.
- Wishes to depart as late as possible.

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.
- Wishes to depart as late as possible.
- But, pays a **large** penalty cost if she arrives after time a^* .

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.
- Wishes to depart as late as possible.
- But, pays a **large** penalty cost if she arrives after time a^* .
- ► Traffic: Want to depart as late as possible before work.

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.
- Wishes to depart as late as possible.
- But, pays a **large** penalty cost if she arrives after time a^* .
- ► Traffic: Want to depart as late as possible before work.
- ► Seasonal Joint Production: Want to gather information about tastes.

- Utilizing a common fixed capacity network.
- Player *i* strategically chooses a departure time $d_i < a^*$.
- Wishes to depart as late as possible.
- But, pays a **large** penalty cost if she arrives after time a^* .
- ► Traffic: Want to depart as late as possible before work.
- ► Seasonal Joint Production: Want to gather information about tastes.

► Single origin, single destination, single edge of length 1, capacity 1.

- ► Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.

- ► Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- ► Uniform Random Priority: Ties are broken uniformly.
 - ► But, earlier departures have priority over later departures.

- ► Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- ► Uniform Random Priority: Ties are broken uniformly.
 - ► But, earlier departures have priority over later departures.
- ► Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- ► Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- ► Uniform Random Priority: Ties are broken uniformly.
 - ► But, earlier departures have priority over later departures.
- ► Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

• Assume without loss $r_i(d_i) = -d_i$.

• Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

▶ Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

• $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.

▶ Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.
- ► Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.

▶ Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.
- ► Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.

▶ Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.
- ► Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.

•
$$f(a_i, C) = a_i + \sqrt{a_i} \cdot C$$

► Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.
- ► Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
 - $f(a_i, C) = a_i + \sqrt{a_i} \cdot C$
- ► We assume f(a_i, C) = C, C large, and obtain results robust to model selection.

• Cost of player $i \in I = \{1, ..., n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; f(1, C) = C.
- ► Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
 - $f(a_i, C) = a_i + \sqrt{a_i} \cdot C$
- ► We assume f(a_i, C) = C, C large, and obtain results robust to model selection.
- **IMPORTANT**: We consider **fixed** n and assume C is large w.r.t. n.

A 3-player Example

• No player is ever late \implies $R_1 = 3, R_2 = R_3 = 2.$

A 3-player Example

• No player is ever late \implies $R_1 = 3, R_2 = R_3 = 2.$

• Each player is late with prob $\frac{1}{3} \implies R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C$

► Interested in best/worst Nash Equilibrium payoffs.

- ► Interested in best/worst Nash Equilibrium payoffs.
- ► To compare with the socially optimal payoff.

- ► Interested in best/worst Nash Equilibrium payoffs.
- ► To compare with the *socially optimal payoff*.
- ► σ^{opt} ; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

- ► Interested in best/worst Nash Equilibrium payoffs.
- To compare with the *socially optimal payoff*.
- σ^{opt} ; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

- ► Interested in best/worst Nash Equilibrium payoffs.
- To compare with the *socially optimal payoff*.
- σ^{opt} ; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

• σ^{opt} is not a Nash Equilibrium.

- ► Interested in best/worst Nash Equilibrium payoffs.
- To compare with the *socially optimal payoff*.
- σ^{opt} ; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

• σ^{opt} is not a Nash Equilibrium.

▶ Deviation: P1 can deviation to time -2.

- ► Interested in best/worst Nash Equilibrium payoffs.
- To compare with the *socially optimal payoff*.
- σ^{opt} ; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

• σ^{opt} is not a Nash Equilibrium.

- ▶ Deviation: P1 can deviation to time -2.
- P3 is late, but P1 and P2 are not.

• We present our results for the class of games with C > n.

- We present our results for the class of games with C > n.
- **<u>Result 1</u>**: There are no pure Nash Equilibrium.

