Mechanism Design via Correlated Tree Rounding

Yossi Azar

Tel Aviv University

Joint work with:

M. Hoefer, I. Maor, R. Reiffenhauser and B. Vocking

Unrelated Machine Scheduling

Given *m* machines and *n* jobs

- Job *i* has processing time (load) $w_i(j)$ if assigned to machine *j*
- Assign each job to one machine
- Load on machine j: $L_j = \sum_{i/A(i)=j} w_i(j)$

Goal: minimize makespan (max load)

Unrelated machine scheduling

M1

M2

M3

Unrelated machine scheduling

Identical, Related, Restricted Models

Given *m* machines and *n* jobs

- Identical: machines are identical $w_i(j) = w_i$
- Related: machine j has speed v_j .

```
Hence w_i(j) = w_i / v_i
```

• Restricted: Job i sizes w_i and $M(i) \subseteq M$

Example (related)

The jobs: 12, 10, 7, 5, 4, 4, 3

Example (restricted)

The jobs: 12 (1,2), 10 (1,2), 7 (2,3), 5 (1,2,3), 5 (2), 4 (1), 3 (1,2)

Offline algorithms

Input is completely known in advance

Approximation Ratio =
 Supremum over all inputs ALG(I)/OPT(I)

- 2 approximation [Lensrtra Shmoys Tardos 87]
- 1.5 computation hardness (NP-hard)
- Identical & Related: PTAS [Hochbaum Shmoys 86]

Online algorithms

Jobs arrive one by one and are assigned immediately

Competitive Ratio =

Supremum over all sequences $ON(\sigma)/OFF(\sigma)$

- O(log m) competitive algorithm
 - [A + Aspnes Fiat Plotkin Waarts 93] [A+ Naor Rom 92]
- Tight up to a constant factor
- Identical & Related: constant competitive [...]

Strategic jobs

- Jobs are strategic
- Cost of a job = load on machine
- Jobs reach an equilibrium
- Price of Anarchy=

Supremum over all inputs EQ(I)/OPT(I)

deterministic strategies (Pure Nash) or randomized strategies (Mixed Nash)

Price of Anarchy (Makespan)

- Identical:
 - Pure: 2
 - Mixed: logm/loglogm [KoutsoupiasPapadimitriou99]
- Related or Restricted:
 - Pure logm/loglogm
 - Mixed: logm/logloglogm

[Czumaj Vocking 02, A+Awerbuch Richter Tsur 03]

Unrelated: unbounded

Strategic machines

- Machines are strategic
- Mechanism design instead of Price of Anarchy
- Machine j declares w_i(j) (bid) for each i
- Auctioneer decides on
 - assignment (of jobs to machines)
 - Payments (to machines)
- Machine's goal: Maximizing payment minus load = $P_j L_j = P_j \sum_{i|A(i)=j} w_i(j)$
- Prior free truthful mechanism = declaring correct $w_i(j)$ is always dominant strategy

Truthful Unrelated machines

Minimize the Makespan

- m approx VCG [Nisan Ronen 99]
 - Assign each job to the machine with min bid
 - Pay the machine the second smallest bid
- m/2 approx for Fractional solution
 [Christodoulou Koutsoupias Kovacs 07]
- Hardness: 2.61
 [Christodoulou Koutsoupias Vidali 07]
- m hardness anonymous
 [Ashlagi Dobzinski Lavi 09]

Truthful Related Machines

```
Job i sizes w_i (public)
Machine j has speed v_j (private info)
Let L_j = \sum_{i/A(i)=j} w_i/v_j
```

- 2 approx (rand) [Archer Tardos 01]
- 5 approx (deter) [Andleman -A- Sorani 05]
 → 3 [Kovacs 05]
- PTAS (randomized)
 [Dhangwatnotai Dobzinski Dughmi Roughgarden 08]
- PTAS (determinstic) [Christodoulou Kovacs 10, Epstein Levin VanStee 13]

Question?

Unrelated machines mechanism: too hard Related machines: easy but far from unrelated

Question:

Is their a model "similar" to unrelated machines with "relatively easy" mechanism?

