Dynamics Characteristic of Solitons for Davey-Stewartson System

Jian Zhang (with Zaihui Gan, Xiaoguang Li and Shihui Zhu)

Department of Mathematics, Sichuan Normal University & IMS, National University of Singapore

§1 Equation

$$iu_{t} + \Delta u + E_{1}(u)u + |u|^{p-1}u = 0$$

$$u = u(t, x) : [0, T) \times \mathbb{R}^{N} \to \mathbb{C}, 0 < T \le \infty$$

$$1
$$E_{1}(|u|^{2}) = \mathcal{F}^{-1}[\frac{\xi_{1}^{2}}{|\xi|^{2}}\mathcal{F}[|u|^{2}]]$$
(1)$$

• Background

Davey, A. and Stewartson, K. (1974)

• Known Studies:

Ghidaglia, J.-M. and Saut, J.C.(1990): Local well-posedness for N = 2

Guo, B.L. and Wang, B.X.(1999): Local well-posedness for N = 3

Cipolatti, R.(1992,1993), Ohta, M.(1994,1995): Existence and stabilities of ground state

Papanicolaou, G.C., Sulem, C. and Sulem, P-L.(1994), Ozawa, T.(1992): Existence of blow-up solutions

Richards, G.(2009): Concentration properties for N = 2, p = 3

Zhang, Gan, Li and Zhu (2006 \sim): Sharp threshold, blow-up dynamic, global dynamic. Impose the initial data

$$u(0,x) = u_0, \qquad x \in \mathbb{R}^N.$$

(2)

Problems:

- Sharp criteria for the blow-up and global existence
- Global dynamic: stability of solitons, asymptotic behavior
- Blow-up dynamic: blow-up rate, concentration, limiting profile

Arguments:

• Variational methods:

Weinstein, 1986; Tsutsumi, 1990; Merle, 1990~; Zhang, 1999~

• Profile decomposition:

Gérard, 1998 \sim , Hmidi and Keraani, 2005 \sim

§3 Sharp Criteria♦ Local Existence

$$H(v) := \frac{1}{2} \int |\nabla v(t,x)|^2 dx - \frac{1}{p+1} \int |v(t,x)|^{p+1} dx - \frac{1}{4} \int E_1(|v|^2) |v|^2 dx.$$

Lemma 1 (*Ghidaglia-Saut, 1990, Nonlinearity; Guo-Wang, 1999, CPAM*)

Let $N \in \{2,3\}$ and $u_0 \in H^1(\mathbb{R}^N)$. $\Rightarrow \exists! a \text{ solution } u(t,x) \text{ of the}$ Cauchy problem (1)–(2) in $C([0,T); H^1)$ for some $T \in (0,\infty]$ (maximal existence time), either $T = \infty$ (global existence) or else $T < \infty$ and $\lim_{t\to T} ||u||_{H^1} = \infty$ (blow-up). Furthermore, for all $t \in [0,T)$, u(t,x) satisfies

$$||u(t)||_2 = ||u_0||_2,$$

 $H(u(t)) = H(u_0).$

♦ Cross-Constrained Variational Method (Zhang, 1999)

Let
$$N = 2, 3, \ \omega \in \mathbb{R}, 1 and $v \in H^1(\mathbb{R}^N)$. Define

$$I(v) := \int \frac{1}{2} |\nabla v|^2 + \frac{\omega}{2} |v|^2 - \frac{1}{p+1} |v|^{p+1} - \frac{1}{4} E_1(|v|^2) |v|^2 dx$$

$$S(v) := \int |\nabla v|^2 + \omega |v|^2 - |v|^{p+1} - E_1(|v|^2) |v|^2 dx$$

$$Q(v) := \int |\nabla v|^2 - \frac{N(p-1)}{2(p+1)} |v|^{p+1} - \frac{N}{4} E_1(|v|^2) |v|^2 dx$$

$$M := \{v \in H^1, S(v) < 0, Q(v) = 0\}$$

$$d_M := \inf_M I(v)$$

$$d_S := \inf_{\{v \in H^1 \setminus \{0\}, S(v) = 0\}} I(v)$$

$$d := \min\{d_S, d_M\}$$$$

Invariant Sets

 $K := \{ v \in H^1, I(v) < d, \ S(v) < 0, \ Q(v) < 0 \}$ $K_+ := \{ v \in H^1, \ I(v) < d, \ S(v) < 0, \ Q(v) > 0 \}$ $D_+ := \{ v \in H^1, \ I(v) < d, \ S(v) > 0 \}$