- We present our results for the class of games with C > n.
- **<u>Result 1</u>**: There are no pure Nash Equilibrium.
- **<u>Result 2</u>**: For all C > n, the worst NE payoff is obtained by σ^{wst} with

$$\operatorname{supp}(\sigma_i^{wst}) = \{-n, -(n-1)\}$$
 for all $i \in I$

- We present our results for the class of games with C > n.
- **<u>Result 1</u>**: There are no pure Nash Equilibrium.
- **<u>Result 2</u>**: For all C > n, the worst NE payoff is obtained by σ^{wst} with

$$\operatorname{supp}(\sigma_i^{wst}) = \{-n, -(n-1)\}$$
 for all $i \in I$

• σ^{wst} is characterized by the symmetric strategy:

$$\sigma_i^{wst}(n) = 1 - \left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma_i^{wst}(n-1) = \left(\frac{n}{C}\right)^{\frac{1}{n-1}}$$

- We present our results for the class of games with C > n.
- **<u>Result 1</u>**: There are no pure Nash Equilibrium.
- **<u>Result 2</u>**: For all C > n, the worst NE payoff is obtained by σ^{wst} with

$$\operatorname{supp}(\sigma_i^{wst}) = \{-n, -(n-1)\}$$
 for all $i \in I$

• σ^{wst} is characterized by the symmetric strategy:

$$\sigma_i^{wst}(n) = 1 - \left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma_i^{wst}(n-1) = \left(\frac{n}{C}\right)^{\frac{1}{n-1}}$$

- ► (Sketch of Proof):
 - Time -n is a *safe* time so $R_i(\sigma) \leq n$ in any equilibrium σ .
 - σ^{wst} is a NE that gives each player a payoff of exactly *n*.

The Price of Anarchy

- ► The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

$$SC(\sigma^{opt}) = \frac{n(n+1)}{2}$$
 $SC(\sigma^{wst}) = n^2$

The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

$$SC(\sigma^{opt}) = \frac{n(n+1)}{2}$$
 $SC(\sigma^{wst}) = n^2$

• Corollary [The Price of Anarchy]:

$$PoA := \frac{SC(\sigma^{wst})}{SC(\sigma^{opt})} = 2 - \frac{2}{n+1}$$

The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

$$SC(\sigma^{opt}) = \frac{n(n+1)}{2}$$
 $SC(\sigma^{wst}) = n^2$

• Corollary [The Price of Anarchy]:

$$PoA := \frac{SC(\sigma^{wst})}{SC(\sigma^{opt})} = 2 - \frac{2}{n+1}$$

<u>Conclusion</u>: The worst equilibrium costs are roughly *twice* the optimum.

• **<u>Result 3</u>**: There exists $\overline{C} \in (n, n^2)$ such that for all $C > \overline{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

▶ **<u>Result 3</u>**: There exists $\overline{C} \in (n, n^2)$ such that for all $C > \overline{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

supp $(\sigma_i^{bst}) = \{-n\}$ and supp $(\sigma_j^{bst}) = \{-(n-1), -(n-2)\}$ for all $j \neq i$.

► (Sketch of Proof):

• **<u>Result 3</u>**: There exists $\overline{C} \in (n, n^2)$ such that for all $C > \overline{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

- ► (Sketch of Proof):
- If no player departs at time -n then at least one player is late for sure.

• **<u>Result 3</u>**: There exists $\overline{C} \in (n, n^2)$ such that for all $C > \overline{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

- ► (Sketch of Proof):
- If no player departs at time -n then at least one player is late for sure.
- ► As $C \to \infty$ the risk of being late becomes too large so there is a deviation to -n.

▶ **<u>Result 3</u>**: There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

- ► (Sketch of Proof):
- If no player departs at time -n then at least one player is late for sure.
- As C → ∞ the risk of being late becomes too large so there is a deviation to -n.
- ▶ Hence for large *C*, there exists $i \in I$ such that $-n \in \operatorname{supp}(\sigma_i^{bst})$.

