Strategic Departure Decisions and Correlation in
Dynamic Congestion Games

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

IMS Program on Stochastic Methods in Game Theory
Congestion Games Workshop Dec 14-18

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 1/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.

» Player i strategically chooses a departure time d; < a*.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.
» Player i strategically chooses a departure time d; < a*.

» Wishes to depart as late as possible.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

v

Utilizing a common fixed capacity network.

v

Player i strategically chooses a departure time d; < a*.

v

Wishes to depart as late as possible.

» But, pays a large penalty cost if she arrives after time a*.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.
» Player i strategically chooses a departure time d; < a*.
» Wishes to depart as late as possible.

» But, pays a large penalty cost if she arrives after time a*.

» Traffic: Want to depart as late as possible before work.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.
» Player i strategically chooses a departure time d; < a*.
» Wishes to depart as late as possible.

» But, pays a large penalty cost if she arrives after time a*.

» Traffic: Want to depart as late as possible before work.

» Seasonal Joint Production: Want to gather information about tastes.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



Strategic Departure Problem

» Players wish to arrive at a destination prior to time a*.

» Utilizing a common fixed capacity network.
» Player i strategically chooses a departure time d; < a*.
» Wishes to depart as late as possible.

» But, pays a large penalty cost if she arrives after time a*.

» Traffic: Want to depart as late as possible before work.

» Seasonal Joint Production: Want to gather information about tastes.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 2/19



In this talk

» Single origin, single destination, single edge of length 1, capacity 1.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 3/19



In this talk

» Single origin, single destination, single edge of length 1, capacity 1.

» Arrival time a* = 0, departure time d; € Z_.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 3/19



In this talk

» Single origin, single destination, single edge of length 1, capacity 1.

» Arrival time a* = 0, departure time d; € Z_.

» Uniform Random Priority: Ties are broken uniformly.

» But, earlier departures have priority over later departures.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 3/19



In this talk

v

Single origin, single destination, single edge of length 1, capacity 1.

v

Arrival time a* = 0, departure time d; € Z_.

v

Uniform Random Priority: Ties are broken uniformly.

» But, earlier departures have priority over later departures.

v

Cost of player i € I = {1, ..., n} under pure profile d:

Ri(di,d_;) = ri(d;) + 14,50 - f(a;, C)

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 3/19



In this talk

» Single origin, single destination, single edge of length 1, capacity 1.
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» Uniform Random Priority: Ties are broken uniformly.

» But, earlier departures have priority over later departures.

» Cost of player i € | = {1,...,n} under pure profile d:

Ri(di,d_;) = ri(d;) + 14,50 - f(a;, C)
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Thomas J. Rivera, Marco Scarsini, Tristan Tomala 3/19



Penalty Costs
» Cost of player i € I = {1, ..., n} under pure profile d:

Ri(di,d—;) = ri(di) + 1a>0 - f(ai, C)

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs
» Cost of player i € I = {1, ..., n} under pure profile d:

R,'(d,', d,,') = I’,‘(d,‘) + ]la,->0 . f(a,-, C)

» f(aj, C) penalty increasing in arrival time a; and C; f(1,C) = C.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs
» Cost of player i € | = {1, ..., n} under pure profile d:
Ri(di, d—i) = ri(dj) + 1a;50 - f(ai, C)

» f(aj, C) penalty increasing in arrival time a; and C; f(1,C) = C.

» Examples:

» f(a;,C) =a;- C; pay C for each period you are late.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs
» Cost of player i € | = {1, ..., n} under pure profile d:

R,'(d,', d,,') = I’,‘(d,‘) + ]la,->0 . f(a,-, C)
» f(aj, C) penalty increasing in arrival time a; and C; f(1,C) = C.

» Examples:

» f(a;,C) =a;- C; pay C for each period you are late.
» f(a;, C) = a; + C ; pay C once, pay for additional periods in transit.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs
» Cost of player i € | = {1, ..., n} under pure profile d:

R,'(d,', d,,') = I’,‘(d,‘) + ]la,->0 . f(a,-, C)
» f(aj, C) penalty increasing in arrival time a; and C; f(1,C) = C.

