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Outline 

• Materials defects and electronic structure 

• Fast DFT based electronic structure 

methods 

• The self consistent field iteration (SCF) and 

constrained minimization 

• Fast spectral projector approximation via pole 

expansion and selected inversion (PEXSI) 

• Preconditioner for accelerating SCF 

• Examples 
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Material Defects 

• Solids are not perfect crystals 

• Defect types: 

• Point defects: vacancy, interstitials, substitutional impurities 

• Line defects: dislocations 

• Surface defects: grain boundaries and interfaces 

• Intrinsic vs extrinsic (impurities) 

• Understanding defect: 

• Structure stability 

• Chemical properties 

• Electronic structure 

• Defect mediated diffusion 
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Studying defects from first principles 

• Formation energy: 

𝜖𝑓 = lim
𝑁→∞

𝐸𝑣 𝑁 − 1 +
𝐸0 𝑁

𝑁
 − 𝐸0(𝑁) 

• Requires a larger unit cell with many atoms 
• Perfect solid 

𝐻 =
𝐻11 𝐻12 ⋯
𝐻21 𝐻22 ⋯
⋮ ⋮ ⋱

Bloch transformation

𝐻 11
𝐻 22

⋱

  

 

• Solid with defects  

• Supercell with many atoms (hundreds to millions) 

• Need computational tools to compute electronic structure of many-atom 
systems. 
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Electronic structure 

• Many-electron Schrodinger’s equation 

𝐻Ψ 𝑟1, 𝑟2, … , 𝑟𝑛𝑒 = Ψ 𝑟1, 𝑟2, … , 𝑟𝑛𝑒 𝐸 

where  

𝐻 = − 𝛻𝑖
2 +

𝑛𝑒

𝑖

 𝑣𝑛 𝑟𝑖

𝑛𝑒

𝑖

+
1

2
 

1

𝑟𝑖 − 𝑟𝑗𝑖≠𝑗

 

• Ground state 𝐸0 vs excited states 𝐸1, 𝐸2… 

• Ψ𝑖
2 gives the probability density of find electron 𝑖 at 𝑟𝑖  

• Electron density  𝜌 𝑟1 = ∫ 𝑑𝑟2⋯𝑑𝑟𝑛𝑒 Ψ 𝑟1, 𝑟2, … , 𝑟𝑛𝑒
2
 

(contains all information such as chemical bonding, 

energy etc.) 



Solving the electronic structure problem 

• Wavefunction methods: 
choose a suitable many-
body basis {Φ𝑖}, and 
expand the eigenfunction 
in this basis: 

Ψ =  𝑐𝑖Φ𝑖
𝑚
𝑖   

 hopefully 𝑚 is much less than 
10 trillion 

Solve a linear eigenvalue 
problem  

𝐻 𝑐 = 𝑐𝐸 

• Density functional theory 
(DFT): independent 
particle in a mean field:  

𝐻𝜓𝑖 = 𝜀𝑖𝜓𝑖,  

𝜌 =  𝜓𝑖
2

𝑖=1

 

𝐻 = −𝛻2 + 𝑉(𝑟, 𝑟′) 
𝑉(𝑟, 𝑟′) has to capture the electro-
static interaction between an electron 
and background charge density as 
well as correlation effects 

 

Solving the Schrodinger equation directly is 

prohibitively expensive, 𝑂 𝑑3𝑛𝑒  degrees of freedom.  

