Dynamics Characteristic of Solitons for Davey-Stewartson System

Jian Zhang
(with Zaihui Gan, Xiaoguang Li and Shihui Zhu)

Department of Mathematics, Sichuan Normal University \& IMS, National University of Singapore
§1 Equation

$$
\begin{gather*}
i u_{t}+\Delta u+E_{1}(u) u+|u|^{p-1} u=0 \tag{1}\\
u=u(t, x):[0, T) \times \mathbb{R}^{N} \rightarrow \mathbb{C}, 0<T \leq \infty \\
1<p<\left\{\begin{array}{l}
\infty, \quad N=1,2, \\
\frac{N+2}{N-2}, \quad N \geq 3 .
\end{array}\right. \\
E_{1}\left(|u|^{2}\right)=\mathcal{F}^{-1}\left[\frac{\xi_{1}^{2}}{|\xi|^{2}} \mathcal{F}\left[|u|^{2}\right]\right]
\end{gather*}
$$

- Background

Davey, A. and Stewartson, K. (1974)

- Known Studies:

Ghidaglia, J.-M. and Saut, J.C.(1990): Local well-posedness for $N=2$
Guo, B.L. and Wang, B.X.(1999): Local well-posedness for $N=3$
Cipolatti, R.(1992,1993), Ohta, M.(1994,1995): Existence and stabilities of ground state

Papanicolaou, G.C., Sulem, C. and Sulem, P-L.(1994), Ozawa, T.(1992): Existence of blow-up solutions
Richards, G.(2009): Concentration properties for $N=2, p=3$
Zhang, Gan, Li and Zhu(2006 ~): Sharp threshold, blow-up dynamic, global dynamic.

Impose the initial data

$$
\begin{equation*}
u(0, x)=u_{0}, \quad x \in \mathbb{R}^{N} \tag{2}
\end{equation*}
$$

Problems:

- Sharp criteria for the blow-up and global existence
- Global dynamic: stability of solitons, asymptotic behavior
- Blow-up dynamic: blow-up rate, concentration, limiting profile

Arguments:

- Variational methods:

Weinstein, 1986; Tsutsumi, 1990; Merle, 1990~; Zhang, 1999~

- Profile decomposition:

Gérard, 1998~, Hmidi and Keraani, 2005~

§3 Sharp Criteria

- Local Existence

$$
H(v):=\frac{1}{2} \int|\nabla v(t, x)|^{2} d x-\frac{1}{p+1} \int|v(t, x)|^{p+1} d x-\frac{1}{4} \int E_{1}\left(|v|^{2}\right)|v|^{2} d x .
$$

Lemma 1 (Ghidaglia-Saut, 1990, Nonlinearity; Guo-Wang, 1999, CPAM)
Let $N \in\{2,3\}$ and $u_{0} \in H^{1}\left(\mathbb{R}^{N}\right)$. $\Rightarrow \exists$! a solution $u(t, x)$ of the Cauchy problem (1)-(2) in $C\left([0, T) ; H^{1}\right)$ for some $T \in(0, \infty]$ (maximal existence time), either $T=\infty$ (global existence) or else $T<\infty$ and $\lim _{t \rightarrow T}\|u\|_{H^{1}}=\infty($ blow-up). Furthermore, for all $t \in[0, T), u(t, x)$ satisfies

$$
\begin{aligned}
\|u(t)\|_{2} & =\left\|u_{0}\right\|_{2}, \\
H(u(t)) & =H\left(u_{0}\right) .
\end{aligned}
$$

- Cross-Constrained Variational Method (Zhang, 1999)

