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Strategic Departure Problem

I Players wish to arrive at a destination prior to time a?.

I Utilizing a common fixed capacity network.

I Player i strategically chooses a departure time di < a?.

I Wishes to depart as late as possible.

I But, pays a large penalty cost if she arrives after time a?.

I Traffic: Want to depart as late as possible before work.

I Seasonal Joint Production: Want to gather information about tastes.
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In this talk

I Single origin, single destination, single edge of length 1, capacity 1.

I Arrival time a? = 0, departure time di ∈ Z−.

I Uniform Random Priority: Ties are broken uniformly.

I But, earlier departures have priority over later departures.

I Cost of player i ∈ I = {1, ..., n} under pure profile d :

Ri (di , d−i ) = ri (di ) + 1ai>0 · f (ai ,C )

I Assume without loss ri (di ) = −di .
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Penalty Costs

I Cost of player i ∈ I = {1, ..., n} under pure profile d :

Ri (di , d−i ) = ri (di ) + 1ai>0 · f (ai ,C )

I f (ai ,C ) penalty increasing in arrival time ai and C ; f (1,C ) = C .

I Examples:

I f (ai ,C ) = ai · C ; pay C for each period you are late.
I f (ai ,C ) = ai + C ; pay C once, pay for additional periods in transit.
I f (ai ,C ) = ai +

√
ai · C

I We assume f (ai ,C ) = C , C large, and obtain results robust to model
selection.

I IMPORTANT: We consider fixed n and assume C is large w.r.t. n.
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A 3-player Example

| | |

−3 −2 −1

Departures

d P1 P2,P3

|

0

Prob 1
2

P1 exit P2 exit

P3 exit

P3 exit

P2 exit

I No player is ever late =⇒ R1 = 3, R2 = R3 = 2.

| | |

−3 −2 −1

Departures

d

P1,P2,P3P1,P2,P3×P1×,P2,P3

|

0

Prob 1
6

P1 exit

P2 exit

P3 exit

P2 exit

I Each player is late with prob 1
3 =⇒ R1 = R2 = R3 = 2 + 1

3 · C
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Nash Equilibrium Results

I Interested in best/worst Nash Equilibrium payoffs.

I To compare with the socially optimal payoff.

I σopt ; one player departs at each time t ∈ {−n,−(n − 1), ...,−1}.

| | |

−3 −2 −1

Departures

σopt P1 P2

P1,P2

P3

P3×

|

0

I σopt is not a Nash Equilibrium.

I Deviation: P1 can deviation to time −2.

I P3 is late, but P1 and P2 are not.
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Nash Equilibrium Results

I We present our results for the class of games with C > n.

I Result 1: There are no pure Nash Equilibrium.

I Result 2: For all C > n, the worst NE payoff is obtained by σwst with

supp (σwsti ) = {−n,−(n − 1)} for all i ∈ I

I σwst is characterized by the symmetric strategy:

σwsti (n) = 1−
( n
C

) 1
n−1

σwsti (n − 1) =
( n
C

) 1
n−1

I (Sketch of Proof):

I Time −n is a safe time so Ri (σ) ≤ n in any equilibrium σ.

I σwst is a NE that gives each player a payoff of exactly n.
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The Price of Anarchy

I The social planner wants to minimize the sum of equilibrium payoffs.

I Define sum of costs as SC (σ) :=
∑

i∈I Ri (σ).

SC (σopt) =
n(n + 1)

2
SC (σwst) = n2

I Corollary [The Price of Anarchy]:

PoA :=
SC (σwst)

SC (σopt)
= 2− 2

n + 1

I Conclusion: The worst equilibrium costs are roughly twice the
optimum.
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The Price of Stability

I Result 3: There exists C̄ ∈ (n, n2) such that for all C > C̄ the best
equilibrium payoffs are obtained by σbst with

supp (σbsti ) = {−n} and supp (σbstj ) = {−(n−1),−(n−2)} for all j 6= i .

I (Sketch of Proof):

I If no player departs at time −n then at least one player is late for sure.

I As C →∞ the risk of being late becomes too large so there is a
deviation to −n.

I Hence for large C , there exists i ∈ I such that −n ∈ supp (σbsti ).

I But then, at least n − 1 players must mix over time −(n − 1).
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The Price of Stability

I Corollary [Price of Stability]: There exists C̄ ∈ (n, n2] such that for

all C > C̄

PoS :=
SC (σbst)

SC (σopt)
=

n + (n − 1)2

n(n+1)
2

= 2 +
2

n(n + 1)
− 4

n + 1

I Conclusion: The best Nash equilibrium cost is also roughly twice the
social optimum.

I Question: Is there any way to coordinate the players actions to
obtain an outcome closer to the social optimum?
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Correlated Equilibrium Example

I The planner draws an outcome s ∼ Q ∈ ∆(S) and tells each player to
play si .

I If playing si is optimal for each i ∈ I and si in the support of Q

I Given beliefs about s−i formed using s ∼ Q.