» Examples:

» f(a;,C) =a;- C; pay C for each period you are late.
» f(a;, C) = a; + C ; pay C once, pay for additional periods in transit.
> f(a,-,C)za,-ﬁ—JaT-C

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs

v

Cost of player i € | = {1, ..., n} under pure profile d:

R,'(d,', d,,') = r,-(d,-) + ]la,->0 . f(a,-, C)

v

f(a;, C) penalty increasing in arrival time a; and C; f(1,C) = C.

v

Examples:

» f(a;,C) =a;- C; pay C for each period you are late.
» f(a;, C) = a; + C ; pay C once, pay for additional periods in transit.
> f(a,-,C)za,-ﬁ—JaT-C

» We assume f(a;, C) = C, C large, and obtain results robust to model
selection.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 4/19



Penalty Costs

v

Cost of player i € | = {1, ..., n} under pure profile d:

R,'(d,', d,,') = r,-(d,-) + ]la,->0 . f(a,-, C)

v

f(a;, C) penalty increasing in arrival time a; and C; f(1,C) = C.

v

Examples:

» f(a;,C) =a;- C; pay C for each period you are late.
» f(a;, C) = a; + C ; pay C once, pay for additional periods in transit.
> f(a;,C):a;+\/?;-C

» We assume f(a;, C) = C, C large, and obtain results robust to model
selection.

v

IMPORTANT: We consider fixed n and assume C is large w.r.t. n.
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A 3-player Example
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» No player is ever late = Ry =3, Ro=R3=2.

—3 -2 P3 exit -1 0

Departures ‘ /\‘ |

I | |
d B, P2, P3 P2 exit Prob %

» Each player is late with prob % — Ri=Rh=R3=2+ % .C
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» o°P!; one player departs at each time t € {—n,—(n—1),...,—1}.
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» 0°Pt is not a Nash Equilibrium.

» Deviation: P1 can deviation to time —2.
> is late, but P1 and P2 are not.
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» We present our results for the class of games with C > n.

v

Result 1: There are no pure Nash Equilibrium.

v

Result 2: For all C > n, the worst NE payoff is obtained by o"s* with

supp (6/") = {—n,—(n—1)} foralliel

» ot is characterized by the symmetric strategy:

g;’VSt(n):l—(g)"ll U}A/St(n_l):<g)nll

v

(Sketch of Proof):

» Time —n is a safe time so R;(0) < n in any equilibrium o.

» 0"t is a NE that gives each player a payoff of exactly n.
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The social planner wants to minimize the sum of equilibrium payoffs.

v

Define sum of costs as SC(o) := ) o, Ri(o).

n+1)

SC(O.opt) —_ n( 5 SC(O_wst) — n2

v

Corollary [The Price of Anarchy]:

_SC(o"™t) 2
PoA = 75C(0°Pt) =2— o

v

Conclusion: The worst equilibrium costs are roughly twice the
optimum.
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equilibrium payoffs are obtained by o?5t with
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» (Sketch of Proof):
» If no player departs at time —n then at least one player is late for sure.

» As C — oo the risk of being late becomes too large so there is a

deviation to —n.
» Hence for large C, there exists i € | such that —n € supp (o?%%).

» But then, at least n — 1 players must mix over time —(n — 1).
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all C>C

bst _1)2
pos = 2€@7) _nt(n-1)° _, 2 4
n(n+1) n+1

» Conclusion: The best Nash equilibrium cost is also roughly twice the
social optimum.

» Question: Is there any way to coordinate the players actions to
obtain an outcome closer to the social optimum?
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» If playing s; is optimal for each i € | and s; in the support of Q
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Example: 4 players, C=20.

4 -3 2 -1
Departures | | | I

Q(s) = & o = — 5 P1,P2 P3 P4

Q*(s") = & s — — P1,P2 P34

Q*(s") = &% "= - P1_P2-P3 P4

» Claim: No deviation by P1 to time -3.

20 C
Rl(Q*) =4<3+ m i =a= Rl(_3a Qil)

» Q* is a CE that yields the best SC:
SC(o?t) =13  SC(c°P") =10 SC(Q*) =10.81
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Characterizing Best Correlated Equilibrium

v

S =7", we look for CE Q € A(S) that minimize

SC(Q) =) Q(s)SC(s)

seS

\{

Only interested in Q € A(SY): set of outcomes where no player is
late.

v

Enforcing strategies: s € S enforces time k for player i if when / is
told to depart at time k, she is late with positive probability when
departing at time k — 1 instead, when others play s_;.

v

Z"k set of strategies that enforce k for player i.

Sik={seS:s =k}

v
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» Lemma: Q € A(SY) is a correlated equilibrium of SD game with
penalty C if and only if for all i € |

Z Q(s % Z Q(s) fork=2,...,n

seZik sESik

» Proof:
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v

Lemma: Q € A(SY) is a correlated equilibrium of SD game with
penalty C if and only if for all i € |

Z Q(S)Z% Z Q(s) fork=2,...,n

seZik sESik

Proof:
s € Z"* means exactly k — 1 other players depart at time —(k — 1).

v

v

v

Hence, if the outcomes is s and player i departs instead at —(k — 1)
he is late with probability %

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 14 /19



» Lemma: Q € A(SY) is a correlated equilibrium of SD game with
penalty C if and only if for all i € |

s >£ s fork=2,...,n
S;kQ( )_ C Sgko( )
» Proof:
» s € Z"k means exactly k — 1 other players depart at time —(k — 1).
» Hence, if the outcomes is s and player i departs instead at —(k — 1)
he is late with probability %
» So player i, being told to depart at —k does not want to deviate to
—(k —1) only if