𝑑 = 10, 𝑛𝑒 = 16, 𝑑3𝑛𝑒 = 10 trillion variables 
 



Kohn-Sham DFT: a nonlinear eigenvalue 

problem 
• Total energy minimization 

min 𝐸𝑡𝑜𝑡 𝜓𝑖 𝑖=1
𝑁 =

1

2
 ∫ 𝑑𝑥 𝛻𝜓𝑖(𝑥)

2

𝑁

𝑖=1

+ ∫ 𝑑𝑥 𝑉𝑖𝑜𝑛 𝑥 𝜌 𝑥  

                                      +
1

2
∫ 𝑑𝑥∫ 𝑑𝑥′

𝜌 𝑥 𝜌 𝑥′

𝑥 − 𝑥′
+ 𝐸𝑥𝑐[𝜌] 

𝜌 𝑥 = 𝜓𝑖 𝑥
2

𝑁

𝑖=1

,   ∫ 𝑑𝑥 𝜓𝑖
∗ 𝑥 𝜓𝑗 𝑥 = 𝛿𝑖𝑗 , 𝑥 ∈ ℝ3 

• Euler-Lagrange equation 

7 

𝐻 𝜌 𝜓𝑖 𝑥 = −
1

2
Δ + 𝑉𝑖𝑜𝑛 + ∫ 𝑑𝑥′

𝜌 𝑥′

𝑥 − 𝑥′
+ 𝑉𝑥𝑐 𝜌 𝜓𝑖 𝑥 = 𝜀𝑖𝜓𝑖 𝑥  

𝜌 𝑥 =  𝜓𝑖 𝑥
2

𝑁

𝑖=1

,   ∫ 𝑑𝑥 𝜓𝑖
∗ 𝑥 𝜓𝑗 𝑥 = 𝛿𝑖𝑗 



Numerical algorithms 

• Discretization: minimize the number of degrees of freedom per 

atom while maintaining sparsity and accuracy 

• Basis expansion 𝜓𝑗 =  𝛼𝑖𝜙𝑖𝑖=1  

• Basis with local support = sparse matrix operator 

∫𝜙𝑖 𝑟 𝐻𝜙𝑗 𝑟 𝑑𝑟 = 0?  

• Domain decomposition 

 

 

 

• Nonlinear equation solver: 𝜌 = 𝑓 𝜌  

Newton’s method : 𝜌𝑘+1 = 𝜌𝑘 − 𝐽−1 𝜌𝑘 [𝑓 𝜌𝑘 − 𝜌𝑘] 

Cheap and effective approximation of the Jacobian inverse 

Fast evaluation of 𝑓 𝜌  
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Strategies for solving finite-dimensional 

KSDFT 
• Nonlinear minimization problem 

min
𝑋∗𝑋=𝐼

1

2
trace 𝑋𝑇𝐻0𝑋 + 𝜌𝑇𝐿−1𝜌/4 + 𝐸𝑥𝑐  (𝜌) 

𝜌 = diag(𝑋𝑋𝑇) 

• First-order necessary condition. 

𝐻 𝜌 𝑋 𝑋 = 𝑋Λ,  𝑋𝑇𝑋 = 𝐼 

where 𝐻 𝜌 𝑋 = 𝐻0 + Diag 𝐿−1𝜌 + 𝑉𝑥𝑐(𝜌) 
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𝜌 𝐻 𝑋 

𝒱(𝜌) 

Aufbau principle: take 

eigenvector associated with the 

algebraically smallest 

eigenvalues 



Self consistent field iteration 
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𝐻[𝒱(𝜌𝑖𝑛)] 𝜌𝑖𝑛 

𝜌𝑜𝑢𝑡 

Update Evaluate 

𝒱 𝜌 = 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌  

𝐻 𝜌 𝑋 = 𝐻0 + 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌 𝑋 = 𝑋Λ 

𝜌 = diag(𝑋𝑋𝑇) 



 

Fixed point iteration for density or potential 
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⋯ ⇒ 𝜌𝑘 ⇒ 𝑉𝑘 ≡ 𝒱 𝜌𝑘 ⇒ 𝜌𝑘+1 ⇒ 𝑉𝑘+1 ⇒ ⋯ 

Density fixed point 

Potential fixed point 

Will focus on potential fixed point for this talk 

𝒱 𝜌 = 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌  

𝜌 = 𝑓(𝜌) 

𝑉 = 𝒱(𝑉) 



