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Continuum Mechanics: what 1s 1t?

An attempt to describe a complex many-body system in terms of a few collective
variables - density and current - without reference to the underlying atomic
structure. A classical example is “Elasticity Theory”.
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Density and current in a qguantum
many-body system
In a qguantum many-body system, the particle density n
and the particle current density j are the relevant

collective variables: they are much simpler than the
guantum-mechanical wave function V.

Particle density:  n(r,t)= N j dr,..dry|¥(r,r,..., FN,t)\Z

Current density: j(r,t) = NImfdl’z..dquj*(r,rz..., l’N,t)Vr\P(r,rz..., rN,t)

J(r,t)

Velocity: 1) =
y v(r,t) n(r. D)

Displacement: u(r,t) = J dt v(r,t)



Continuum mechanics of a single quantum particle
P(r,t) =|P(r,t)e'""

Density Current density Velocity
n(r,t) = \\P(r,t)\2 J(r,1) = n(r,0)Ve(r,i) v(r,t) = Vo(r,t)

Displacement
u(r,t) = [ dt Vo(r,1)

The Schrodinger equation, in this case, is completely equivalent to
hydrodynamic equations
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Can continuum mechanics be applied to

guantum mechanical systems?
YES!

Hamiltonian: ~ H(t)= T + W, + 'V, +Jdr V,(r,t) n(r,t)
Kinetic Interaction Ex?eﬁmal m

Energy Energy static potential time-dependent
potential (small)

Heisenberg Equations of Motion:

Local conservation onwn _ _y. j(r,1) P Is a unique functional of
of particle number % Curvent the current density (by
iels domits density Runge-Gross theorem)
- < l. -
Local conservation A0 __g. i 1) -n(r, o) V[V, () + Vy(r,0)]
of momentum ot ——

Stress
tensor

At variance with classical continuum mechanics guantum
continuum mechanics aspires to be valid at all length scales.




Continuum mechanics In the linear
response regime

¥ By —A “Linear response regime” means that
we are In a non-stationary state that is
v, E, ' “close” to the ground-state, e.g.
¥, E, o) =], e + AW, e
A<<1
\PO’ EO

The displacement field associated with this excitation is the
expectation value of the current in 'Y, divided by the ground-state
density n, and integrated over time

U O(r,t):ﬂ_ <LPn ‘J(r)‘\lf0> e—i(En—EO)t

I(En o Eo)no(r)

+C.C



Continuum mechanics In the linear

response regime - continued

Excitation energies in linear continuum mechanics are obtained by
solving a linear equation of motion for the Fourier transform of the
displacement field u(r,®). The existence of a non-vanishing,
normalizable solutions at frequency @ means that 7o is an
excitation energy.
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s different excitations need not be
: linearly independent. Different
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Exception

In 1-particle systems (and only in 1-particle
systems) there is a 1-1 correspondence between
excitations and displacement fields
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In a 1-particle system (and only in a 1-
particle system) different excitations
have orthogonal displacement fields



Continuum Mechanics — Lagrangian formulation
. V. Tokatly, PRB 71, 165104 & 165105 (2005); PRB 75, 125105 (2007)

Make a change of coordinates to the “comoving frame” -- an accelerated
reference frame that moves with the electron liquid so that the density is
constant and the current density is zero everywhere.

r(&,t)=E+ u(g,)
Displacement
ds=~/dr-dr— :
f m l Field
Y Metric tensor
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Continuum Mechanics: the Elastic Approximation

Assume that the wave function in the Lagrangian frame is
time-independent - the time evolution of the system being
entirely governed by the changing metrics. We call this
assumption the “elastic approximation ”. This gives...

The elastic equation of motion:
mil = F[u]-VV,

1 S(B[UlT+W +Vy[Folul), 1 5, [u]

Flu]=-—
n, ou n, ou

W,[u] is the deformed ground state wave function:
(Fye Ny Wolul) = Fo(r —u(r),... 1y —u(ry))g ™" (n)-- g7 (ry)

The elastic approximation is expected to work best for highly collective
excitations, and it is exact for (1) High-frequency limit (2) One-electron
systems. Notice that this is the opposite of an adiabatic approximation.




