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1. Equation P1

iut − (−4+ k2)su+ (
1

|x|γ
∗ |u|2)u = 0, x ∈ RN , (1)

u = u(t, x) : [0, T )× RN → C, 0 < T ≤ +∞;

(−4+ k2)su = F−1[(|ξ|2 + k2)sF [u](ξ)], s > 0;

( 1
|x|γ ∗ |u|

2)(x) =
∫ |u(y)|2
|x−y|γ dy; 0 < γ < 4s.

♦ Boson star, fractional quantum mechanics etc.
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Known Studies P2

In particular, when N = 3, s = 1
2

and γ = 1, Eq.(1) is the
Boson star equation.

• Fröhlich, Lenzmann, Lewin(2007-2009): well-posedness,
orbital stability, singularity of blow-up solutions.

• Bao and Dong(2011): efficient and accurate numerical
methods to compute the ground states and dynamics.
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Known Studies P3

For general 0 < s < 1, Laskin(2000,2002): expanding the
Feynman path integral from the Brownian-like to the Lévy-
like quantum mechanical paths.

• Cho, Hwang, Hajaiej and Ozawa(2012): local well-posedness,
existence of blow-up solutions.

• Guo, Huo, Huang(2011-2012): global well-posedness.
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Known Studies P4

Existence and stability of standing waves for the classic non-
linear Schrödinger equation(i.e.s = 1)

Strauss(1977): existence of standing waves.

Cazenave and Lions(1982): orbital stability of standing
waves.

Weinstein(1983): strongly instability of standing waves.

Existence and stability of standing waves for the fourth-order
nonlinear Schrödinger equation(i.e.s = 2)

Zhu, Zhang and Yang(2010): existence of standing waves
and ground state.

Fibich, Baruch and Mandelbaum(2011): numerical stud-
ies for standing waves.
Levandosky(1998): orbital stability of standing waves.
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Problems and Arguments P5

• Problems

1. Existence of standing waves for (1).

2. Stability of these standing waves.

• Arguments

♦ Weinstein(1983): blow-up argument

♦ Gérard(1998) Hmidi & Keraani(2005): profile decompo-
sition

♦ Cazenave and Lions(1982), Zhang(2000): variational ar-
gument
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Local Well-posedness P6

Denote Hs := {v ∈ S
′
(RN ) |

∫
(1 + |ξ|2)s|v̂(ξ)|2dξ < +∞} and

E(v) :=
1

2

∫
v(−4)svdx− 1

4

∫
v(

1

|x|γ ∗ |v|
2)vdx.

Impose

u(0, x) = u0 ∈ Hs. (2)

Proposition 1 (Cho, Hwang, Hajaiej and Ozawa, 2012)

Let N ≥ 2, 0 < s < 1 and 0 < γ ≤ 2s. If u0 ∈ Hs, then ∃! u(t, x) of (1)-

(2) on I = [0, T ) such that u(t, x) ∈ C(I;Hs)
⋂
C1(I;H−s). Moreover,

for all t ∈ I, u(t, x) satisfies the following conservation laws.

(i) Conservation of mass ‖u(t)‖2 = ‖u0‖2.

(ii) Conservation of energy E(u(t)) = E(u0)
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Profile Decomposition P7

Proposition 2 Let N ≥ 2 and 0 < s < 1. If {vn}+∞n=1 is a bounded

sequence in Hs, then there exists a subsequence of {vn}+∞n=1(still denoted

{vn}+∞n=1), a family {xjn}+∞j=1 of sequences in RN and a family {V j}+∞j=1 of

Hs functions satisfying the following.

(i) For every k 6= j, |xkn − xjn| → +∞ as n→ +∞.

(ii) For every l ≥ 1 and every x ∈ RN , vn(x) can be decomposed as

vn(x) =
l∑

j=1

V j(x− xjn) + vln(x)

with lim
l→+∞

lim sup
n→+∞

‖vln‖p = 0 for every p ∈ (2, 2N
(N−2s)+

).

Moreover, we have, as n→ +∞,

‖vn‖22 =
l∑

j=1

‖V j‖22 + ‖vln‖22 + o(1),

‖vn‖2Ḣs =

l∑
j=1

‖V j‖2Ḣs + ‖vln‖2Ḣs + o(1).
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Orbital Stability of Standing Waves P8

Let k = 0, N ≥ 2 and M > 0. For any 0 < γ < 2s, we define the

following variational problem

dM := inf
{v∈Hs| ‖v‖22=M}

E(v) (3)

where E(v) := 1
2

∫
|ξ|2s|v̂|2dξ− 1

4

∫ ∫ |v(x)|2|v(y)|2
|x−y|γ dxdy is the energy func-

tional. Define the set

SM := {v ∈ Hs| v is the minimizer of the variational problem (3)}.
(4)

