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Continuum Mechanics: what is it?

F

An attempt to describe a complex many-body system in terms of a few collective 
variables - density and current - without reference to the underlying atomic 
structure.  A classical example is  “Elasticity Theory”.

u(r, t)

0

displacement 
field



In a quantum many-body system, the particle density n
and the particle current density j are the relevant 
collective variables: they are much simpler than the 
quantum-mechanical wave function . 

Current density:

Velocity:

Displacement: u(r, t)  dt  v(r, t)

n(r, t)  N dr2 ...drN  r,r2...,  rN, t  2Particle density:

v(r, t)  j(r, t)
n(r, t)

Density and current in a quantum 
many-body system



Continuum mechanics of a single quantum particle
(r, t)  (r,t)ei (r,t )

Current density Velocity

Displacement

The Schrödinger equation, in this case, is completely equivalent to 
hydrodynamic equations

Density
n(r, t)   r,t  2



Can continuum mechanics be applied to 
quantum mechanical systems?

YES!

Heisenberg Equations of Motion:

ˆ H (t)  ˆ T 
Kinetic 
Energy

  ˆ W 
Interaction
 Energy

  ˆ V 0
     External
static potential

  dr V1(r, t)
    External
time-dependent
potential (small)


ˆ n (r, t)Hamiltonian:

Local conservation 
of particle number

Local conservation 
of momentum

P is a unique functional of 
the current density (by 
Runge-Gross theorem)

At variance with classical continuum mechanics quantum 
continuum mechanics aspires to be valid at all length scales.



Continuum mechanics in the linear 
response regime

0, 0





n, n

2, 2

1, 1

“Linear response regime” means that 
we are in a non-stationary state that is 
“close” to the ground-state, e.g. 

n 0(t)  0 e iE0t   n eiEnt

 1

The displacement field associated with this excitation is the 
expectation value of the current in n0 divided by the ground-state 
density n0 and integrated over time

un0(r,t)  
n

ˆ j (r) 0

i En  E0 n0(r)
ei EnE0  t  c.c



Continuum mechanics in the linear 
response regime - continued





0, 0

Excitations
Displacement 

fields Displacements associated with 
different excitations need not be 
linearly independent.   Different 
excited states can have the same 
displacement.

! WARNING

Excitation energies in linear continuum mechanics are obtained by 
solving a linear equation of motion for the Fourier transform of the 
displacement field  u(r,). The existence of a non-vanishing, 
normalizable solutions at frequency  means that  is an 
excitation energy.





In 1-particle systems (and only in 1-particle 
systems)  there is a 1-1 correspondence between 

excitations and displacement fields

In a 1-particle system (and only in a 1-
particle system) different excitations 
have orthogonal displacement fields

drn0 (r) j0n (r)
n0 (r)

 jk 0 (r)
n0 (r)

 0     (n  k)

Exception



Cartesian coordinates

ds  dr  dr

n r 

Curvilinear coordinates

ds  g d d

n'    n r() g   u u

Metric tensor

Stress tensor

Make a change of coordinates to the “comoving frame” -- an accelerated 
reference frame that moves with the electron liquid so that the density is 
constant and the current density  is zero everywhere. 

Continuum Mechanics – Lagrangian formulation
I. V. Tokatly, PRB 71, 165104 & 165105 (2005); PRB 75, 125105 (2007)

Hamiltonian in 
Lagrangian frame

Generalized force

Wave function in 
Lagrangian frame

P̂ 
2
g
Ĥ[u]
g



Assume that the wave function in the Lagrangian frame is 
time-independent - the time evolution of the system being 
entirely governed by the changing metrics. We call this 
assumption the “elastic approximation”. This gives...

Continuum Mechanics: the Elastic Approximation

r1,..., rN 0[u]  0(r1 u(r1),...,  rN u(rN ))g1/ 4 (r1)... g
1/ 4 (rN )

0[u] is the deformed ground state wave function:

The elastic approximation is expected to work best for highly collective 
excitations, and it is exact for (1) High-frequency limit  (2) One-electron 
systems.  Notice that this is  the opposite of an adiabatic approximation.

F[u]   1
n0

 0[u] ˆ T  ˆ W  ˆ V 0 0[u]
2

u
 

1
n0

E2[u]
u

The elastic equation of motion:



An elementary derivation of the elastic 
equation of motion

Start from the equation for the linear response of the current:

j()  n0A1 () K() A1 ()

Inverting Eq. (1) to first order we get

A1 ()  1
n0

j()  1
n0

M
 2

1
n0

 j(r',)

Finally, using 
j()  in0u()

˜ F [u] 
E2[u]
 ˜ u (r)

Go the high frequency limit:
M =  0 [[ ˆ H , j], j] 0

First spectral moment :  - 2


d 
0



  ImK()



Full expression for the instantaneous force

F[u]  1
n0

 0[u] T̂ Ŵ  V̂0 0[u]
2

u

The elastic equation of motion:

u V0

This expression has been simplified by 
Gould et al., JCP 136, 204115 (2012).

Pair correlation 
function



The one-particle case

(r, t)  n(r, t)  ei (r,t )

which coincides with what one gets from the Schrödinger 
equation

The linear QCM equation of motion takes the form

with



The elastic equation of motion: discussion

2. The eigenvalue problem is hermitian and yields a complete 
set of orthonormal eigenfunction.  Orthonormality defined with 
respect to a modified scalar product with weight n0(r). 

u (r) u' (r)n0(r)dr  '

3. The positivity of the eigenvalues (=excitation energies) is 
guaranteed by the stability of the ground-state

4. All the excitations of one-particle systems are exactly 
reproduced.

1. The linear force functional F[u] is calculable from the exact 
one- and two body density matrices of the ground-state. These 
can be obtained from Quantum Monte Carlo calculations.