• **<u>Result 3</u>**: There exists $\overline{C} \in (n, n^2)$ such that for all $C > \overline{C}$ the *best* equilibrium payoffs are obtained by σ^{bst} with

- ► (Sketch of Proof):
- If no player departs at time -n then at least one player is late for sure.
- As C → ∞ the risk of being late becomes too large so there is a deviation to -n.
- ▶ Hence for large *C*, there exists $i \in I$ such that $-n \in \operatorname{supp}(\sigma_i^{bst})$.
- But then, at least n-1 players must mix over time -(n-1).

• Corollary [Price of Stability]: There exists $\overline{C} \in (n, n^2]$ such that for all $C > \overline{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n-1)^2}{\frac{n(n+1)}{2}} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$

• Corollary [Price of Stability]: There exists $\overline{C} \in (n, n^2]$ such that for all $C > \overline{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n-1)^2}{\frac{n(n+1)}{2}} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$

<u>Conclusion</u>: The *best* Nash equilibrium cost is also roughly twice the social optimum.

• Corollary [Price of Stability]: There exists $\overline{C} \in (n, n^2]$ such that for all $C > \overline{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n-1)^2}{\frac{n(n+1)}{2}} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$

<u>Conclusion</u>: The *best* Nash equilibrium cost is also roughly twice the social optimum.

Question: Is there any way to coordinate the players actions to obtain an outcome closer to the social optimum?

Correlated Equilibrium Example

• The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_i .

Correlated Equilibrium Example

- ► The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_i .
- If playing s_i is optimal for each $i \in I$ and s_i in the support of Q
 - Given beliefs about s_{-i} formed using $s \sim Q$.

Correlated Equilibrium Example

- ► The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_i .
- If playing s_i is optimal for each $i \in I$ and s_i in the support of Q
 - Given beliefs about s_{-i} formed using $s \sim Q$.
- Then Q is a correlated equilibrium.

► Claim: No deviation by P1 to time -3.

► Claim: No deviation by P1 to time -3.

$$R_1(Q^\star) = 4$$

► Claim: No deviation by P1 to time -3.

$$R_1(Q^{\star}) = 4 \leq 3 + rac{20}{100} \cdot rac{C}{4}$$
Example: 4 players, C=20.

► Claim: No deviation by P1 to time -3.

$$R_1(Q^{\star}) = 4 \leq 3 + rac{20}{100} \cdot rac{C}{4} = 4 = R_1(-3, Q_{-1}^{\star})$$

Example: 4 players, C=20.

► Claim: No deviation by P1 to time -3.

$$R_1(Q^{\star}) = 4 \le 3 + rac{20}{100} \cdot rac{C}{4} = 4 = R_1(-3, Q_{-1}^{\star})$$

$$SC(\sigma^{bst}) = 13$$
 $SC(\sigma^{opt}) = 10$ $SC(Q^{\star}) = 10.81$

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

Characterizing Best Correlated Equilibrium

▶ $S = \mathbb{Z}^n_-$, we look for CE $Q \in \Delta(S)$ that minimize

$$SC(Q) := \sum_{s \in S} Q(s)SC(s)$$

- ► Only interested in Q ∈ Δ(S^Y): set of outcomes where no player is late.
- Enforcing strategies: s ∈ S enforces time k for player i if when i is told to depart at time k, she is late with positive probability when departing at time k − 1 instead, when others play s_{-i}.
- $Z^{i,k}$ set of strategies that enforce k for player i.

►
$$S^{i,k} = \{s \in S : s_i = k\}.$$

• Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \ge \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{ for } k = 2, ..., n$$

• Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \ge \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{for } k = 2, ..., n$$

- ► Proof:
- $s \in Z^{i,k}$ means exactly k-1 other players depart at time -(k-1).

► Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \ge \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{for } k = 2, ..., n$$

- Proof:
- ▶ $s \in Z^{i,k}$ means exactly k-1 other players depart at time -(k-1).
- ► Hence, if the outcomes is s and player i departs instead at -(k 1) he is late with probability ¹/_k.

► Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \ge \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{for } k = 2, ..., n$$

- Proof:
- $s \in Z^{i,k}$ means exactly k-1 other players depart at time -(k-1).
- ► Hence, if the outcomes is s and player i departs instead at -(k 1) he is late with probability ¹/_k.
- So player *i*, being told to depart at −k does not want to deviate to −(k − 1) only if

$$k \leq k - 1 + \mathbb{P}(s \in Z^{i,k} | s_i = -k) \cdot \frac{C}{k}$$

► Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \ge \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{for } k = 2, ..., n$$

- Proof:
- $s \in Z^{i,k}$ means exactly k-1 other players depart at time -(k-1).
- ► Hence, if the outcomes is s and player i departs instead at -(k 1) he is late with probability ¹/_k.
- So player *i*, being told to depart at −k does not want to deviate to −(k − 1) only if

$$k \leq k - 1 + \mathbb{P}(s \in Z^{i,k} | s_i = -k) \cdot \frac{C}{k}$$

and

$$\mathbb{P}(s \in Z^{i,k} | s_i = -k) = rac{\sum_{s \in Z^{i,k}} Q(s)}{\sum_{s \in S^{i,k}} Q(s)}$$

$$s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0)$$

► Working with strategies is difficult so we switch to distributions Q^o ∈ Δ(Y). Y outcomes where no one is late.

$$s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0)$$

- ► Working with strategies is difficult so we switch to distributions Q^o ∈ Δ(Y). Y outcomes where no one is late.
- Implementation: Draw y from $Q^o \in \Delta(Y)$.

$$s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0)$$

- ► Working with strategies is difficult so we switch to distributions Q^o ∈ Δ(Y). Y outcomes where no one is late.
- Implementation: Draw y from $Q^o \in \Delta(Y)$.
- ▶ Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.

$$s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0)$$

- ► Working with strategies is difficult so we switch to distributions Q^o ∈ Δ(Y). Y outcomes where no one is late.
- Implementation: Draw y from $Q^o \in \Delta(Y)$.
- ▶ Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.
- If y = (1, 3, 0, 0) then

 $S(y) = \{(4,3,3,3), (3,4,3,3), (3,3,4,3), (3,3,3,4)\}$

$$s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0)$$

- ► Working with strategies is difficult so we switch to distributions Q^o ∈ Δ(Y). Y outcomes where no one is late.
- Implementation: Draw y from $Q^o \in \Delta(Y)$.
- ▶ Then draw $s \in S(y)$ that induces y with uniform probability $\frac{1}{|S(y)|}$.
- If y = (1, 3, 0, 0) then

 $S(y) = \{(4,3,3,3), (3,4,3,3), (3,3,4,3), (3,3,3,4)\}$

 We show it is without loss to restrict attention to distributions over outcomes with this implementation.

A Best Correlated Equilibrium

• Let $y^k = (1, ..., 1, k - 1, 0, ..., 0)$. y^2 is the socially optimal outcome.

A Best Correlated Equilibrium

• Let $y^k = (1, ..., 1, k - 1, 0, ..., 0)$. y^2 is the socially optimal outcome.

<u>**Theorem:**</u> There exists \overline{C} such that for all $C > \overline{C}$, the best correlated equilibrium payoff is generated by $Q^* \in \Delta(S^Y)$:

$$Q^{\star}(s) = \frac{1}{|S(y^s)|} \hat{Q}^o(y^s)$$

and $\hat{Q}^o(y) \in \Delta(Y)$ satisfies

$$\hat{Q}^{o}(y^{k}) = \frac{k}{C} [k \hat{Q}^{o}(y^{k+1}) + \sum_{j=2}^{k} \hat{Q}^{o}(y^{j})]$$
 for $k = 3, ..., n$

$$\hat{Q}^{o}(y^{2}) = 1 - \sum_{j=3}^{n} \hat{Q}^{o}(y^{j})$$

A Best Correlated Equilibrium

• Let $y^k = (1, ..., 1, k - 1, 0, ..., 0)$. y^2 is the socially optimal outcome.