Let $N=2,3, \omega \in \mathbb{R}, 1<p<\frac{N+2}{(N-2)^{+}}$and $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Define

$$
\begin{gathered}
I(v):=\int \frac{1}{2}|\nabla v|^{2}+\frac{\omega}{2}|v|^{2}-\frac{1}{p+1}|v|^{p+1}-\frac{1}{4} E_{1}\left(|v|^{2}\right)|v|^{2} d x \\
S(v):=\int|\nabla v|^{2}+\omega|v|^{2}-|v|^{p+1}-E_{1}\left(|v|^{2}\right)|v|^{2} d x \\
Q(v):=\int|\nabla v|^{2}-\frac{N(p-1)}{2(p+1)}|v|^{p+1}-\frac{N}{4} E_{1}\left(|v|^{2}\right)|v|^{2} d x \\
M:=\left\{v \in H^{1}, S(v)<0, Q(v)=0\right\} \\
d_{M}:=\inf _{M} I(v) \\
d_{S}:=\inf _{\left\{v \in H^{1} \backslash\{0\}, S(v)=0\right\}} I(v) \\
d:=\min \left\{d_{S}, d_{M}\right\}
\end{gathered}
$$

Invariant Sets

$$
\begin{gathered}
K:=\left\{v \in H^{1}, I(v)<d, S(v)<0, Q(v)<0\right\} \\
K_{+}:=\left\{v \in H^{1}, I(v)<d, S(v)<0, Q(v)>0\right\} \\
D_{+}:=\left\{v \in H^{1}, I(v)<d, S(v)>0\right\}
\end{gathered}
$$

- Sharp Criteria

Theorem 1 (Gan-Zhang, 2008, CMP)
Let $N \in\{2,3\}$ and $1+\frac{4}{N} \leq p<\frac{N+2}{(N-2)^{+}}$. Then we have that
(i) if $u_{0} \in K_{+} \cup D_{+}$, then the solution $u(t, x)$ of (1)-(2) exists globally,
(ii) if $|x| u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$ satisfies $u_{0} \in K$, then the solution $u(t, x)$ of (1)-(2) blows up in a finite time $0<T<\infty$.

\checkmark Existence of Solitons
 - Profile Decomposition (Hmidi-Keraani, 2005, IMRN)

Proposition 1 Let $N \geq 2$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence in $H^{1}\left(\mathbb{R}^{N}\right)$. Then there is a subsequence of $\left\{v_{n}\right\}_{n=1}^{\infty}$ (still denoted by $\left\{v_{n}\right\}_{n=1}^{\infty}$) and a sequence $\left\{V^{j}\right\}_{j=1}^{\infty}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and a family of $\left\{x_{n}^{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}^{N}$ such that
(i) for every $j \neq k,\left|x_{n}^{j}-x_{n}^{k}\right| \rightarrow \infty$ as $n \rightarrow \infty$;
(ii) for every $l \geq 1$ and every $x \in \mathbb{R}^{N}$

$$
v_{n}(x)=\sum_{j=1}^{l} V^{j}\left(x-x_{n}^{j}\right)+v_{n}^{l}(x) \text { with } \lim _{l \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\|v_{n}^{l}\right\|_{r} \rightarrow 0
$$

for every $r \in\left(2, \frac{2 N}{(N-2)^{+}}\right)$.
Moreover, we have, as $n \rightarrow \infty$,

$$
\left\|v_{n}\right\|_{2}^{2}=\sum_{j=1}^{l}\left\|V^{j}\right\|_{2}^{2}+\left\|v_{n}^{l}\right\|_{2}^{2}+o(1)
$$

and

$$
\left\|\nabla v_{n}\right\|_{2}^{2}=\sum_{j=1}^{l}\left\|\nabla V^{j}\right\|_{2}^{2}+\left\|\nabla v_{n}^{l}\right\|_{2}^{2}+o(1)
$$

- Consider the scalar field equation in \mathbb{R}^{2}

$$
\begin{equation*}
\triangle R-R+E_{1}\left(|R|^{2}\right) R=0, \quad R \in H^{1}\left(\mathbb{R}^{2}\right) . \tag{3}
\end{equation*}
$$

Proposition 2 (Zhu-Zhang-Yang, 2012, preprint) Let $v \in H^{1}\left(\mathbb{R}^{2}\right)$. Then

$$
\int_{\mathbb{R}^{2}} E_{1}\left(|v|^{2}\right)|v|^{2} d x \leq \frac{2}{\|R\|_{2}^{2}}\|\nabla v\|_{2}^{2}\|v\|_{2}^{2}
$$

where R is the ground state of (3).