The sum rule 
Let u(r) be a solution of the elastic eigenvalue problem with 
eigenvalue  

The following relation exists between 
and 

the exact excitation energies: 


2  fn

 En  E0 2

n


fn
 

2 dr u(r)  j0n (r)
2

En  E0

j0n (r)  0
ˆ j (r) n Oscillator strengths

fn


n
 1f-sum rule

Exact excitation 
energies

Elastic QCM
A group of levels may collapse into one
but the spectral weight is preserved
within each group! 



Elastic equation of motion for 1-dimensional 
systems

m˙ ̇ u = u V 0 
(3T0 u ) 

n0


(n0 u ) 

4n0

 d x  K(x, x ') u(x)  u(x ') 

T0(x) = 1
2
x x (x, x ) x x '

Oneparticle
density matrix

  


n 0(x)
4

K(x, x ') = 2(x, x )
Twoparticle
density matrix

  w' '(x  x')
Second derivative 
     of interaction

 

a fourth-order integro-differential equation

From Quantum 
Monte Carlo



The homogeneous electron gas 

uLq r   ˆ q eiq r

L
2 q   p

2  2t(n)q2 
q4

4


 p

2

n
dq'
2 3 ˆ q  ˆ q ' 2 S qq'   S q'  

LONGITUDINAL

Multiparticle 
excitations

Multiparticle 
excitations

q/kF


/E

F

1 particle 
excitations L

T
p

Plasmon 
frequency

uTq r   ˆ t qeiq r

T
2 q   2t(n)

3
q2


 p

2

n
dq'
2 3 ˆ q  ˆ q ' 2 S qq'   S q'  

TRANSVERSAL

static structure 
factor



A.  Linear Harmonic Oscillator 
1
4

d4u
dx 4  x d3u

dx 3  (x 2  2) d2u
dx 2  3x du

dx
 1 

2

0
2









u  0

n  n0

un (x)  Hn1(x)
Eigenvalues:

Eigenfunctions:

This equation can be solved analytically by expanding u(x) in a power series of x and 
requiring that the series terminates after a finite number of terms (thus ensuring zero 
current at infinity).

B. Hydrogen atom (l=0)
1
4

d4ur

dr4  1 1
r









d3ur

dr3  1 2
r


1
r2









d2ur

dr2 
3
r2

dur

dr


2
r3 

 2

Z 4









ur  0

n 
Z 2

2
1 1

n2







Eigenvalues:

Eigenfunctions: unr (r)  Ln2
2 2r

n










Two interacting particles in a 1D harmonic 
potential – Spin singlet

Parabolic trap

Enm 0 n  m 3 
WEAK CORRELATION >>1

nm (X, x)  n (X)m (x)

Enm 0 n  2m 
STRONG CORRELATION <<1

n0(x) n0(x)

n,m non-negative integers



2 4 6 8 10

1

2

3

4

5

Evolution of exact excitation energies

2 0

E/


0

(1,0)

(0,1)
(2,0)

(1,1)
(3,0)

(4,0)

(5,0)
(3,1)
(1,2)

(2,1)
(0,2)

WEAK 
CORRELATION

STRONG 
CORRELATION

Kohn’s mode

Breathing mode



Exact excitation energies (lines) 
vs QCM energies (dots)

E/


0

2 0

WEAK 
CORRELATION

STRONG 
CORRELATION

2 4 6 8 10

1

2

3

4

5

6

(1,0)

(0,1)
(2,0)

(1,1)
(3,0)

(0,2)
(2,1)

(4,0)
(1,2)
(3,1)
(5,0)

3.94

2.63



Strong Correlation Limit
even odd

States with the same n+m and the same parity of m have identical 
displacement fields. At the QCM level they collapse into a single 
mode with energy k 0 23 3k  6k(k 1) 2 3  � (1)k 2 3 k

k  n  m 1 

(3,0)

(1,2)

3

3.94
4.46 3.46

(2,0)

(0,2)

2
2.63



even (1,0)

(1,1)

(3,0),(1,2)



odd

(2,1)(0,3)



Conclusions and speculations I

1. Our Quantum Continuum Mechanics is a direct extension of 
the “collective approximation” (Bijl-Feynman)  for the 
homogeneous electron gas to inhomogeneous quantum 
systems. We expect it to be useful for the following 
applications:

 Nonlocal refinement of the plasmon pole approximation in
GW calculations

 Theory of dispersive Van derWaals forces, especially in
complex geometries (Gould-Dobson) 

 Dynamics in the strongly correlated regime (e.g., collective  
modes in the quantum Hall regime) 



Conclusions and speculations II

 As a byproduct we got an explicit analytic representation of 
the exact xc functional in the high-frequency (anti-adiabatic) 
limit [Nazarov et al., PRB 81, 245101 (2010)]. This 
functional should help us to study an importance of the space 
and time nonlocalities in the Kohn-Sham formulation of  
time-dependent current DFT.

 We are trying to interpolate between the adiabatic and anti-
adiabatic extremes by including relaxation of the wave 
function in the co-moving frame.  This can be done by 
assigning a finite width to the eigenmodes of the QCM.  

 Prospected generalizations: (1) Combining electronic and 
ionic displacements in a single formulation (2) Including 
local temperature variations.