The fixed-point (Kohn-Sham) map for V 

 
𝑉𝑜𝑢𝑡 = 𝒱 𝐹[𝑉𝑖𝑛]  

 

• Fixed point solution: 𝑉∗ = 𝒱 𝐹 𝑉∗  

• From 𝜌 to V: 

 

 

• From 𝑉 to 𝜌 through spectral projector 

• 𝜌 = 𝐹 𝑉 = diag 𝑋𝑋𝑇 = diag(step 𝐻 ) ≈ diag 𝐼 + 𝑒𝛽 𝐻 𝑉 −𝜇 −1
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• 𝛽 = 1/𝑘𝐵𝑇: inverse temperature 

• 𝜇: Chemical potential 

𝜌 

𝒱 𝜌 = 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌  



Seeking the fixed point 

• Fixed point iteration (rarely converges) 

  𝑉𝑘+1 = 𝒱 𝐹[𝑉𝑘]  

• Newton’s method 

 𝑉𝑘+1 = 𝑉𝑘 − 𝐽−1[𝑉𝑘]·𝑅𝑘,  𝑅𝑘 = 𝒱 𝐹 𝑉𝑘 − 𝑉𝑘 

• Quasi-Newton method 

  𝑉𝑘+1 = 𝑉𝑘 − 𝐶𝑘𝑅𝑘, where 𝐶𝑘 ≈ 𝐽𝑘
−1 
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Fast algorithm 

• Reduce the cost of function evaluation 

• 𝒱 𝐹(𝑉𝑘) : 𝑉𝑘 → 𝐻 𝑉𝑘 𝑋 = 𝑋Λ → diag 𝑋𝑋∗ → 𝑉𝑘+1 = 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌    

• Complexity: 𝑂(𝑛𝑒
3) 

• 𝑋𝑋∗= 𝑋 𝑋⊥ 𝐼
0

𝑋∗

𝑋⊥∗ = 𝑓(𝐻) matrix function, but we don’t 

need all of 𝑓(𝐻) 

 

• Reduce the number of Quasi-Newton iteration by 

constructing a good approximation to 𝐽−1 

• Analytic expression not feasible 

• Maybe possible to compute 𝐽𝑤 for some vector w 
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• Density evaluation 𝜌 = 𝐹 𝑉 = diag(𝑋𝑋∗) 
• Partially diagonalize 𝐻[𝑉] 

• Methods (Block methods preferred): 

• Lanczos 

• Davidson             𝑂 𝑛𝑒
3  complexity 

• LOBPCG 

• Polynomial filtered subspace iteration 

• Practical issues: 

• Take advantage of good starting guess 

• Take advantage of good preconditoner 

• Set appropriate convergence criterion 

• Potential evaluation 𝒱 𝜌 = 𝑉𝑖𝑜𝑛 + 𝐿−1𝜌 + 𝑉𝑥𝑐 𝜌  

−𝐿𝑉𝐻= 𝜌 

Function Evaluation via Spectra 

Decomposition 
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𝑂 𝑛𝑒  or 𝑂 𝑛𝑒𝑙𝑜𝑔(𝑛𝑒)  
 



Function Evaluation via Fermi Operator 

Expansion 
• Pole expansion 

𝑋𝑋∗ =  𝐻 − 𝑧𝐼 −1𝑑𝑧 ≈ 𝐼𝑚  𝜔𝑖 𝐻 − 𝑧𝑖𝐼
−1

𝑀

𝑖𝐶

 

• Selected Inversion: 

• Compute the diagonal of 

𝐻 − 𝑧𝑖𝐼
−1 without computing the 

full inverse 

• Applicable if H is sparse (i.e. not 

applicable to planewave 

discretization) 

• Need to perform sparse 

factorization of 𝐻 − 𝑧𝑖𝐼 

•  Multiple levels of parallelism 

𝑂 𝑛𝑒  for 1D, 𝑂 𝑛𝑒
3/2

 for 2D,  𝑂 𝑛𝑒
2  

for 3D 
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Choose a special contour to 

minimize the number of 

quadrature points 

(L. Lin et al. 2010) 