Restricted-Related

```
Job i sizes w_i and M(i) \subseteq M (public)
Machine j has speed v_j (private info)
A(i) \in M(i) and L_j = \sum_{i|A(i)=j} w_i/v_j
```

- Results similar to Unrelated:
- 2 approx vs. 1.5 hardness (offline)
- O(log m) competitive algorithm (online)
- Tight up to constant

Example (restricted-related)

The jobs: 12 (1,2), 10 (1,3), 7 (2,3), 5(2), 4(1,3), 4(2,3), 3(2)

Simulate Unrelated by Restricted-Related

Given Algorithm for Restricted-Related

 Solve unrelated up to O(log m)

- Given input for unrelated machines create input for Restricted-Related
- **Solve** Restricted-Related instance
- Transform the solution to a solution for unrelated machines

Unrelated > Restricted-Related

Given input for unrelated machines

- Make log m copies for each unrelated machine of speeds 1, ½, ¼, ...1/m
- Let $w_i = \min_j w_i(j)$. M(i) includes one copy of machine j of efficiency $w_i/w_i(j)$ rounded
- If $w_i/w_i(j) < 1/m \rightarrow$ no copy of machine j
- **Solve** Restricted-Related instance
- Return for unrelated machines: Load on machine j is the sum of its copies

Restricted-Related

Conclusion:

Restricted Related is "similar" to Unrelated

Question:

Truthful mechanism for Restricted-Related?

Note: each machine - single parameter

Main result

Main Theorem (Restricted-Related model):

There is a randomized truthful mechanism with 2 approximation for the makespan

Monotone algorithms

Monotone algorithm = Increase speed of machine → increase its load

Single parameter truthful mechanism

Why??

Monotone algorithm

- Monotone: "faster" => more work
- Consider the work assigned to agent i as a singlevariable function of bid (one over speed)
- Work-curve $w_i(b_{-i}, b_i)$

[Archer Tardos 01]

Truthfulness <=> Monotone Algorithm

Monotone => Truthful

- Truthful Mechanism:
 - Assignment: monotone algorithm
 - Payment scheme

$$P_{i}(b_{-i},b_{i}) = b_{i}w_{i}(b_{-i},b_{i}) + \int_{b_{i}}^{\infty} w_{i}(b_{-i},u)du$$

The work-curve

Overbidding

Underbidding

Monotone algorithms

Conclusions:

Forget about truthful mechanisms

Think about monotone algorithms

Mechanism (=monotone Algorithm)

Monotone algorithm has 3 steps:

- 1. Fraction Assignment (+small fix)
- 2. Open Cycles
- 3. Dependent Rounding

Fractional Assignment = job may be split among more than one machine

Find the

- Min makespan T
- Max lexicographic load vector subject to

$$(L_1, L_2, L_3, ..., L_m)$$

Valid Fractional Assignment

Example

- Jobs: 7 (1,3),5(1,2),4(1,2),3(1,2),2 (2)

- Speeds: 4, 3, 5

speed:

4

3

5

- Load on each machine is unique
- Assignment is not unique
- Can be found in poly-time by iterative flow or iterative LP
 - → Volume is monotone in speed

Monotone Algorithm (Step 1 + fix)

Fix the Max-lexicographic assignment

- Find the min makespan T s.t. if $w_i/v_j > T \rightarrow$ job i cannot be assigned to machine j at all
- Find the Max-lexicographic assignment with the new restrictions
- Can be found in poly-time & monotone

Resulting fractional assignment

Open cycles (iteratively): shift weight over cycle in the assignment graph

→ Tree

Load on each machine remains the same

Round the assignment

- Rounding of [LST87] does not maintain truthfulness
- Randomized rounding maintains truthfulness but the load can grow by a factor of O(log m)
- We apply dependent rounding from root to leaves (top down)

Round the assignment

- Consider Jobs assigned to a specific machine j: jobs of size w_i and fraction p_i(j)
 - Sort jobs assigned to it from large to small w_i
 - Let $S_k = \sum_{i \leq k} p_i(j)$
 - Choose random $0 \le x < 1$
 - Assign to machine j all jobs i such that $[S_{k-1} \pmod{1}, S_k \pmod{1}]$ contains x
- All machines are coordinated (top down) s.t.
 each jobs is assigned to precisely one machine

Rounding for each machine

- Jobs sorted by sizes $J1 \le j2 \le j3 \le j4 \le j5 \le j6 \le j7$
- Width := Fraction = Probability

Rounding for each machine

- Jobs sorted by sizes $J1 \le j2 \le j3 \le j4 \le j5 \le j6 \le j7$
- Width = Probability
- J1, j4, j6, j7 are assigned to machine

Properties of rounding

- Valid:
 - All jobs are assigned
 - Each job is assigned to one machine
- Prob. that a job *i* is assigned to machine $j = fraction p_i(j)$
- Expected load = fractional load (monotone)
- Load on each machine at most fractional load plus one job (implies 2 approximation)
 - → monotone algorithm & 2 approx

Conclusions+ Open problems

- Randomized truthful mechanism for Restricted-Related model that approximates makespan
- The approximation ratio is 2
- Q?: Find deterministic truthful mechanism with constant approx
- Q???: Mechanism for unrelated machines

Thanks !!! Questions?