From the Euler-Lagrange Theorem, we see that for any v ∈ SM , there

exists ω ∈ R such that

(−4)sv + ωv − (
1

|x|γ ∗ |v|
2)v = 0, v ∈ Hs.
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Orbital Stability of Standing Waves P9

Theorem 1 Let k = 0, N ≥ 2 and M > 0. Assume 0 < s < 1 and

0 < γ < 2s. Then for arbitrary ε > 0, there exists δ > 0 such that for

any u0 ∈ Hs, if the initial data u0 satisfies

inf
v∈SM

‖u0 − v‖Hs < δ,

then the corresponding solution u(t, x) of the Cauchy problem (1)-(2) is

such that

inf
v∈SM

‖u(t, x)− v(x)‖Hs < ε

for all t > 0, where SM is defined in (4).
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Sketch of the Proof of Theorem 1 P10

Key: The existence of minimizer of Variational Problem (3)

i.e. Let N ≥ 2, 0 < γ < 2s and M > 0. Then,

dM := inf
{v∈Hs| ‖v‖22=M}

E(v) = min
{v∈Hs| ‖v‖22=M}

E(v).

Firstly, the variational problem (3) is well defined. Using the Hölder

inequality with 1 = γ
2s

+ 2s−γ
2s

, we deduce that∫
|v(x)|2

|x− y|γ dx ≤ C‖|x|
−sv(x+ y)‖

γ
s
2 ‖v‖

2s−γ
s

2 ≤ C‖v‖
γ
s

Ḣs
‖v‖

2s−γ
s

2 .

Thus,∫
(

1

|x|γ ∗|v(x)|2)|v(x)|2dx ≤ ‖
∫
|v(x)|2

|x− y|γ dx‖∞‖v(y)‖22 ≤ C‖v‖
γ
s

Ḣs
‖v‖

4s−γ
s

2 .

From Young inequality, ∃ C(ε, γ, s,
√
M) > 0 such that for all 0 < ε < 1

2

E(v) ≥ 1

2
‖v‖2Ḣs − C ‖v‖

4s−γ
s

2 ‖v‖
γ
s

Ḣs
≥ (

1

2
− ε)‖v‖2Ḣs − C(ε, γ, s, ‖v‖2).

(5)
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Sketch of the Proof of Theorem 1 P11

Secondly, there exists C0 > 0,

dM ≤ −C0 < 0.

Indeed, take vn = ρ
N
2
n R(ρnx), where ρn > 0 and R is a function such

that ‖vn‖22 = ‖R‖22 = M . We deduce that

E(vn) = 1
2

∫
|ξ|2s|v̂n|2dξ − 1

4

∫ ∫ |vn(x)|2|vn(y)|2
|x−y|γ dxdy

=
ρ2sn
2

∫
|ξ|2s|R̂|2dξ − ργn

4

∫ ∫ |R(x)|2|R(y)|2
|x−y|γ dxdy.

Since 0 < γ < 2s, we can choose ρn > 0 sufficiently small such that there

exists C0 > 0 such that E(vn) ≤ −C0 < 0.
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Sketch of the Proof of Theorem 1 P12

Thirdly, we prove the existence of minimizers of (3). Take the mini-

mizing sequence {vn}+∞n=1 ⊂ Hs of (3) satisfying that as n→ +∞,

E(vn)→ dM and ‖vn‖22 →M. (6)

Then, for n large enough, E(vn) satisfies E(vn) < dM + 1. From (5), for

any 0 < ε < 1
2

and n ≥ 1 large enough, we deduce that

(
1

2
− ε)‖vn‖2Ḣs ≤ dM + 1 + C(ε, γ, s,M).

Hence, {vn}+∞n=1 is bounded in Hs. Apply Proposition 2, we see that

vn(x) =

l∑
j=1

V j(x− xjn) + vln, (7)

‖vn‖22 =

l∑
j=1

‖V jn‖22+‖vln‖22+o(1), ‖vn‖2Ḣs =

l∑
j=1

‖V jn‖2Ḣs+‖v
l
n‖2Ḣs+o(1),

∫ ∫
|vn(x)|2|vn(y)|2

|x− y|γ dxdy =
l∑

j=1

∫ ∫
|V jn (x)|2|V jn (y)|2

|x− y|γ dxdy+

∫ ∫
|vln(x)|2|vln(y)|2

|x− y|γ dxdy+o(1),
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Sketch of the Proof of Theorem 1 P13

Thus, we have

E(vn) =
l∑

j=1

E(V j(x− xjn)) + E(vln) + o(1). (8)

Take the scaling transformation V jρj = ρjV
j(x−xjn) with ρj =

√
M

‖V j(x−xjn)‖2
≥

1. We have ‖V jρj‖
2
2 = M . We deduce that as n→ +∞ and l→ +∞

dM ≥ E(vn)

=
l∑

j=1

(
E(V jρj

)

