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Outline

� The stochastic environment and the actions

� Motivation and literature

� Continuously observable M/G/1 queue



A queue

� Arrivals: Stochastic point process.

� Random service times

Here:

� Arrival process is Poisson.

� Service times are i.i.d.

Actions:

� Join the queue or not

� If joined, when to abandon if still waiting?



Cost and Reward Model

The simplest model

� Homogenous value of service (V)

� Homogenous linear cost implied by waiting (C)

� Common knowledge:
Stochastic and operational features of the queue, C, V

� Rationality: If you waited t time units stay iff

E (W − t|W > t)C < V (almost)
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� Rationality: If you waited t time units stay iff

E (W − t|W > t)C < V

Main difficulty:
Deriving payoffs and utilities



Cost and Reward Model

The simplest model

� Homogenous value of service (V)

� Homogenous linear cost implied by waiting (C)

� Common knowledge:
Stochastic and operational features of the queue, C, V

� Rationality: If you waited t time units stay iff

E (W − t|W > t)C < V

The simplest queue:

M/M/1 ⇒ W is memoryless

⇓

As long you wait, future is stochastically the same



Unobservable M/M/1 with abandonments

Without abandonments W is memoryless

With abandonments even better



Unobservable M/M/1 with abandonments

Without abandonments W is memoryless

With abandonments W is IFR

X ∼ F, (F(0) = 0).
X (or F) is Increasing Failure Rate (IFR) if

P(X > t + s|X > t) =
1 − F(t + s)

1 − F(t)
↓ t ∀s

Alternatively, the failure (hazard) rate function is increasing:

h(t) =
f (t)

1 − F(t)
↑ t



Unobservable M/M/1 with abandonments

Without abandonments W is memoryless

With abandonments W is IFR

⇓

If you joined never leave

EXTEND QUEUEING MODEL AND/OR COST MODEL



Hassin & Haviv ’96

� Unobservable M/M/1

� Linear waiting cost

� Service value drops to 0 after waiting time T

Solution: Nash equilibrium joining probability.
If you joined, stay until until T ∧ W.

The reason: Utility rate function is

VµP(in service at time t)− C

P(in service at time t) is increasing with t



Mandelbaum & Shimkin ’00

� M/M/m

� Linear waiting cost

� Customers are discharged with (known) probability q

If you are not discharged, your remaining waiting time ↓

The more you stay, the posterior of being discharged ↑

Possibility for indifference along an interval

⇓

Mixed Nash Equilibrium



Haviv & Ritov ’01

� M/M/m

� Convex waiting cost

Remaining Waiting time decreasing (stochastically)

Cost of waiting the next time unit increasing.

Possibility for indifference along an interval

⇓

Mixed Nash Equilibrium



The model: Observable M/G/1

� Linear waiting cost C

� Service value V

� FCFS

� DFR service time distribution

Examples:

F(t) = 1 − αe−µ1t − (1 − α)e−µ2t µ1, µ2 > 0, α ∈ (0, 1)

F(t) = 1 −

(

β

β + t

)α

α, β > 0



The model: Observable M/G/1

� Linear waiting cost C

� Service value V

� FCFS

� DFR service time distribution

� λ - arrival rate

� X - service time

� F(x) = P(X ≤ x), F̄(x) = 1 − F(x)

� h(x) = dF(x)
F̄(x)

The hazard function



Observable M/G/1

� Linear waiting cost C

� Service value V

� FCFS

� DFR service time distribution

After arriving and starting to wait, what can happen next?

1. A service completion

2. An abandonment of someone in front.

3. Nothing



Strategies

Upon arrival, you decide whether to join.

This decision can be based on the queue length.

If you joined, you decide when to leave.

This decision can be based on the dynamics since you
arrived: The queue length, departures, abandonments.



Behavior after service completion

After observing a service completion, information from the
past is irrelevant (besides the queue length).

Decisions whether to stay or leave are taken continuously.

Define Un(t) :
Utility from staying after observing a service completion, n in
front of you in the system and t time units elapsed since the
service completion.