I Then Q is a correlated equilibrium.
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Example: 4 players, C=20.

| | |

−4 −3 −2

Departures |

−1

s ′ :=

s ′′ :=

s ′′′ :=

P2 P3

P1 P2

P4P1

P1

P3,P4

P2,P3,P4

s ′ :=

s ′′ :=

s ′′′ :=

P1,P2 P3

P1,P2

P4×
P3,P4×

P1,P2,P3,P4×P1,P2,P3,P4

Q?(s ′) = 59
100

Q?(s ′′) = 21
100

Q?(s ′′′) = 20
100

I Claim: No deviation by P1 to time -3.

R1(Q?) = 4 ≤ 3 +
20

100
· C

4
= 4 = R1(−3,Q?

−1)

I Q? is a CE that yields the best SC:

SC (σbst) = 13 SC (σopt) = 10 SC (Q?) = 10.81
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Characterizing Best Correlated Equilibrium

I S = Zn
−, we look for CE Q ∈ ∆(S) that minimize

SC (Q) :=
∑
s∈S

Q(s)SC (s)

I Only interested in Q ∈ ∆(SY ): set of outcomes where no player is
late.

I Enforcing strategies: s ∈ S enforces time k for player i if when i is
told to depart at time k , she is late with positive probability when
departing at time k − 1 instead, when others play s−i .

I Z i ,k set of strategies that enforce k for player i .

I S i ,k = {s ∈ S : si = k}.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 13 / 19



I Lemma: Q ∈ ∆(SY ) is a correlated equilibrium of SD game with
penalty C if and only if for all i ∈ I

∑
s∈Z i,k

Q(s) ≥ k

C

 ∑
s∈S i,k

Q(s)

 for k = 2, ..., n

I Proof:

I s ∈ Z i ,k means exactly k − 1 other players depart at time −(k − 1).

I Hence, if the outcomes is s and player i departs instead at −(k − 1)
he is late with probability 1

k .

I So player i , being told to depart at −k does not want to deviate to
−(k − 1) only if

k ≤ k − 1 + P(s ∈ Z i ,k |si = −k) · C
k

and

P(s ∈ Z i ,k |si = −k) =

∑
s∈Z i,k Q(s)∑
s∈S i,k Q(s)

Thomas J. Rivera, Marco Scarsini, Tristan Tomala 14 / 19
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I Hence, if the outcomes is s and player i departs instead at −(k − 1)
he is late with probability 1

k .

I So player i , being told to depart at −k does not want to deviate to
−(k − 1) only if

k ≤ k − 1 + P(s ∈ Z i ,k |si = −k) · C
k

and

P(s ∈ Z i ,k |si = −k) =

∑
s∈Z i,k Q(s)∑
s∈S i,k Q(s)
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From Strategies to Outcomes

s = (4, 3, 3, 3)→ y s = (1, 3, 0, 0)

I Working with strategies is difficult so we switch to distributions
Qo ∈ ∆(Y ). Y outcomes where no one is late.

I Implementation: Draw y from Qo ∈ ∆(Y ).

I Then draw s ∈ S(y) that induces y with uniform probability 1
|S(y)| .

I If y = (1, 3, 0, 0) then

S(y) = {(4, 3, 3, 3), (3, 4, 3, 3), (3, 3, 4, 3), (3, 3, 3, 4)}

I We show it is without loss to restrict attention to distributions over
outcomes with this implementation.
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A Best Correlated Equilibrium

I Let yk = (1, ..., 1, k − 1, 0, ..., 0). y2 is the socially optimal outcome.

Theorem: There exists C̄ such that for all C > C̄ , the best correlated
equilibrium payoff is generated by Q? ∈ ∆(SY ):

Q?(s) =
1

|S(y s)|
Q̂o(y s)

and Q̂o(y) ∈ ∆(Y ) satisfies

Q̂o(yk) =
k

C
[kQ̂o(yk+1) +

k∑
j=2

Q̂o(y j)] for k = 3, ..., n

Q̂o(y2) = 1−
n∑

j=3

Q̂o(y j)

Corollary: As C →∞, Q?(σopt)→ 1.
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A Mechanism For Implementing The Social
Optimum With Arbitrary Probability

I Consider the following toll pricing mechanism Mτ : Any player exiting
the road after time 0 pays a large toll of τ .

Corollary: For every ε > 0 there exists τ > 0 such that Q? is
implementable with the mechanism Mτ and

Q?(σopt) = 1− ε

I Proof: Mτ effectively increases C → C + τ .

I Correlated Price of Stability:

CPoS :=
SC (Q?)

SC (σopt)
= 1 + δ(C )

I where δ(C )→ 0 as C →∞.
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Small C and Model Robustness
I Example: 3 players, 0 ≤ C ≤ 3: Unique Nash Equilibrium σNE

C ≤ 1 =⇒ supp (σNE ) = {0}

1 < C ≤ 2 =⇒ supp (σNE ) = {1, 0}

2 < C < 2.5 =⇒ supp (σNE ) = {2, 1, 0}

2.5 ≤ C < 3 =⇒ supp (σNE ) = {2, 0}

C = 3 =⇒ supp (σNE ) = {2}

I As C varies the equilibrium support varies. Exacerbated if
f (ai ,C ) 6= C .

Corollary There exists C̄ ∈ R such that for all C > C̄ our results
regarding the PoA, PoS, and CPoS are robust to changes in C and to
the specification of f (ai ,C ).
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Thank you!

thomas.rivera@hec.edu
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