- Consider the scalar field equation in \mathbb{R}^{2}

$$
\begin{equation*}
\triangle Q-Q+|Q|^{2} Q+E_{1}\left(|Q|^{2}\right) Q=0, Q \in H^{1}\left(\mathbb{R}^{2}\right) \tag{4}
\end{equation*}
$$

Proposition 3 (Papanicolaou et al., 1994, Physica D) Let $v \in H^{1}\left(\mathbb{R}^{2}\right)$. Then

$$
\int|v|^{4}+E_{1}\left(|v|^{2}\right)|v|^{2} d x \leq \frac{2}{\|Q\|_{2}^{2}}\|\nabla v\|_{2}^{2}\|v\|_{2}^{2}
$$

where Q is the ground state of (4).

- Consider the scalar field equation in \mathbb{R}^{3}

$$
\begin{equation*}
\frac{3}{2} \triangle W-\frac{1}{2} W+|W|^{2} W+E_{1}\left(|W|^{2}\right) W=0, W \in H^{1}\left(\mathbb{R}^{3}\right) \tag{5}
\end{equation*}
$$

Proposition 4 (Zhang-Zhu, 2011, DPDE) Let $v \in H^{1}\left(\mathbb{R}^{3}\right)$. Then

$$
\int|v|^{4}+E_{1}\left(|v|^{2}\right)|v|^{2} d x \leq \frac{2}{\|W\|_{2}^{2}}\|\nabla v\|_{2}^{3}\|v\|_{2},
$$

where W is the ground state of (5).

- Consider the scalar field equation in \mathbb{R}^{3}

$$
\begin{equation*}
\frac{3}{2} \triangle U-\frac{1}{2} U+E_{1}\left(|U|^{2}\right) U=0, \quad U \in H^{1}\left(\mathbb{R}^{3}\right) \tag{6}
\end{equation*}
$$

Proposition 5 (Zhang-Zhu, 2011, DPDE) Let $v \in H^{1}\left(\mathbb{R}^{3}\right)$. Then

$$
\int E_{1}\left(|v|^{2}\right)|v|^{2} d x \leq \frac{2}{\|U\|_{2}^{2}}\|\nabla v\|_{2}^{3}\|v\|_{2}
$$

where U is the ground state of (6).

- Consider the scalar field equation in $\mathbb{R}^{N}(N=2,3)$

$$
\begin{equation*}
\frac{(p-1) N}{4} \Delta V-\left[1-\frac{(N-2)(p-1)}{4}\right] V+|V|^{p-1} V=0, V \in H^{1}\left(\mathbb{R}^{N}\right) \tag{7}
\end{equation*}
$$

Proposition 6 (Weinstein, 1983, CMP) Let $v \in H^{1}\left(\mathbb{R}^{N}\right)$ and $1<p<$ $\frac{N+2}{(N-2)^{+}}$. Then

$$
\|v\|_{p+1}^{p+1} \leq \frac{p+1}{2\|V\|_{2}^{p-1}}\|\nabla v\|_{2}^{\frac{(2-N) p+2+N}{2}}\|v\|_{2}^{\frac{(p-1) N}{2}}
$$

where V is the ground state of (7).

- Sharp Criteria for $N=2$ and $p=3$

Theorem 2 (Papanicolaou et al., 1994, Physica D; Li, Zhang et al., 2011, $J D E)$

Let $N=2, p=3$ and $u_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$. Then we have that
(i) if $\left\|u_{0}\right\|_{2}<\|Q\|_{2}$, then the corresponding solution $u(t, x)$ of (1)-(2) exists globally,
(ii) if $\left\|u_{0}\right\|_{2} \geq\|Q\|_{2}$, then the corresponding solution $u(t, x)$ of (1)-(2) may blow up in finite time $0<T<\infty$, where Q is the ground state of (4).

Remark: Pseudo-conformal invariance

$$
u(t, x)=\frac{1}{T-t} \exp \left(\frac{-i|x|^{2}}{4(T-t)}+\frac{i}{T-t}\right) Q\left(\frac{x}{T-t}\right)
$$

is a finite-time blow-up solution to (1) with critical mass $\left\|u_{0}\right\|_{2}=\|Q\|_{2}$.