• Sharp Criteria

Theorem 1 (Gan-Zhang, 2008, CMP)

Let $N \in \{2,3\}$ and $1 + \frac{4}{N} \leq p < \frac{N+2}{(N-2)^+}$. Then we have that (i) if $u_0 \in K_+ \cup D_+$, then the solution u(t,x) of (1)-(2) exists globally, (ii) if $|x|u_0 \in L^2(\mathbb{R}^N)$ satisfies $u_0 \in K$, then the solution u(t,x) of (1)-(2) blows up in a finite time $0 < T < \infty$.

Existence of Solitons

• Profile Decomposition (Hmidi-Keraani, 2005, IMRN)

Proposition 1 Let $N \ge 2$ and $\{v_n\}_{n=1}^{\infty}$ be a bounded sequence in $H^1(\mathbb{R}^N)$. Then there is a subsequence of $\{v_n\}_{n=1}^{\infty}$ (still denoted by $\{v_n\}_{n=1}^{\infty}$) and a sequence $\{V^j\}_{j=1}^{\infty}$ in $H^1(\mathbb{R}^N)$ and a family of $\{x_n^j\}_{j=1}^{\infty} \subset \mathbb{R}^N$ such that

(i) for every $j \neq k$, $|x_n^j - x_n^k| \rightarrow \infty$ as $n \rightarrow \infty$;

(ii) for every $l \ge 1$ and every $x \in \mathbb{R}^N$

$$v_n(x) = \sum_{j=1}^{l} V^j(x - x_n^j) + v_n^l(x)$$
 with $\lim_{l \to \infty} \limsup_{n \to \infty} \|v_n^l\|_r \to 0$

for every $r \in (2, \frac{2N}{(N-2)^+})$.

Moreover, we have, as $n \to \infty$ *,*

$$||v_n||_2^2 = \sum_{j=1}^l ||V^j||_2^2 + ||v_n^l||_2^2 + o(1)$$

and

$$\|\nabla v_n\|_2^2 = \sum_{j=1}^l \|\nabla V^j\|_2^2 + \|\nabla v_n^l\|_2^2 + o(1).$$

• Consider the scalar field equation in \mathbb{R}^2

$$\Delta R - R + E_1(|R|^2)R = 0, \ R \in H^1(\mathbb{R}^2).$$
(3)

Proposition 2 (Zhu-Zhang-Yang, 2012, preprint) Let $v \in H^1(\mathbb{R}^2)$. Then

$$\int_{\mathbb{R}^2} E_1(|v|^2) |v|^2 dx \le \frac{2}{\|R\|_2^2} \|\nabla v\|_2^2 \|v\|_2^2,$$

where R is the ground state of (3).

• Consider the scalar field equation in \mathbb{R}^2

$$\Delta Q - Q + |Q|^2 Q + E_1(|Q|^2) Q = 0, \ Q \in H^1(\mathbb{R}^2).$$
(4)

Proposition 3 (Papanicolaou et al., 1994, Physica D) Let $v \in H^1(\mathbb{R}^2)$. Then $\int |v|^4 + E_1(|v|^2)|v|^2 dx \leq \frac{2}{\|\nabla v\|_2^2} \|\nabla v\|_2^2 \|v\|_2^2$,

$$\int |v|^4 + E_1(|v|^2)|v|^2 dx \le \frac{2}{\|Q\|_2^2} \|\nabla v\|_2^2 \|v\|_2^2$$

where Q is the ground state of (4).

• Consider the scalar field equation in \mathbb{R}^3

$$\frac{3}{2}\Delta W - \frac{1}{2}W + |W|^2 W + E_1(|W|^2)W = 0, \ W \in H^1(\mathbb{R}^3).$$
(5)

Proposition 4 (Zhang-Zhu, 2011, DPDE) Let $v \in H^1(\mathbb{R}^3)$. Then

$$\int |v|^4 + E_1(|v|^2)|v|^2 dx \le \frac{2}{\|W\|_2^2} \|\nabla v\|_2^3 \|v\|_2,$$

where W is the ground state of (5).