, C
/<g/<—1+IP>(seZ':kys,-:—k)7
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» Lemma: Q € A(SY) is a correlated equilibrium of SD game with
penalty C if and only if for all i € |

s >£ s fork=2,...,n
S;kQ( )_ C Sgko( )
» Proof:
» s € Z"k means exactly k — 1 other players depart at time —(k — 1).
» Hence, if the outcomes is s and player i departs instead at —(k — 1)
he is late with probability %
» So player i, being told to depart at —k does not want to deviate to
—(k —1) only if

, C
/<g/<—1+IP>(seZ':kys,-:—k)7

and

>sezik Q(s)
2565"”( Q(S)

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 14 /19
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From Strategies to Outcomes

s=(4,3,3,3) —» y* =(1,3,0,0)

» Working with strategies is difficult so we switch to distributions
Q° € A(Y). Y outcomes where no one is late.
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From Strategies to Outcomes

s=(4,3,3,3) —» y* =(1,3,0,0)

v

Working with strategies is difficult so we switch to distributions
Q° € A(Y). Y outcomes where no one is late.

v

Implementation: Draw y from Q° € A(Y).

v

Then draw s € S(y) that induces y with uniform probability —‘5(1}/”.

v

If y = (1,3,0,0) then

S(y) =4{(4,3,3,3),(3,4,3,3),(3,3,4,3),(3,3,3,4)}
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From Strategies to Outcomes

s=(4,3,3,3) —» y* =(1,3,0,0)

v

Working with strategies is difficult so we switch to distributions
Q° € A(Y). Y outcomes where no one is late.

v

Implementation: Draw y from Q° € A(Y).

Then draw s € S(y) that induces y with uniform probability <.

1S

v

v

If y = (1,3,0,0) then

S(y) =4{(4,3,3,3),(3,4,3,3),(3,3,4,3),(3,3,3,4)}

v

We show it is without loss to restrict attention to distributions over
outcomes with this implementation.
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A Best Correlated Equilibrium

» Let y*=(1,..,1,k—1,0,...,0). y? is the socially optimal outcome.
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A Best Correlated Equilibrium

»

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

Let y = (1,...,1,k —1,0,...,0). y? is the socially optimal outcome.

Theorem: There exists C such that for all C > C, the best correlated

equilibrium payoff is generated by Q* € A(SY):

and Q°(y) € A(Y) satisfies

k

Q) = SRQ° () + Z Y for k=3,

QW) =1-) Qy)
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A Best Correlated Equilibrium
» Let y* =(1,...,1,k—1,0,...,0). y? is the socially optimal outcome.

Theorem: There exists C such that for all C > C, the best correlated
equilibrium payoff is generated by Q* € A(SY):

and Q°(y) € A(Y) satisfies

k

Q) = SRQ° () + Z Y for k=3,

QU =1-> Q)

Corollary: As C — oo, Q*(c°Pt) — 1
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A Mechanism For Implementing The Social
Optimum With Arbitrary Probability

» Consider the following toll pricing mechanism M_: Any player exiting
the road after time 0 pays a large toll of 7.
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A Mechanism For Implementing The Social
Optimum With Arbitrary Probability

» Consider the following toll pricing mechanism M_: Any player exiting
the road after time 0 pays a large toll of 7.

Corollary: For every € > 0 there exists 7 > 0 such that Q* is
implementable with the mechanism M. and

Q*(o_opt) —1—¢

» Proof: M effectively increases C — C 4 7.
» Correlated Price of Stability:

_SCQ
CPoS = e apty = 1 +(C)

» where §(C) — 0 as C — oo.
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Small C and Model Robustness

» Example: 3 players, 0 < C < 3: Unique Nash Equilibrium oVE
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Small C and Model Robustness

» Example: 3 players, 0 < C < 3: Unique Nash Equilibrium o

c<1
1<C<?2
2<C<?25

25<C<3

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

!

—
—
—

supp (+) = {0}
supp (UNE) = {1,0}
supp (UNE) ={2,1,0}

supp (UNE) = {2,0}
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Small C and Model Robustness

» Example: 3 players, 0 < C < 3: Unique Nash Equilibrium o"E

C<1 = supp(c"F)={0}
1<C<2 = supp(c"E)=1{1,0}
2<C<25 = supp(cMF)=1{21,0}
25<C<3 = supp(c"F)=1{2,0}

c=3 = supp (c"VF) = {2}

» As C varies the equilibrium support varies. Exacerbated if

f(ai, C) # C.

Corollary There exists C € R such that for all C > C our results
regarding the PoA, PoS, and CPoS are robust to changes in C and to
the specification of f(a;, C).
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Thank you!

thomas.rivera@hec.edu