- Sharp Criteria for $N=2$ and $3<p<+\infty$

Theorem 3 (Zhu-Zhang-Yang, 2012, preprint)
Let $N=2,3<p<+\infty$ and $B=\left(\frac{2\|V\|_{2}^{p-1}\left(\|R\|_{2}^{2}-\left\|u_{0}\right\|_{2}^{2}\right)}{(p-1)\|R\|_{2}^{2}\left\|u_{0}\right\|_{2}^{2}}\right)^{\frac{1}{p-3}}$, where V is the ground state of (7) and R is the ground state of (3). Assume that the initial data $u_{0} \in H^{1}$ satisfies

$$
\left\|u_{0}\right\|_{2}<\|R\|_{2} \text { and } H\left(u_{0}\right)<\frac{(p-3)\left(\|R\|_{2}^{2}-\left\|u_{0}\right\|_{2}^{2}\right)}{2(p-1)\|R\|_{2}^{2}} B^{2}
$$

(i) If

$$
\left\|\nabla u_{0}\right\|_{2}<B
$$

then the solution $u(t, x)$ of (1)-(2) exists globally. Moreover, $u(t, x)$ satisfies

$$
\|\nabla u(t, x)\|_{2}<B
$$

(ii) If $|x| u_{0} \in L^{2}$ and

$$
\left\|\nabla u_{0}\right\|_{2}>B
$$

then the solution $u(t, x)$ of (1)-(2) blows up in finite time $0<T<+\infty$.

- Sharp Criteria for $N=3$ and $p=3$

Theorem 4 (Zhang-Zhu, 2011, DPDE) Let $N=3$ and $p=3$. Suppose $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ satisfies

$$
H\left(u_{0}\right)\left\|u_{0}\right\|_{2}^{2}<\frac{2}{27}\|W\|_{2}^{4},
$$

where W is the ground state of (5). Then we have that
(i) if

$$
\left\|\nabla u_{0}\right\|_{2}\left\|u_{0}\right\|_{2}<\frac{2}{3}\|W\|_{2}^{2}
$$

then the solution $u(t, x)$ of (1)-(2) globally exists. Moreover, $u(t, x)$ satisfies

$$
\|\nabla u(t, x)\|_{2}\|u(t, x)\|_{2}<\frac{2}{3}\|W\|_{2}^{2}
$$

(ii) if $|x| u_{0} \in L^{2}$ and

$$
\left\|\nabla u_{0}\right\|_{2}\left\|u_{0}\right\|_{2}>\frac{2}{3}\|W\|_{2}^{2}
$$

then the solution $u(t, x)$ of (1)-(2) blows up in finite time $T<+\infty$.

- Sharp Criteria for $N=3$ and $p=1+\frac{4}{3}$

Theorem 5 (Zhang-Zhu, 2011, DPDE) Let $N=3$ and $p=1+\frac{4}{3}$. Suppose $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ satisfies

$$
\left\|u_{0}\right\|_{2}<\|V\|_{2} \text { and } H\left(u_{0}\right)<\frac{2\|U\|_{2}^{4}\left(\|V\|_{2}^{\frac{4}{3}}-\left\|u_{0}\right\|_{2}^{\frac{4}{3}}\right)^{3}}{27\left\|u_{0}\right\|_{2}^{2}\|V\|_{2}^{4}}
$$

where U is the ground state of (6) and V is the ground state of (7). Then we have that
(i) if

$$
\left\|\nabla u_{0}\right\|_{2}\left\|u_{0}\right\|_{2}<\frac{2}{3} \frac{\|U\|_{2}^{2}\left(\|V\|_{2}^{\frac{4}{3}}-\left\|u_{0}\right\|_{2}^{\frac{4}{3}}\right)}{\|V\|_{2}^{\frac{4}{3}}}
$$

then the solution $u(t, x)$ of (1)-(2) exists globally. Moreover, $u(t, x)$ satisfies

$$
\|\nabla u(t, x)\|_{2}\|u(t, x)\|_{2}<\frac{2}{3} \frac{\|U\|_{2}^{2}\left(\|V\|_{2}^{\frac{4}{3}}-\left\|u_{0}\right\|_{2}^{\frac{4}{3}}\right)}{\|V\|_{2}^{\frac{4}{3}}}
$$

