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Evolutionary game theory

Evolution of behaviour in population of weakly rational agents interacting

Strategies with currently good payoffs spread

Specification of this process: evolutionary dynamics

Central topic: link between outcome of dynamics and static concepts?

Today: elimination of pure strategies dominated by other pure strategies
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Literature’s big picture

Incredibly good survey: Viossat (2015, Bulletin Economic Theory) !

Two big classes: imitative and innovative dynamics

Imitative dynamics eliminate pure strategies dominated by other pure
strategies; innovative dynamics need not.

Claim: misleading picture. Studied imitative dynamics are special.

Dynamics based on imitation need not eliminate dominated strategies
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Outline

Imitative and innovative dynamics

Innovative dynamics favour rare strategies

Imitation dynamics favouring rare/frequent strategies

Survival of dominated strategies under imitation dynamics
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Framework 1: Single population dynamics

Interactions within a single, large population

finite set of pure strategies I := {1, ...,N}.

xi (t): frequency of strategy i at time t

x(t) := (xi (t))i∈I : state of the population

evolves in SN =
{
x ∈ RN

+,
∑

i∈I xi = 1
}

Payoff for i-strategists : ui (x(t))

Dynamics: ẋ = f (x, payoffs)
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Framework 2 : Games against the environment

Agents from focal population interact against unspecified opponent

At time t, opponent plays y(t) ∈ Sopp, with Sopp compact.

Payoffs of i-strategist in focal population: ui (y)

Dynamics: ẋ = f (x, y, payoffs)

No assumption on evolution of y(·), except regular enough.

Single-population dynamics correspond to Sopp = SN and y(t) = x(t).
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Domination and extinction

Strategy i dominated by j if: ∀y ∈ Sopp, ui (y) < uj(y)

Pure strategy i goes extinct if xi (t)→ 0 as t → +∞

Issue: do dominated strategies go extinct?
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Replicator dynamics

ẋi = xi (ui − u) with u =
∑
i

xiui

Introduced in biology (78), but later reinterpreted as imitation model.

Idea: assume i-strategists switch to strategy j at rate ρij(x, payoffs)

↪→ ẋi =
∑
j

xjρji − xi
∑
j

ρij

Several specifications of the ρij based on imitation lead to REP:

ρij = xj(K + uj) (imitation of success)

ρij = xj [uj − ui ]+ (proportional pairwise imitation rule)
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Imitative dynamics

“Revision protocol” specifies rate ρij at which i-strategists switch to j .

Imitative dynamics (Sandholm, 10): ρij = xj rij with ui < uj ⇔ rij > rji

Models two step process:

Step 1: revising i-strategist meets j-strategist with probability xj

Step 2: imitate him with “probability” rij favouring successful strategies

Coincide with Nachbar’s (90) monotone dynamics: ẋi = xi (gi − g)

with gi = gi (x, payoffs), g =
∑

i∈I xigi , and gi < gj ⇔ ui < uj ∀i , j , x
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Imitative dynamics and dominated strategies

Theorem (Akin 1980, Nachbar, 1990)

Assume strategy i strictly dominated by strategy j. Then under any
imitative dynamics, xi (t)→ 0 as t → +∞.

Proof.

Simply use: ui < uj ⇒ gi < gj ⇒
ẋi
xi
<

ẋj
xj
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Innovative dynamics

In innovative dynamics, strategies initially not played may appear.

Smith dynamics: revising i-strategists pick a strategy j at random, and
adopt it with probability proportional to [uj − ui ]+. So ρij = 1

N [uj − ui ]+

Theorem (Hofbauer-Sandholm, 2011)

Under Smith and all innovative dynamics satisfying 4 natural conditions
(Positive correlation, Continuity, Innovation, Nash stationarity),
pure strategies dominated by other pure strategies may survive!

Hofbauer and Sandholm use two 4 strategy games:

Rock-Paper-Scissors + feeble Twin

Hypnodisk game + feeble Twin
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A simpler example for games against the environment

Consider 3× 2 game:

L R
A
B
T

 1 0
0 1
−α 1− α


Consider dynamics satisfying the following conditions:

Continuity: ẋ depends continuously on x, y, payoffs.

Innovation: if i is an unplayed best-reply to y, but not x, then ẋi > 0

Positive correlation: if x not a best-reply to y, then
∑

i ẋiui > 0

Theorem

∀α small enough, ∃y : R→ Sopp such that strategy T survives
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Innovative dynamics favour rare strategies

Innovation: if i unused best-reply, then ẋi > 0. Hence ẋi/xi = +∞.

So by Continuity: if i almost best-reply and xi << 1, then ẋi/xi huge.

Thus, if xi << 1, we may have: ui < uj but
ẋi
xi
>

ẋj
xj

↪→ favours rare strategies.

Imitative dynamics neutral: ui < uj ⇒ ẋi
xi
<

ẋj
xj

whatever xi , xj > 0.

But imitation dynamics might favour rare/frequent strategies ; then same
survival results should hold.
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Imitation protocol favouring rare/frequent strategies

Step 1:

1a) a revising agent meets 3 randomly drawn agents, e.g, (j, k, k)

1b) make a list of strategies played by these agents; here: {j, k}

1c) pick one at random: here j with probability 1/2

Step 2: decides whether to imitate him according to standard rij .

Leads to: ρij = pj(x)rij where pj(x) proba of picking j in step 1.