• Consider the scalar field equation in \mathbb{R}^3

$$\frac{3}{2}\Delta U - \frac{1}{2}U + E_1(|U|^2)U = 0, \ U \in H^1(\mathbb{R}^3).$$
(6)

Proposition 5 (Zhang-Zhu, 2011, DPDE) Let $v \in H^1(\mathbb{R}^3)$. Then

$$\int E_1(|v|^2)|v|^2 dx \le \frac{2}{\|U\|_2^2} \|\nabla v\|_2^3 \|v\|_2,$$

where U is the ground state of (6).

• Consider the scalar field equation in \mathbb{R}^N (N = 2, 3)

$$\frac{(p-1)N}{4} \triangle V - [1 - \frac{(N-2)(p-1)}{4}]V + |V|^{p-1}V = 0, \ V \in H^1(\mathbb{R}^N).$$
(7)
Proposition 6 (Weinstein, 1983, CMP) Let $v \in H^1(\mathbb{R}^N)$ and $1 . Then$

$$\|v\|_{p+1}^{p+1} \le \frac{p+1}{2\|V\|_2^{p-1}} \|\nabla v\|_2^{\frac{(2-N)p+2+N}{2}} \|v\|_2^{\frac{(p-1)N}{2}},$$

where V is the ground state of (7).

• Sharp Criteria for N = 2 and p = 3

Theorem 2 (*Papanicolaou et al., 1994, Physica D; Li, Zhang et al., 2011, JDE*)

Let N = 2, p = 3 and $u_0 \in H^1(\mathbb{R}^2)$. Then we have that

- (i) if $||u_0||_2 < ||Q||_2$, then the corresponding solution u(t,x) of (1)-(2) exists globally,
- (ii) if $||u_0||_2 \ge ||Q||_2$, then the corresponding solution u(t, x) of (1)-(2) may blow up in finite time $0 < T < \infty$, where Q is the ground state of (4).

Remark: Pseudo-conformal invariance

$$u(t,x) = \frac{1}{T-t} \exp{(\frac{-i|x|^2}{4(T-t)} + \frac{i}{T-t})Q(\frac{x}{T-t})}.$$

is a finite-time blow-up solution to (1) with critical mass $||u_0||_2 = ||Q||_2$.

• Sharp Criteria for N = 2 and 3

Theorem 3 (*Zhu-Zhang-Yang*, 2012, preprint) Let N = 2, $3 and <math>B = \left(\frac{2\|V\|_2^{p-1}(\|R\|_2^2 - \|u_0\|_2^2)}{(p-1)\|R\|_2^2\|u_0\|_2^2}\right)^{\frac{1}{p-3}}$, where V is the ground state of (7) and R is the ground state of (3). Assume that the initial data $u_0 \in H^1$ satisfies

$$||u_0||_2 < ||R||_2$$
 and $H(u_0) < \frac{(p-3)(||R||_2^2 - ||u_0||_2^2)}{2(p-1)||R||_2^2}B^2.$

(i) If

 $\|\nabla u_0\|_2 < B,$

then the solution u(t, x) of (1)-(2) exists globally. Moreover, u(t, x) satisfies

 $\|\nabla u(t,x)\|_2 < B.$

(ii) If $|x|u_0 \in L^2$ and

 $\|\nabla u_0\|_2 > B,$

then the solution u(t, x) of (1)-(2) blows up in finite time $0 < T < +\infty$.

• Sharp Criteria for N = 3 and p = 3

Theorem 4 (*Zhang-Zhu*, 2011, DPDE) Let N = 3 and p = 3. Suppose $u_0 \in H^1(\mathbb{R}^3)$ satisfies

$$H(u_0) \|u_0\|_2^2 < \frac{2}{27} \|W\|_2^4$$

where W is the ground state of (5). Then we have that (i) if

$$\|\nabla u_0\|_2 \|u_0\|_2 < \frac{2}{3} \|W\|_2^2$$

then the solution u(t,x) of (1)-(2) globally exists. Moreover, u(t,x) satisfies

$$\|\nabla u(t,x)\|_2 \|u(t,x)\|_2 < \frac{2}{3} \|W\|_2^2$$

(ii) if $|x|u_0 \in L^2$ and

$$\|\nabla u_0\|_2 \|u_0\|_2 > \frac{2}{3} \|W\|_2^2,$$

then the solution u(t, x) of (1)-(2) blows up in finite time $T < +\infty$.