(ii) if $|x| u_{0} \in L^{2}$ and

$$
\left\|\nabla u_{0}\right\|_{2}\left\|u_{0}\right\|_{2}>\frac{2\|U\|_{2}^{2}\left(\|V\|_{2}^{\frac{4}{3}}-\left\|u_{0}\right\|_{2}^{\frac{4}{3}}\right)}{\|V\|_{2}^{\frac{4}{3}}}
$$

then the solution $u(t, x)$ of (1)-(2) blows up in finite time $T<+\infty$.
Let us define a function $g(y)$ on $[0,+\infty)$

$$
\begin{equation*}
g(y)=1-\frac{3(p-1)\left\|u_{0}\right\|_{2}^{\frac{5-p}{2}}}{4\|V\|_{2}^{p-1}} y^{\frac{3(p-1)}{2}-2}-\frac{3\left\|u_{0}\right\|_{2}}{2\|V\|_{2}^{2}} y \tag{8}
\end{equation*}
$$

where V is the ground state of (7). We claim that there exists an unique positive solution y_{0} for the equation $g(y)=0$.

- Sharp Criteria for $N=3$ and $1+\frac{4}{3}<p<3$

Theorem 6 (Zhang-Zhu, 2011, DPDE) Let $N=3$ and $1+\frac{4}{3}<p<3$. Suppose $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ satisfies

$$
0<H\left(u_{0}\right)<\frac{3 p-7}{6(p-1)} y_{0}^{2}
$$

where y_{0} is the unique positive solution of the equation $g(y)=0$. Then we have that
(i) if

$$
\left\|\nabla u_{0}\right\|_{2}<y_{0}
$$

then the solution $u(t, x)$ of (1)-(2) exists globally. Moreover, $u(t, x)$ satisfies

$$
\|\nabla u(t, x)\|_{2}<y_{0}
$$

(ii) if $|x| u_{0} \in L^{2}$ and

$$
\left\|\nabla u_{0}\right\|_{2}>y_{0}
$$

then the solution $u(t, x)$ of (1)-(2) blows up in finite time $T<+\infty$.

- Sharp Criteria for $N=3$ and $3<p<5$

Theorem 7 (Zhang-Zhu, 2011, DPDE) Let $N=3$ and $3<p<5$. Suppose $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ satisfies

$$
0<H\left(u_{0}\right)<\frac{1}{6} y_{0}^{2}
$$

where y_{0} is the unique positive solution of the equation $g(y)=0$ and $g(y)$ is defined in (8). Then we have that
(i) if

$$
\left\|\nabla u_{0}\right\|_{2}<y_{0}
$$

then the solution $u(t, x)$ of (1)-(2) exists globally. Moreover, for all time $t, u(t, x)$ satisfies

$$
\|\nabla u(t, x)\|_{2}<y_{0}
$$

(ii) if $|x| u_{0} \in L^{2}$ and

$$
\left\|\nabla u_{0}\right\|_{2}>y_{0}
$$

then the solution $u(t, x)$ of (1)-(2) blows up in finite time $T<+\infty$.

$\S 4$ Dynamics of Blow-up Solutions
 - Concentration

Theorem 8 (Li, Zhang et al., 2011, JDE) Let $N=2, p=3$ and $u_{0} \in$ $H^{1}\left(\mathbb{R}^{2}\right)$. If $u(t, x)$ is the blow-up solution of (1)-(2), then there exists $x(t) \in \mathbb{R}^{2}$ such that for all $r>0$

$$
\liminf _{t \rightarrow T} \int_{|x-x(t)| \leq r}|u(t, x)|^{2} d x \geq \int|Q|^{2} d x
$$

where Q is the ground state of (4).
Theorem 9 (Zhang-Zhu-Yang, 2012, preprint) Let $u_{0} \in H^{1}, N=3,1<$ $p \leq 3$ and $u(t, x)$ be the radial blow-up solution of (1)-(2). Then either there is a constant $C_{1}>1$ such that