<u>**Theorem:**</u> There exists \overline{C} such that for all $C > \overline{C}$, the best correlated equilibrium payoff is generated by $Q^* \in \Delta(S^Y)$:

$$Q^{\star}(s) = \frac{1}{|S(y^s)|} \hat{Q}^o(y^s)$$

and $\hat{Q}^o(y) \in \Delta(Y)$ satisfies

$$\hat{Q}^{o}(y^{k}) = \frac{k}{C} [k \hat{Q}^{o}(y^{k+1}) + \sum_{j=2}^{k} \hat{Q}^{o}(y^{j})] \text{ for } k = 3, ..., n$$

$$\hat{Q}^{o}(y^{2}) = 1 - \sum_{j=3}^{n} \hat{Q}^{o}(y^{j})$$

Corollary: As $C \to \infty$, $Q^{\star}(\sigma^{opt}) \to 1$.

► Consider the following toll pricing mechanism M_τ: Any player exiting the road after time 0 pays a large toll of τ.

► Consider the following toll pricing mechanism M_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_{τ} and

$$Q^{\star}(\sigma^{opt}) = 1 - \epsilon$$

► Consider the following toll pricing mechanism M_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_{τ} and

$$Q^{\star}(\sigma^{opt}) = 1 - \epsilon$$

• Proof: \mathcal{M}_{τ} effectively increases $C \to C + \tau$.

 Consider the following toll pricing mechanism M_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_{τ} and

$$Q^{\star}(\sigma^{opt}) = 1 - \epsilon$$

- Proof: \mathcal{M}_{τ} effectively increases $C \to C + \tau$.
- Correlated Price of Stability:

$$CPoS := \frac{SC(Q^{\star})}{SC(\sigma^{opt})} = 1 + \delta(C)$$

• where
$$\delta(C) \rightarrow 0$$
 as $C \rightarrow \infty$.

► Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

► Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \leq 1 \qquad \Longrightarrow \operatorname{supp}(\sigma^{NE}) = \{0\}$$

▶ Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \leq 1 \qquad \Longrightarrow \quad \operatorname{supp}\left(\sigma^{NE}\right) = \{0\}$$

 $1 < C \leq 2 \implies \operatorname{supp}(\sigma^{NE}) = \{1, 0\}$

• Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \le 1 \qquad \Longrightarrow \qquad \operatorname{supp} (\sigma^{NE}) = \{0\}$$
$$1 < C \le 2 \qquad \Longrightarrow \qquad \operatorname{supp} (\sigma^{NE}) = \{1, 0\}$$
$$2 < C < 2.5 \qquad \Longrightarrow \qquad \operatorname{supp} (\sigma^{NE}) = \{2, 1, 0\}$$

• Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \le 1 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{0\}$$
$$1 < C \le 2 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{1, 0\}$$
$$2 < C < 2.5 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 1, 0\}$$
$$2.5 \le C < 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 0\}$$

• Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \le 1 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{0\}$$

$$1 < C \le 2 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{1, 0\}$$

$$2 < C < 2.5 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 1, 0\}$$

$$2.5 \le C < 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 0\}$$

$$C = 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2\}$$

• Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \le 1 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{0\}$$

$$1 < C \le 2 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{1, 0\}$$

$$2 < C < 2.5 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 1, 0\}$$

$$2.5 \le C < 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 0\}$$

$$C = 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2\}$$

 As C varies the equilibrium support varies. Exacerbated if f(a_i, C) ≠ C.

• Example: 3 players, $0 \le C \le 3$: Unique Nash Equilibrium σ^{NE}

$$C \le 1 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{0\}$$

$$1 < C \le 2 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{1, 0\}$$

$$2 < C < 2.5 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 1, 0\}$$

$$2.5 \le C < 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2, 0\}$$

$$C = 3 \qquad \Longrightarrow \qquad \operatorname{supp}(\sigma^{NE}) = \{2\}$$

 As C varies the equilibrium support varies. Exacerbated if f(a_i, C) ≠ C.

Corollary There exists $\overline{C} \in \mathbb{R}$ such that for all $C > \overline{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

Thank you!

thomas.rivera@hec.edu

Thomas J. Rivera, Marco Scarsini, Tristan Tomala