• Sharp Criteria for N = 3 and $p = 1 + \frac{4}{3}$

Theorem 5 (*Zhang-Zhu*, 2011, DPDE) Let N = 3 and $p = 1 + \frac{4}{3}$. Suppose $u_0 \in H^1(\mathbb{R}^3)$ satisfies

$$||u_0||_2 < ||V||_2$$
 and $H(u_0) < \frac{2||U||_2^4(||V||_2^{\frac{4}{3}} - ||u_0||_2^{\frac{4}{3}})^3}{27||u_0||_2^2||V||_2^4}$,

where U is the ground state of (6) and V is the ground state of (7). Then we have that (i) if

$$\|\nabla u_0\|_2 \|u_0\|_2 < \frac{2}{3} \frac{\|U\|_2^2 (\|V\|_2^{\frac{4}{3}} - \|u_0\|_2^{\frac{4}{3}})}{\|V\|_2^{\frac{4}{3}}},$$

then the solution u(t,x) of (1)-(2) exists globally. Moreover, u(t,x) satisfies

$$\|\nabla u(t,x)\|_2 \|u(t,x)\|_2 < \frac{2}{3} \frac{\|U\|_2^2 (\|V\|_2^{\frac{4}{3}} - \|u_0\|_2^{\frac{4}{3}})}{\|V\|_2^{\frac{4}{3}}},$$

(ii) if
$$|x|u_0 \in L^2$$
 and

$$\|\nabla u_0\|_2 \|u_0\|_2 > \frac{2}{3} \frac{\|U\|_2^2 (\|V\|_2^{\frac{4}{3}} - \|u_0\|_2^{\frac{4}{3}})}{\|V\|_2^{\frac{4}{3}}},$$

then the solution u(t, x) of (1)-(2) blows up in finite time $T < +\infty$.

Let us define a function g(y) on $[0, +\infty)$

$$g(y) = 1 - \frac{3(p-1)\|u_0\|_2^{\frac{5-p}{2}}}{4\|V\|_2^{p-1}} y^{\frac{3(p-1)}{2}-2} - \frac{3\|u_0\|_2}{2\|V\|_2^2} y,$$
(8)

where V is the ground state of (7). We claim that there exists an unique positive solution y_0 for the equation g(y) = 0.

• Sharp Criteria for N = 3 and $1 + \frac{4}{3}$

Theorem 6 (*Zhang-Zhu, 2011, DPDE*) Let N = 3 and $1 + \frac{4}{3} .$ $Suppose <math>u_0 \in H^1(\mathbb{R}^3)$ satisfies

$$0 < H(u_0) < \frac{3p - 7}{6(p - 1)}y_0^2,$$

where y_0 is the unique positive solution of the equation g(y) = 0. Then we have that

(i) if

 $\|\nabla u_0\|_2 < y_0,$

then the solution u(t, x) of (1)-(2) exists globally. Moreover, u(t, x) satisfies

 $\|\nabla u(t,x)\|_2 < y_0,$

(ii) if $|x|u_0 \in L^2$ and

 $\|\nabla u_0\|_2 > y_0,$

then the solution u(t, x) of (1)-(2) blows up in finite time $T < +\infty$.

• Sharp Criteria for N = 3 and 3

Theorem 7 (*Zhang-Zhu, 2011, DPDE*) Let N = 3 and $3 . Suppose <math>u_0 \in H^1(\mathbb{R}^3)$ satisfies

$$0 < H(u_0) < \frac{1}{6}y_0^2,$$

where y_0 is the unique positive solution of the equation g(y) = 0 and g(y) is defined in (8). Then we have that (i) if

 $\|\nabla u_0\|_2 < y_0,$

then the solution u(t, x) of (1)-(2) exists globally. Moreover, for all time t, u(t, x) satisfies

 $\|\nabla u(t,x)\|_2 < y_0,$

(ii) if $|x|u_0 \in L^2$ and

 $\|\nabla u_0\|_2 > y_0,$

then the solution u(t, x) of (1)-(2) blows up in finite time $T < +\infty$.