Takahashi 1973, Erisman & Tinney 1975, 

Li et al (2008), Lin et al (2009), Amestoy (2010) 



Selected Inversion 
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• Given an LDLT factorization 

𝐻 = 1
ℓ 𝐼

𝛼
𝑆

1 ℓ𝑇

𝐼
 

• Inverse of H 

𝐻−1 = 𝛼−1 + ℓ𝑇𝑆−1ℓ −ℓ𝑇𝑆−1

−𝑆−1ℓ 𝑆−1
 

Observations:  

• If ℓ is sparse, we do not need the entire 𝑆−1in order to obtain 

the (1,1) entry of 𝐻−1; 

• Complexity:  𝑂 𝑛𝑒  for 1D, 𝑂 𝑛𝑒
3/2

3/2 for 2D,  for 3D𝑂 𝑛𝑒
2 2; 

• For insulators, the off-diagonal entries of 𝑆−1may be so small 

that they can be truncated to yield 𝑂 𝑁  complexity 

 

   



Example 
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Parallelization 

• Multiple levels of 

parallelism 

• Parallelism within 

selected inversion 
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⋮ ⋮ ⋮ 

⋯ 

pselinv at pole i 

𝐻 − 𝑧𝑖𝐼
−1 

Processor 

groups 

group i 

𝑋𝑋∗ ≈ 𝐼𝑚  𝜔𝑖 𝐻 − 𝑧𝑖𝐼
−1

𝑀

𝑖

 



Performance 

• Box of water 
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• SIESTA+PEXSI 

• 24,000 atoms 

• Matrix dimension 184,000 

• Sparsity (0.15%/8.4%) 



Linear Scaling 

• The “near-sightedness” principle (Kohn, Prodan & Kohn) 

• Decay properties of the projector operator (J. Lu 2010, M. 
Benzi et al. 2012) 

• Algorithmic design: 

• Localization of the basis (Wannier functions) and truncation of the 
density matrix 

• Divide-and-conquer  (e.g., LS3DF) 

• Linear scaling can be achieved for insulators and 
semiconductors in selected inversion through incomplete 
factorization and approximate inverse 

• Linear scaling cannot be achieved for metals without losing 
accuracy in general 

21 

A true linear scaling algorithm requires the 

number of SCF iterations to be 

independent from the system size 



The Convergence of SCF 

• Fixed point iteration converges from any starting point if the 
Kohn-Sham map is a global contraction 

𝒱 𝐹 𝑉 − 𝒱[𝐹 𝑊 ] < 𝑉 −𝑊  

 

• If the initial guess of V is sufficiently close to V*, fixed point 
iteration converges if  𝜎 𝐽 < 1 in the neighborhood of V* 

 

• If the V is sufficiently close to V*, Newton’s method converges 
quadratically, but each step may be expensive. 

 

• Quasi-Newton method with approximate Jacobian and 
preconditioning leads to linear convergence  in general. We 
want the convergence rate to be  independent of system size 
(unit cell size, number of atoms) 
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Example 

• Sodium (Na) bar with a large amount of vacuum 
(Metal+Vacuum) 

• Solved by KSSOLV package [Yang-Meza-Lee-Wang, 
2009] 
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Convergence 
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Linearization and local convergence 

Fix point iteration: 𝑉𝑘+1 = 𝒱 𝐹[𝑉𝑘]  

