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Introduction 
• Overview of talk 

• This talk focuses on a specific phase-field problem: 

 Modelling the solidification of a dilute binary alloy, 

involving multiple length and time scales. 

• However this requires us to consider some overarching 

issues that apply equally to other phase-field systems: 

 Implicit time-stepping; 

 Multilevel solvers (at each time step); 

 3D mesh adaptivity (considered at each time step); 

 Combining adaptivity, multigrid and parallel solution... 
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A Thermal-Solute Phase-Field Model 
• J.C. Ramirez, C. Beckermann, A. Karma, et al, Phys. Rev. E, 69 (2004) 051607. 

We consider a 3-d extension of one particular (2-d) P-F model 

for the solidification of a dilute binary alloy: 

• A phase equation (nonlinear) 

• A chemical concentration diffusion equation (nonlinear) 

• A heat diffusion equation (linear) 

Lewis number (Le) = (thermal diffusivity)/(chemical diffusivity) 

                               => stiffness 

These are solved to obtain three (time-dependent) fields... 

• φ (phase), u (concentration) and ϑ (temperature) 
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A Thermal-Solute Phase-Field Model 
• Phase equation shown in 2-d 
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Phase Equation 

Properties: 

▪ highly nonlinear 

▪ noise introduced by anisotropy function A(Ψ) 

▪ where  )arctan( xy  

IMS Workshop, Jan 12-16, 2015 



A Thermal-Solute Phase-Field Model 
• Concentration and temperature equations shown in 2-d 
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A Thermal-Solute Phase-Field Model 
• Concentration and temperature equations shown in 2-d 
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Dendritic Solutions in Three Dimensions 
• Illustration of a real dendrite 

• This is a snapshot of 

the dendritic crystal 

structure that can arise 

when rapid solidification 

occurs. 

• This is a xenon crystal 

(Singer & Bilgram 

2004 Europhys. Lett. 

68 240). 

• Similar structures 

occur in metallic alloys...  
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Dendritic Solutions in Three Dimensions 
• Illustration of a time-dependent simulation 

• Animation of a typical 

solution. 

•Plots of the φ = 0 

isosurface at different 

time intervals. 

•Begins with a small 

solid seed. 

•Preferred growth 

directions through our 

choice of anisotropy 

function...  
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Dendritic Solutions in Three Dimensions 
• Cross-section of a typical solution 

Cross-section of typical solution 

Large values of the Lewis number lead to a 

multiscale problem that is highly stiff 
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Summary of Computational Challenges 
• All of these issues are significant for quantitative predictions 

• Should include both thermal and chemical diffusion for 

models of metallic alloys: 

 leads to a stiff system making explicit solution 

impossible 

• Results are interface-width dependent unless this is 

sufficiently small: need to be able to resolve this interface. 

 Very fine mesh required at moving interface 

 But need very large domain for the thermal field ahead 

of the interface 

• Everything needs to be done in three space dimensions of 

course... 
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Spatial Adaptivity in Three Dimensions 
• Snapshot of adaptive mesh refinement 

•Mesh adaptivity is 

clearly essential. 

•Here we see local 

mesh refinement 

around the φ = 0 

isosurface. 

•Implementation is 

based upon the 

Open Source 

PARAMESH library 

(MacNeice & Olsen). 
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Spatial Adaptivity in Three Dimensions 
• Snapshot of adaptive mesh refinement 

•Here we see only 

the adapted mesh – 

which includes 

coarsening behind 

the interface. 

•Based upon oct-tree 

of blocks (16x16x16 

in this case). 

•Use just one ghost 

layer (even for 19-pt 

stencil)  
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Implicit Time-Stepping and Nonlinear Multigrid 
• Application of the nonlinear multigrid solver for adaptive meshes 

At each time step (we use BDF2) a large nonlinear algebraic 

system of equations is solved for the new values:     ,       and    . 