An elementary derivation of the elastic
equation of motion
Start from the equation for the linear response of the current:
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Inverting Eq. (1) to first order we get
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Full expression for the instantaneous force

The elastic equation of motion:
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The one-particle case

The linear QCM equation of motion takes the form

1 (v? V2n, \V-(nu)
~w’u(r,t) = -V - L ( L )
2fng\ 2 24/n, | A[n,

which coincides with what one gets from the Schrodinger
equation

iﬁw;:’t) = [—Z—m+VO(r)+Vl(r,t)] Y(r,t)

with

w(r,t)=n(r,t) " Va(r,r) =u(r,r)



The elastic equation of motion: discussion

1. The linear force functional F[u] is calculable from the exact
one- and two body density matrices of the ground-state. These
can be obtained from Quantum Monte Carlo calculations.

2. The eigenvalue problem is hermitian and yields a complete
set of orthonormal eigenfunction. Orthonormality defined with
respect to a modified scalar product with weight n(r).

| u,(0-u,(ny(Mdr =6,

3. The positivity of the eigenvalues (=excitation energies) Is
guaranteed by the stability of the ground-state

4. All the excitations of one-particle systems are exactly
reproduced.



The sum rule

Let u,(r) be a solution of the elastic eigenvalue problem with
eigenvalue ,2. The following relation exists between w,?and

the exact excitation energies:
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Exact excitation
energies

| A group of levels may collapse into one
} . Elastic QCM | byt the spectral weight is preserved

within each group!




Elastic equation of motion for 1-dimensional
systems

(3T,u’)’ (n u”)”

mu = —uV,'+
rI0

J' dx'K(x,x")[u(x)—u(x")]

a fourth-order integro-differential equation
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The homogeneous electron gas
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A. Linear Harmonic Oscillator

Bl Vel 2_ I =
4 dx* de3 (-2 et de

2
@

1d'u _du d°u du [_a)zj _0
This equation can be solved analytically by expanding u(x) in a power series of x and
requiring that the series terminates after a finite number of terms (thus ensuring zero

current at infinity).

Eigenvalues: @, = TN,

Eigenfunctions: u, (X) = Hn_l(X)

B. Hydrogen atom (I=0)
1d%u, ( jd u, ( 2 1jd2ur 3 du, [2 a)zj
= -= -=— + + =
4 dr* dr’ ror?)dr® r*dr \r* Z%)"

Eigenvalues: ( __j
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Eigenfunctions: u, (r)= LiZ(FJ




Two Interacting particles in a 1D harmonic
potential — Spin singlet

Center of Mass Relativi Motion
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Evolution of exact excitation energies
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Exact excitation energies (lines)
vs QCM energies (dots)

3.94

o )
SN S+ o oo+ 1 2.63
W

WEAK STRONG
CORRELATION 2/ @, CORRELATION



Strong Correlation Limit
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displacement fields. At the QCM level they collapse into a single
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Conclusions and speculations |

. Our Quantum Continuum Mechanics is a direct extension of
the “collective approximation” (Bijl-Feynman) for the
homogeneous electron gas to inhomogeneous quantum
systems. We expect it to be useful for the following
applications:

Theory of dispersive Van der\Waals forces, especially in
complex geometries (Gould-Dobson)

Nonlocal refinement of the plasmon pole approximation in
GW calculations

Dynamics in the strongly correlated regime (e.g., collective
modes in the quantum Hall regime)



Conclusions and speculations |1

= As abyproduct we got an explicit analytic representation of
the exact xc functional in the high-frequency (anti-adiabatic)
limit [Nazarov et al., PRB 81, 245101 (2010)]. This
functional should help us to study an importance of the space
and time nonlocalities in the Kohn-Sham formulation of
time-dependent current DFT.

= We are trying to interpolate between the adiabatic and anti-
adiabatic extremes by including relaxation of the wave
function in the co-moving frame. This can be done by
assigning a finite width to the eigenmodes of the QCM.

= Prospected generalizations: (1) Combining electronic and
lonic displacements in a single formulation (2) Including
local temperature variations.