• Linearization around 𝑉∗, define error 𝛿𝑉𝑘 = 𝑉𝑘 − 𝑉∗ 

𝛿𝑉𝑘+1 = 𝑉𝑘+1 − 𝑉∗ = 𝒱 𝐹 𝑉𝑘 − 𝒱 𝐹 𝑉∗ =
𝛿𝒱

𝛿𝜌
⋅
𝛿𝐹

𝛿𝑉
⋅ 𝛿𝑉𝑘 

• Error goes to 0 if 𝜆 𝐽 < 1 

• Properties of 𝐽depends on 

•
𝛿𝒱

𝛿𝜌
= 𝐿−1 +

𝛿𝑉𝑥𝑐

𝛿𝜌
≡ 𝐿−1 + 𝐾𝑥𝑐  

•
𝛿𝐹

𝛿𝑉
≡ 𝜒: independent particle polarizability matrix 
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Jacobian 𝐽 



• 𝜎 𝐽 =
𝛿𝒱

𝛿𝜌
𝜒 ≤

𝛿𝒱

𝛿𝜌
∙ 𝜒   global convergence 

guaranteed if 𝜎 𝐽 < 1 

• Use Fourier analysis 

•
𝛿𝒱

𝛿𝜌
= 𝐿−1 + 𝐾𝑥𝑐 is dominated by 𝐿−1. So λ

𝛿𝒱

𝛿𝜌
~𝐶

4𝜋

𝑞2
=

𝐶ℓ2

𝜋
, where ℓ 

is the unit cell size. 

• 𝜒 = 2  
(𝜓𝑛⨀𝜓𝑚)(𝜓𝑛⨀𝜓𝑚)𝑇 

𝜀𝑛−𝜀𝑚

∞
𝑚=𝑁+1

𝑁
𝑛=1  

• 𝜆 𝜒 ~ − 𝛾 < 0 for metal;  

• 𝜆 𝜒 ∼ −𝛽𝑞2 for insulator; 

 

Spectral radius of the Jacobian 
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𝜎 𝐽  is bounded for insulator, but the bound 

may not be less than 1, and grows with 

system size for metals  
 



Quasi-Newton Methods 

• 𝑉𝑘+1 = 𝑉𝑘 − 𝐶𝑘𝑟𝑘, where 𝐶𝑘 ≈ 𝐽𝑟(𝑘)
−1 , 𝐽𝑟 = 𝐼 − 𝐽(𝑉𝑘) 

• 𝑟𝑘 = 𝑉𝑘 − 𝒱 𝐹 𝑉𝑘  

• Let 𝑠𝑘 = 𝑉𝑘 − 𝑉𝑘−1, 𝑦𝑘 = 𝑟𝑘 − 𝑟𝑘−1 

𝐶𝑘 = argmin
1

2
𝐶 − 𝐶𝑘−1 𝐹

2  

s. t.  𝑆𝑘 = 𝐶𝑌𝑘 

𝑆𝑘 = 𝑠𝑘  𝑠𝑘−1⋯𝑠𝑘−𝑙 , 𝑌𝑘 = 𝑦𝑘  𝑦𝑘−1⋯𝑦𝑘−𝑙  

 
𝑉𝑘+1 = 𝑉𝑘 −𝐶𝑘−1𝑟𝑘 − 𝑆𝑘 − 𝐶𝑘−1𝑌𝑘 𝑌𝑘

+𝑟𝑘 

 

 

Choosing 𝐶0 = 𝛼𝐼 yields the Anderson method (works well for 
insulators, but not for metals) 
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What to use for 𝐶0? 



How to improve? 

• Construct a better 𝐶0 (better approximation to 𝐽r
∗); 

 

• Subtracting the exact solution 𝑉∗ from both sides of 

𝑉𝑘+1 = 𝑉𝑘 − 𝐶0 𝒱 𝐹 𝑉𝑘 − 𝑉𝑘  

 yields                  𝛿𝑉𝑘+1 = 𝐼 − 𝐶0𝐽𝑟 𝛿𝑉𝑘 

So 𝐶0 can be viewed as a preconditioner for a  

preconditioned fixed point iteration 

 

• Should choose 𝐶0 such that σ 𝐼 − 𝐶0𝐽𝑟 < 1 
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Elliptic preconditioner 

 
−𝛻 ⋅ 𝑎 𝑥 𝛻 + 4𝜋𝑏(𝑥) 𝑧𝑘 = −Δ𝑤𝑘 

 

Choose 𝑎 𝑥  and 𝑏(𝑥) based on the property of 𝜒: 

• 𝑎 𝑥 = 1 + 4𝜋𝛽, 𝑏 𝑥 = 0, simple insulator with optimal mixing 
coefficient 

• 𝑎 𝑥 = 1, 𝑏 𝑥 = 𝛾,  simple metal 

• 𝑎 𝑥 , 𝑏(𝑥) can be spatially dependent for metal + insulator. 