§4 Dynamics of Blow-up Solutions • Concentration

Theorem 8 (*Li*, *Zhang et al.*, 2011, *JDE*) Let N = 2, p = 3 and $u_0 \in H^1(\mathbb{R}^2)$. If u(t, x) is the blow-up solution of (1)-(2), then there exists $x(t) \in \mathbb{R}^2$ such that for all r > 0

$$\liminf_{t \to T} \int_{|x-x(t)| \le r} |u(t,x)|^2 dx \ge \int |Q|^2 dx,$$

where Q is the ground state of (4).

Theorem 9 (*Zhang-Zhu-Yang*, 2012, preprint) Let $u_0 \in H^1$, N = 3, 1 and <math>u(t, x) be the radial blow-up solution of (1)-(2). Then either there is a constant $C_1 > 1$ such that

$$\int_{\|x\| \le C_1^2/\|\nabla u(t)\|_2^2} |u(t,x)|^3 dx \ge \frac{1}{C_1} \text{ as } t \to T,$$

or there exist $C_2 > 0$ and a sequence of times $t_n \to T$ as $n \to \infty$ such that

$$\int_{|x| \le C_2 \|u_0\|_2^{\frac{3}{2}} / \|\nabla u(t_n)\|_2^{\frac{1}{2}}} |u(t_n, x)|^3 dx \to \infty \text{ as } n \to \infty.$$

• Limit Profile of Blow-up Solutions

Theorem 10 (*Li*, *Zhang et al.*, 2011, *JDE*) Let N = 2, p = 3 and $||u_0||_2 = ||Q||_2$. If $u(t, x) \in C([0, T); H^1)$ is the blow-up solution of Cauchy problem (1)-(2) such that $\lim_{t\to T} ||\nabla u(t)||_2 = \infty$, then we have that (i) there is $x_0 \in \mathbb{R}^2$ such that

$$|u(t,x)|^2 \to ||Q||_2^2 \,\delta_{x=x_0} \text{ as } t \to T,$$

(ii) there is a constant C > 0 such that

$$\|\nabla u(t,x)\|_2 \ge \frac{C}{T-t}, \quad \forall \ t \in [0,T),$$

where Q is the ground state of (4).

§4 Stability of Standing Waves• Orbital Stability

Let $N = 2, 1 and <math>0 < M_0 < ||R||_2^2$,

$$d_{M_0} := \inf_{\{v \in H^1 \mid \|v\|_2^2 = M_0\}} H(v)$$
(9)

where R is the ground state solution of (3). Define

 $S_{M_0} := \{ v \in H^1 | v \text{ is the minimizer of variational problem (9)} \}.$ (10)

Theorem 11 (*Zhang-Zhu, 2014, preprint*) Let N = 2, $1 and <math>0 < M_0 < ||R||_2^2$. Then for arbitrary $\varepsilon > 0$, there exists $\delta > 0$ such that for any $u_0 \in H^1$,

$$\inf_{v \in S_{M_0}} \|u_0(\cdot) - v(\cdot)\|_{H^1} < \delta,$$

then the corresponding solution u(t, x) of the Cauchy problem (1)-(2) satisfies

$$\inf_{v \in S_{M_0}} \|u(t, \cdot) - v(\cdot)\|_{H^1} < \varepsilon$$

for all t > 0, where S_{M_0} is defined in (10).

• Strongly Instability

Let $N \in \{2, 3\}$ and $1 + \frac{4}{N} \le p < \frac{N+2}{(N-2)^+}$. Define $d_S := \inf_{\{v \in H^1 | S(v) = 0\}} I(v).$ (11)

Theorem 12 (Gan-Zhang, 2008, CMP) Let $N \in \{2,3\}$ and $1 + \frac{4}{N} \leq p < \frac{N+2}{(N-2)^+}$. If ω satisfies $d_M \geq d_S$, then for the minimizer v of (11) and any $\delta > 0$, there exists $u_0 \in H^1$ with

 $||u_0(\cdot) - v(\cdot)||_{H^1} < \delta$

such that the solution u(t, x) of the Cauchy problem (1)-(2) blows up in finite time.

Thank You For Your Attentions!