ρ2j
+

ρ2j−1

4

∫ ∫ |V j(x−xjn)|2|V j(y−xjn)|2
|x−y|γ dxdy

)
+ E(vln) + o(1)

≥
l∑

j=1

dM
ρ2j

+ inf
j≥1

ρ2j−1

4

(
l∑

j=1

∫ ∫ |V j(x−xjn)|2|V j(y−xjn)|2
|x−y|γ dxdy

)
+
‖vln‖

2
2

M
dM + o(1)

≥ dM + C0

(
M

‖V j0‖22
− 1
)

+ o(1),

where C0 > 0. Therefore, there exists only one term V j0 6= 0 in the

decomposition (7) such that ‖V j0‖22 = M . V j0 is the minimizer of (3).
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Strong Instability of Standing Waves P14

Theorem 2 Let k = 0 and N ≥ 2. Assume 0 < γ
2

= s < 1.

Then, the ground state solitary waves eiωtQ(x) of the fractional non-

linear Schrödinger equation (1) are unstable in the following sense: For

arbitrary ε > 0, there exist the radial initial data {u0,n}+∞n=1 ⊂ Hs0 with

s0 = max{2s, 2s+1
2
} satisfying |x|u0,n ∈ L2, x · ∇u0,n ∈ L2,

‖u0,n −Q‖Hs < ε (9)

and the corresponding solution {un(t, x)}+∞n=1 blows up in the finite time,

where Q is the ground state solution of

(−4)sQ+Q− (
1

|x|2s ∗ |Q|
2)Q = 0. (10)
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Sketch of the Proof of Theorem 2 P15

Proposition 3 Let N ≥ 2 and 0 < s < 1. Then,

∫
|v|2dx ≤ 2

N

(∫
vx(−4)1−sxvdx

) 1
2
(∫

v(−4)svdx

) 1
2

, ∀ v ∈ Hs.

Proof.
For all v ∈ Hs, we have∫

|v|2dx = 2
N

∫
F [∇ · (xv)]F−1[v]dξ

= 2
N

∫
F [v] ξ · ∇ξF [v]dξ

≤ 2
N

∫
|ξ|s|F [v]| |ξ|1−s|∇ξF [v]|dξ

≤ 2
N

(∫
v(−4)svdx

) 1
2
(∫
vx(−4)1−sxvdx

) 1
2 .
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Sketch of the Proof of Theorem 2 P16

Proposition 4 (see [Cho, Hwang, Kwon and Lee, 2012]) Let k = 0, N ≥
2, 0 < s < 1 and γ = 2s. Assume that u0 ∈ Hs0 with s0 = max{2s, γ+1

2
}

is radial symmetric, and |x|u0 ∈ L2 and x · ∇u0 ∈ L2. If u(t, x) is the

solution of the Cauchy problem (1)-(2), then for all t ∈ I (the maximal

time interval),
∫
ux(−∆)1−sudx is nonnegative and∫
ux(−∆)1−sxudx ≤ 2sE(u0)t2 + Ct+ C.
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Sketch of the Proof of Theorem 2 P17

Let {cn}+∞n=1 ⊂ C\{0} be such that |cn| > 1 and lim
n→+∞

|cn| = 1, and

{ρn}+∞n=1 ⊂ R+ be such that lim
n→+∞

ρn = 1. We take the initial data

u0,n = cnρ
N
2
n Q(ρnx),

where Q is the ground state solution of (10). We see that for all n ≥ 1,

‖u0,n‖2 > ‖Q‖2 and

lim
n→+∞

‖u0,n‖2 = lim
n→+∞

|cn| ‖Q‖2 = ‖Q‖2

and

lim
n→+∞

‖u0,n‖Ḣs = lim
n→+∞

|cn| ρsn ‖Q‖Ḣs = ‖Q‖Ḣs .

Hence, from the Brézis-Lieb Lemma, ∀ ε > 0, ‖u0,n − Q‖Hs < ε as n is

sufficiently large.

On the other hand, we see that

E(u0,n) =
(|cn|2 − |cn|4)ρ2sn

2
‖Q‖2

Ḣs
≤ −C0 < 0.
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Sketch of the Proof of Theorem 2 P18

Then, ∫
unx(−∆)1−sxundx ≤ −2sC0t

2 + Ct+ C,

which implies that there exists 0 < T < +∞ such that

lim
t→T

∫
unx(−∆)1−sxundx = 0.

Finally, using the conservation of mass and applying the inequality in Propo-

sition 3 to un, we see that for all time t

‖u0,n‖22 = ‖un(t)‖22 ≤ 2
N

(∫
unx(−4)1−sxundx

) 1
2 (
∫
un(−4)sundx)

1
2

≤ 2
N

(∫
unx(−4)1−sxundx

) 1
2 ‖un(t)‖Ḣs .

Therefore, there exists 0 < T < +∞ such that

lim
t→T
‖un(t)‖Ḣs = +∞.
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Thanks!
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