• 𝑎 𝑥 ≥ 1, 𝑏 𝑥 ≥ 0  ⇒  𝐴 is an elliptic operator and semi-positive 
definite. 

 

• Standard method to achieve 𝑂(𝑁) scaling for elliptic 
preconditioner: Multigrid, FMM, H-matrix, HSS etc. 
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• Want 𝐶0 to be approximately 𝐽𝑟
−1 = 𝐼 + 𝐿−1𝜒 −1 

• Apply 𝐶0 to 𝑤𝑘 amounts to approximately solving 𝐼 + 𝐿−1𝜒 𝑧𝑘 = 𝑤𝑘 or 

𝐿 + 𝜒 𝑧𝑘 = 𝐿𝑤𝑘 



Convergence 
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Application: Electronic Structure and 

Aromaticity of Graphene Nanoflakes 
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Fullerenes     Carbon Nanotubes      Graphite 

• Edge type:  

• zigzag (ZZGNF) 

• Armchair (ACGNF) 

• Electron count: 4N or 4N+2 

• Size: up to 20 nm 

• Interested in: 

• Stability 

• Energy gap (electric conductivity) 

• Bonding patterns (aromaticity) 

• Edge effects 

 



Results 
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𝐸𝑒𝑓 = 𝐸𝐺𝑁𝐹 − 𝑁𝑐𝐸𝐶 graphene − 𝑁𝐻𝐸𝐻(𝐻2) 

GNF # atoms ncpus PEXSI 

(sec) 

EIGEN 

(sec) 

𝐶180𝐻36 216 160 3.6  2.4 

𝐶684𝐻72 756 640 7.6 21.6 

𝐶2222𝐻132 2,376 640 25.3 125.6 

𝐶111400𝐻300 11,700 2,560 183 4,321 



SEI Layer in Li-ion Battery MD Simulation 

Scientific questions: 

 What are the chemical mechanisms of solid-

electrolyte interphase (SEI) formation? 

 How does the composition of the electrolyte 

affect interface/interphase reactivity and mass 

transport to the interface? 

 How does the molecular structure of the 

electrolyte change near the anode interface 

and affect SEI formation and evolution? 

 What fundamental chemical insights can be 

used for future design of electrolyte/anode 

systems, from knowledge of the mechanism of 

SEI formation and the relation to electrolyte 

structure, dynamics, and interface reactivity? 
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QMD snapshot of SEI layer in Li-ion cell 



Computation challenge 

• Ab initio (quantum) molecular dynamics 

 

 

 

 

 

 

• Current performance: for 10,000-atom 3D systems 

• tens of minutes per MD step 

• months for a picosecond trajectory 

• Goal: 1 minute per MD step, days per trajectory 
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Electronic structure 

calculation 

Δ𝑡 ≈ 1 femtosecond 

picoseconds trajectory 



Conclusion 

• Solving Kohn-Sham DFT Nonlinear Eigenvalue Problem 

is equivalent to finding a fixed point of the Kohn-Sham 

map 

• Acceleration techniques for: 

• Reducing function evaluation cost 

• Reducing the number of SCF iterations by providing a better 

precondtioner (via solving a variable coefficient elliptic PDE) 

• Enable the analysis of large-scale nanosystems and 

complex materials 

• More needs to be done to reduce QMD time 

• How to reuse PEXSI from one SCF iteration to another 
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