• A fully coupled nonlinear Multigrid solver is used to for this: 

 based upon the FAS (full approximation scheme) 

approach to resolve the non-linearity; 

 and the MultiLevel AdapTive (MLAT) scheme of Brandt to 

handle the adaptivity; 

 a weighted nonlinear block Jacobi iterative scheme is 

seen to be an adequate smoother. 

• Optimal, h-independent, convergence results are obtained. 

1n

ijk 1n

ijkU 1n

ijk
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Adaptivity and Multigrid 
• The MLAT scheme 

 

 
For the MLAT scheme the nodes at the interface between refinement 

levels are treated as a Dirichlet boundary by the smoother… 

IMS Workshop, Jan 12-16, 2015 



Parallel Implementation Issues 
• Adaptivity and multigrid within a parallel solver  

• Dynamic load-balancing when re-meshing occurs: 

 Nested hierarchy of hexahedral blocks (e.g. 8x8x8); 

 Each block has a single ghost layer at each edge (so 10x10x10). 

• Parallel multigrid implementation: 

 Geometric MG visits one mesh level at a time; 

 Load-balancing and grid-transfer operations must reflect this. 

• Coarse grid problem is expensive to solve in FAS: 

 Must make coarsest level as coarse as possible. 

 Typically this will imply idle cores at coarsest level(s). 
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Parallel Implementation Issues 
• Improved dynamic load-balancing strategy compared to PARAMESH default 

• This plot shows 

the computation 

time per block per 

time step for a 32 

core run. 

• Blue shows the 

benefits of a 

partitioning 

strategy that 

ensures a good 

load-balance at 

each mesh level. 
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Typical Simulation Results 
• Optimal multigrid convergence is obtained for adaptive meshes in 3-d 

• Here we see 

close to an 

optimal 

convergence 

rate for the 

nonlinear 

multigrid solver 

applied to the 

isothermal 

problem in 3-d . 
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Typical Simulation Results 
• Optimal multigrid convergence is obtained for adaptive meshes in 3-d 

• And optimal 

timings for 

the full non- 

isothermal 

problem in  

3-d, using 

different 

numbers of 

cores as a 

dendrite 

grows... 
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Typical Simulation Results 
• Snapshots of dendrite formation – Le=40 , Δ=0.525 

These images show snapshots of this particular run: early... 

IMS Workshop, Jan 12-16, 2015 



Typical Simulation Results 
• Snapshots of dendrite formation – Le=40 , Δ=0.525 

These images show snapshots of this particular run: mid... 
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Typical Simulation Results 
• Snapshots of dendrite formation – Le=40 , Δ=0.525 

These images show snapshots of this particular run: late... 
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Typical Simulation Results 
• Optimal multigrid convergence is obtained for adaptive meshes in 3-d 

• And optimal 

timings for 

the full non- 

isothermal 

problem in  

3-d, using 

different 

numbers of 

cores as a 

dendrite 

grows... 
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Parallel Performance 
• Parallel performance: Le = 40, Δ=0.325  

All runs based upon 32-core nodes (1 GB/core) 

• Up to 100M DoFs per time step; 

• Timings for 10 time steps – after steps 4000/7000... 

Core

# 

Run times including (without) remeshing 

dx=0.78 dx=0.78 dx=0.39 dx=0.39 dx=0.195 dx=0.195 

32 120 (120) 456 (450) 735 (715) - - - 

64 73 (73) 264 (259) 420 (404) 896 (884) - - 

128 57 (57) 181 (176) 298 (267) 546 (522) 1292 (1234) - 

256 171 (164) 246 (228) 412 (401) 955 (868) 1864 (1792) 

512 335 (331) 707 (675) 1331 (1228) 

1024 479 (388) 900 (701) 
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Typical Simulation Results 
• Snapshots of dendrite formation – Le=40, Δ=0.325 

These images show snapshots of this particular run: step 4000... 
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Typical Simulation Results 
• Snapshots of dendrite formation – Le=40 , Δ=0.325 

These images show snapshots of this particular run: step 7000... 
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Parallel Performance 
• Parallel performance: Le = 40, Δ=0.325  

All runs based upon 32-core nodes (1 GB/core) 

• Up to 100M DoFs per time step; 

• Timings for 10 time steps – after steps 4000/7000... 