U1(t) = Vh(t)dt + (1 − h(t)dt)U1(t + dt)− Cdt + o(dt)

⇓

U′
1(t) = C − h(t)(V − U1(t))



Behavior after service completion

U1(t) = Vh(t)dt + (1 − h(t)dt)U1(t + dt)− Cdt + o(dt)

⇓

U′
1(t) = C − h(t)(V − U1(t))

⇓

U1(t) = V − C

∞
∫

t

F̄(s)ds

F̄(t)
= V − CE(X − t|X > t)



Behavior after service completion

Un(t) = Un−1(0)h(t)dt+ (1 − h(t)dt)Un(t + dt)− Cdt + o(dt)

⇓

U′
n(t) = C − h(t)(Un−1(0)− Un(t))

⇓

Un(t) = V − C (E(X − t|X > t) + (n − 1)E(X)))



Behavior after service completion (cont.)

For every strategy of all, the individual utility obeys

1. Un(t) ↓ t ∀n

2. Un(t) ↓ n ∀t

#1 ⇒ pure Nash equilibrium:

Abandon at time Tn that such that Un(Tn) = 0.

#2 ⇒ Tn ↓ n.

#1+#2⇒ After observing a service completion, no one in front
of you will abandon before you (under equilibrium).

There is nmax with Unmax(0) < 0 ⇒ a finite system.



Behavior before observing a change

Define Ûn(t) :
Utility from staying, n in front of you in the system and t time
units elapsed since arrival, with no changes in the queue in
front of you.

Ûn(t) = hn(t)dtUn−1(0) + (1 − hn(t)dt)Ûn(t + dt)− Cdt

⇓

Û′
n(t) = C − hn(t)(Un−1(0)− Ûn(t))

hn(t) - Conditional hazard function



Behavior when abandonment was observed

At service completion, if more than nmax are observed, I
should leave.
But, if I see more than nmax + 1 at arrival, should I stay?
Some might abandon........

If the one in front of me is leaving, I should leave as well

nmax is the maximal number of customers the system.



Result

There exist a unique symmetric pure equilibrium, defined by

(A1, . . . , Anmax−1, T1, . . . , Tnmax−1)

If you saw n upon arrival waited An without seeing a service
completion and/or abandonments, then abandon.

If you saw a service completion and there are n in front of
you, abandon after waiting Tn



Remarks

1. Updating the expected remaining waiting time is a
complicated queueing problem

2. At any instant, one compares between leaving now and
staying until service.
This looks problematic because one can leave at any
time.
Yet, the DFR assumption ensures monotone behavior.



Queueing analysis

Given strategies (A1, . . . , Anmax−1, T1, . . . , Tnmax−1), a typical
state in a Markov process is

(k, a, wk+1, wk+2, . . . , wn)

where

� n is the number of customers in the system,
0 ≤ n ≤ nmax.

� k is the number of present customers that saw a service
completion, 0 ≤ k < n.

� a is time elapsed from the beginning of the current
service, a > 0.

� wi is the elapsed waiting time of the ith customer in the
in the system, k < i ≤ n.



Steady state analysis

Using supplementary variables, we have the PDE’s

p′a(k, a, wk+1, ..., wn−1) +
n−1

∑
k=0

p′wk+1
(k, a, wk+1..., wn−1)

= −p(k, a, wk+1, ..., wn−1)(λ + h(a))

+
nmax

∑
i=n+1

∫

w
p(k, a, wk+1, ..., wn−1, An, wi, ...)dw+ p(k, a, wk+1, ..., wn−1, An)

PDE’s are non-homogeneous and linear.

Finite set of PDE’s.



Steady state analysis

Finite set of PDE’s.

From the solution we deduce

� Conditional distribution

� Conditional hazard functions

Note that after waiting x time units, the conditional
distribution of the elapsed service time is not the one that
was at arrival shifted by x.



Summary

� The model: M/G/1 with DFR service times, linear
waiting cost, constant service reward.

� Steady state analysis of the system given any pure
strategies (using supplementary variables)

� Finding pure Nash Equilibrium strategies.

In practice the steps are

1. Fix “feasible" Ai, i < nmax.

2. Analyze the steady state (most likely numerically)

3. Find new Ai, i < nmax that are best response.

4. Go to step 2 unless a predefined convergence criterion is
satisfied.



Related models

� Non-DFR service times

� Observable only at arrival M/G/1 with DFR service

� Bayesian M/M/1



Thank you
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