$$
\int_{|x| \leq C_{1}^{2} /\|\nabla u(t)\|_{2}^{2}}|u(t, x)|^{3} d x \geq \frac{1}{C_{1}} \text { as } t \rightarrow T,
$$

or there exist $C_{2}>0$ and a sequence of times $t_{n} \rightarrow T$ as $n \rightarrow \infty$ such that

$$
\int_{|x| \leq C_{2}\left\|u_{0}\right\|_{2}^{\frac{3}{2}} /\left\|\nabla u\left(t_{n}\right)\right\|_{2}^{\frac{1}{2}}}\left|u\left(t_{n}, x\right)\right|^{3} d x \rightarrow \infty \text { as } n \rightarrow \infty
$$

- Limit Profile of Blow-up Solutions

Theorem 10 (Li, Zhang et al., 2011, JDE)
Let $N=2, p=3$ and $\left\|u_{0}\right\|_{2}=\|Q\|_{2}$. If $u(t, x) \in C\left([0, T) ; H^{1}\right)$ is the blow-up solution of Cauchy problem (1)-(2) such that $\lim _{t \rightarrow T}\|\nabla u(t)\|_{2}=\infty$,
then we have that
(i) there is $x_{0} \in \mathbb{R}^{2}$ such that

$$
|u(t, x)|^{2} \rightarrow\|Q\|_{2}^{2} \delta_{x=x_{0}} \quad \text { as } t \rightarrow T
$$

(ii) there is a constant $C>0$ such that

$$
\|\nabla u(t, x)\|_{2} \geq \frac{C}{T-t}, \quad \forall t \in[0, T)
$$

where Q is the ground state of (4).

$\S 4$ Stability of Standing Waves

- Orbital Stability

Let $N=2,1<p<3$ and $0<M_{0}<\|R\|_{2}^{2}$,

$$
\begin{equation*}
d_{M_{0}}:=\inf _{\left\{v \in H^{1}\| \| \|_{2}^{2}=M_{0}\right\}} H(v) \tag{9}
\end{equation*}
$$

where R is the ground state solution of (3). Define

$$
\begin{equation*}
S_{M_{0}}:=\left\{v \in H^{1} \mid v \text { is the minimizer of variational problem (9) }\right\} . \tag{10}
\end{equation*}
$$

Theorem 11 (Zhang-Zhu, 2014, preprint) Let $N=2,1<p<3$ and $0<M_{0}<\|R\|_{2}^{2}$. Then for arbitrary $\varepsilon>0$, there exists $\delta>0$ such that for any $u_{0} \in H^{1}$,

$$
\inf _{v \in S_{M_{0}}}\left\|u_{0}(\cdot)-v(\cdot)\right\|_{H^{1}}<\delta
$$

then the corresponding solution $u(t, x)$ of the Cauchy problem (1)-(2) satisfies

$$
\inf _{v \in S_{M_{0}}}\|u(t, \cdot)-v(\cdot)\|_{H^{1}}<\varepsilon
$$

for all $t>0$, where $S_{M_{0}}$ is defined in (10).

- Strongly Instability

Let $N \in\{2,3\}$ and $1+\frac{4}{N} \leq p<\frac{N+2}{(N-2)^{+}}$. Define

$$
\begin{equation*}
d_{S}:=\inf _{\left\{v \in H^{1} \mid S(v)=0\right\}} I(v) . \tag{11}
\end{equation*}
$$

Theorem 12 (Gan-Zhang, 2008, CMP) Let $N \in\{2,3\}$ and $1+\frac{4}{N} \leq p<$ $\frac{N+2}{(N-2)^{+}}$. If ω satisfies $d_{M} \geq d_{S}$, then for the minimizer v of (11) and any $\delta>0$, there exists $u_{0} \in H^{1}$ with

$$
\left\|u_{0}(\cdot)-v(\cdot)\right\|_{H^{1}}<\delta
$$

such that the solution $u(t, x)$ of the Cauchy problem (1)-(2) blows up in finite time.

Thank You For Your Attentions!