Step 1 favours rare strategies: xi < xj ⇒ pi/xi > pj/xj .

If instead, when meeting (j , k , k), agent 1 focuses on the “majoritarian
choice” k, favours frequent strategies: xi < xj ⇒ pi/xi < pj/xj .
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Result 1 -Distorted Imitation of success

Consider dynamics derived from imitation revision protocol such that:

- step 1 favours rare strategies.

- in step 2, rij = K + uj , or rij = f (uj), with f positive increasing.

Theorem

There are two-strategy games with a strictly dominated strategy that
survives in proportion almost 1/2 for most initial conditions.

With advantage to frequent strategies, survival in proportion almost 1!
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Proof (advantage to rare strategies)

Dynamics:

ẋi =
∑
j

xjpi f (ui )− xi
∑
j

pj f (uj)

Let pi = xi (1 + εi ). For two strategies i and j with same payoff u:

ẋi
xi
− ẋj

xj
= (εi − εj)f (u)

With only these strategies: since xi < xj ⇒ εi > εj , xi → 1/2

Now perturb: assume payoff of xi is u − α so i dominated

We get: ∀η > 0, ∃α > 0, ∀α < α, xi > η ⇒ lim inf xi >
1
2 − η.

With advantage to frequent strategies: xi > 1/2 + η ⇒ lim inf xi > 1− η.
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Other dynamics?

Distorted imitation of success does not satisfy Positive Correlation, has
non Nash interior rest-points, and not all Nash equiibria are rest-points!

Can we have similar results for dynamics with more usual properties?

↪→ Yes, but requires more elaborate examples.
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Result 2 - Games against the environment

Consider again 3× 2 game:

L R
A
B
T

 1 0
0 1
−α 1− α


Consider dynamics derived from imitation revision protocol such that:

- step 1 favours rare strategies.

- in step 2, rij = [uj − ui ]+, or same sign.

Theorem

∀η > 0,∃α > 0,∀α < α,∃y(·), ∀x(0) ∈ int(S3), lim inf xT > 1
2 − η

Same results if rij = [uj − u], or same sign.

Favour frequent strategies: xT (0) > xB(0) + η ⇒ lim inf xT > 1− η
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Result 3 - Single population dynamics

Consider dynamics derived from imitation revision protocol such that:

- step 1 favours rare (resp. frequent) strategies.

- in step 2, rij = [uj − ui ]+, or same sign.

Theorem

There are 4 strategy games such that for large sets of initial conditions, a
pure strategy dominated by another pure strategy survives in proportion
roughly 1/6 (resp. 1/3).

Same results if rij = [uj − u], or same sign.

Proportion may be increased to 1/2− η (resp. 1− η).
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Sketch of proof

We mimick Hofbauer and Sandholm (2011).

They consider dynamics satisfying Positive Correlation (PC):

ẋ 6= 0⇒ ẋ · u(x) > 0.

Geometrically: acute angle between ẋ and payoff vector u(x).

Also: acute angle between ẋ and projection of payoff vector on simplex

Lemma

Under theorem’s assumptions, our imitation dynamics satisfy (PC)
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Hypnodisk game (Hofbauer and Sandholm)

3-strategy game with projected payoff vector field:

Due to (PC), all interior solutions enter annulus, except Nash equilibrium.
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Hypnodisk game with a twin (Hofbauer and Sandholm)

Add as strategy 4 a twin of strategy 3.

- Segment of equilibrium: x1 = x2 = x3 + x4 = 1/3.

- Attracting annulus becomes attracting ”intercylinder zone”

Mertikopoulos, Sandholm, Viossat Imitation dynamics and dominated strategies



Effect of advantage to rare strategies

Advantage to rare strategies: x3/x4 → 1.

Attractor A in intersection of intercylinder zone and plane x3 = x4.

Basin of attraction B(A) = int(S4)\Nash equilibria
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Continuation of attractors (Hofbauer and Sandholm)

Substract ε to strategy 4 → makes it dominated

By standard results on continuation of attractors, for ε small enough,
most solutions still converge to an attractor Aε in the neighborhood of A.

↪→ under most solutions, strategy 4 survives, and lim inf x4 ≥ 1/6− r ,
with r radius of outer cylinder

Rk: 1/6 may be changed to anything < 1/2 by modifying base game.
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Conjecture for Josef

Done: survival of dominated strategies under imitation dynamics for

� games against the environment: symmetric bimatrix games, many
dynamics;

� single-population dynamics: specific dynamics, or many dynamics but
with hypnodisk game.

Conjecture

Similar results for many single-population dynamics in Hofbauer and
Sandholm’s Rock-Paper-Scissors-feeble Twin game

Problem: prove instability of segment of Nash equilibria.
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Discussion - I

Elimination of dominated strategies ”requires”:

∀x , ui = uj ⇒ ẋi/xi = ẋj/xj .

Fragile property, destroyed by appropriate small perturbation.

May be a pinch of innovation, or a twist in imitation process.
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Discussion - II

When evolutionary game theorists imported replicator dynamics in
economics, they justified it through an imitation model.

They probably did not think to imitation models ex-nihilo.

Doing so leads to different kinds of imitation dynamics, which need not
eliminate pure strategies dominated by other pure strategies.

Dichotomy innovative/imitative should be supplemented by
”treat strategies differently as function of their frequencies or not”.
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