Core

# 

Run times including (without) remeshing 

dx=0.78 dx=0.78 dx=0.39 dx=0.39 dx=0.195 dx=0.195 

32 120 (120) 456 (450) 735 (715) - - - 

64 73 (73) 264 (259) 420 (404) 896 (884) - - 

128 57 (57) 181 (176) 298 (267) 546 (522) 1292 (1234) - 

256 171 (164) 246 (228) 412 (401) 955 (868) 1864 (1792) 

512 335 (331) 707 (675) 1331 (1228) 

1024 479 (388) 900 (701) 
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Parallel Performance 
• Loss of efficiency 

There are a number of causes of the loss of efficiency: 

• Overhead with undertaking mesh adaptation and the 

resulting dynamic load-balancing. 

• Choice of 8x8x8 block size amplifies this. 

• Grid transfer operations have a high communication to 

computation ratio. 

• Coarsest grid solver also has high communication to 

computation ratio (and idle cores). 

Nevertheless, the problem would be intractable without the 

Combination of adaptivity, multigrid and parallel solution! 
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Discussion 
  

1. Second order (19-point) finite differences for the spatial discretization of 

the highly nonlinear coupled system of parabolic PDEs. 

2. Hierarchical adaptivity to refine and coarsen the spatial mesh as the 

solution evolves in time. 

3. Fully implicit second order BDF time integration for the stiff ODE 

systems that arise after spatial discretization (essential for stiff 

problems). 

4. Fully coupled nonlinear Multigrid solver for the nonlinear algebraic 

systems that occur at each time step: optimal complexity. 

5. Adaptive time step selection based upon local error estimation and/or 

convergence rate of MG solver. 

6. Implemented within a general-purpose software framework 

 

Numerical methods implemented in parallel: 
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Discussion 
  

Results obtained: 
1. Parallelism and adaptivity provide a capability in terms of memory use 

(high resolution in 3-d on up 1TB of RAM). 

2. Parallelism and multigrid provide a capability for implicit solution of very 

large stiff systems (run times in hours) 

3. Strong scaling is difficult due to achieve due to high overheads of 

adaptivity and nonlinear multigrid. 

4. Weak scaling is obtainable up to a certain level – provided the work per 

core is sufficient. 

5. Able to obtain new results for the quantitative description of the 

solidification of metal alloys, using physically realistic parameter values! 

6. Similar outcome for completely different P-F model of 3D Tumor Growth 

(e.g. Wise, Lowengrub & Christini (2011)). 
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Examples of New Quantitative Results 
  

Mesh independent prediction of dendrite tip radius… 
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Examples of New Quantitative Results 
  

Mesh independent prediction of dendrite tip radius  
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Examples of New Quantitative Results 
  

Can therefore predict quantitative dendrite features… 
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Examples of New Quantitative Results 
  

And see the importance of three-dimensional simulations… 
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Can we Scale to >10000 Cores? 
  

Two algorithmic priorities: 

1. Improve dynamic load-balancing 

• Enhance the data locality between parent and child blocks 

• Enhance the data remapping algorithms to improve their efficiency 

2. Replace nonlinear MG solver (FAS+MLAT) with a matrix-free Newton-

Krylov solver with linear MG preconditioner based upon FAC (fast 

adaptive composite grid) approach: 

• Preliminary analysis shows lower constant of optimality in the MG 

cost and slightly faster convergence 

• Only requires a (non-exact) linear solve at the coarsest level which 

will allow a finer coarsest grid and better parallel performance 
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Thank you… 
  

To the organisers for the invitation to attend this 

workshop… 

 

Any questions? 
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