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¢ Boson star, fractional quantum mechanics etc.
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In particular, when N = 3, s =  and v = 1, Eq.(1) is the
Boson star equation.

e Frohlich, Lenzmann, Lewin(2007-2009): well-posedness,
orbital stability, singularity of blow-up solutions.

e Bao and Dong(2011): efficient and accurate numerical
methods to compute the ground states and dynamics.
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For general 0 < s < 1, Laskin(2000,2002): expanding the
Feynman path integral from the Brownian-like to the Lévy-
like quantum mechanical paths.

e Cho, Hwang, Hajaiej and Ozawa(2012): local well-posedness
existence of blow-up solutions.

e Guo, Huo, Huang(2011-2012): global well-posedness.
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Existence and stability of standing waves for the classic non-
linear Schrodinger equation(i.e.s = 1)

e Strauss(1977): existence of standing waves.

o Cazenave and Lions(1982): orbital stability of standing
waves.

o Weinstein(1983): strongly instability of standing waves.

Existence and stability of standing waves for the fourth-order
nonlinear Schrédinger equation(i.e.s = 2)

e Zhu, Zhang and Yang(2010): existence of standing waves
and ground state.

e Fibich, Baruch and Mandelbaum(2011): numerical stud-
ies for standing waves.
o Levandosky(1998): orbital stability of standing waves.
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1. Equation

1. Ezistence of standing waves for (1).
2. Stability of these standing waves.

2. Known
Studies

3. Problems

4. Prelimi- [} Arguments

naries

- ¢ Weinstein(1983): blow-up argument

Stability

6.

Instability ¢ Gérard(1998) Hmidi & Keraani(2005): profile decompo-
sition

¢ Cazenave and Lions(1982), Zhang(2000): variational ar-
gument
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Denote H® := {v € § (RY) | S+ 1€7)%10(8)|?d¢ < +oo} and
E(v) := %/E(—A)svd - }I/ﬁ(# * |v)?)vda.

Impose
w(0,z) = ug € H®. (2)

Proposition 1 (Cho, Hwang, Hajaiej and Ozawa, 2012)

Let N >2,0<s<land0<~vy<2s. Ifug€ H®, then 3! u(t, x) of (1)-
(2) on I = [0,T) such that u(t,z) € C(I; H*) (C*(I; H*). Moreover,
for all t € I, u(t, x) satisfies the following conservation laws.

(i) Conservation of mass ||u(t)|l2 = ||uo||2-

(ii) Conservation of energy FE(u(t)) = E(uo)
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Proposition 2 Let N > 2 and 0 < s < 1. If {v,}> is a bounded
sequence in H*, then there exists a subsequence of {v,, };73 (still denoted

{v, },129), a family {:c]

°] of sequences in RY and a family {VJ 120 of

H® functlons satisfying the followmg.
(i) For every k # j, |zF — 2| — 400 as n — +oo.

(ii) For every I > 1 and every x € RY, v,(x) can be decomposed as

1
(@) =Y Vi@ —a}) +vn(x)

=1

with hm limsup |[vh ||, =0 for every p € (2, ﬁ)

X n—s4oco

Moreover, we have, as n — 400,

1
lonll3 =D~ IVZII3 + llonl3 + o(1),

2
l[on s

=1

1
=D IVl + lvnls + o(1).

j=1
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Let k=0, N > 2 and M > 0. For any 0 < v < 2s, we define the
following variational problem

dy = inf E(v 3
{veH?| ||v||3=M} ®) ®)

where E(v) := 1 [ [£]**[0]*dé—3 [ [ |v(=)] |v(y)‘2dmdy is the energy func-

lz—y|7
tional. Define the set

Sm := {v € H®| v is the minimizer of the variational problem (3)}.
(4)
From the Euler-Lagrange Theorem, we see that for any v € Sps, there
exists w € R such that

(=A)* v+ wv — (ﬁ v )v =0, ve H".
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Theorem 1 Let k =0, N > 2 and M > 0. Assume 0 < s < 1 and
0 < v < 2s. Then for arbitrary € > 0, there exists 6 > 0 such that for

any uo € H?, if the initial data uo satisfies
inf |jup —v||gs < 0,
ESm

then the corresponding solution u(t,x) of the Cauchy problem (1)-(2) is
such that
I fu(t,2) — v(@) e <

for all t > 0, where Sy is defined in (4).
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Key: The existence of minimizer of Variational Problem (3)
i.e. Let N >2,0< v < 2s and M > 0. Then,
dy = inf E(v) = min E(v).
{veH?| ||lv]|3=M} {veH?| ||lv|3=M}
Firstly, the variational problem (3) is well defined. Using the Holder

g B . _ 25—
inequality with 1 = g- + =57, we deduce that

o) . e R v
/ o < Clllal "o + )1 olls ™ < Il ol
Thus,
|v 2 G 45—y
/ (2 slo@) o) 2do < | / - dmnmuv( 2 < Cloll, llolly ™
From Young inequality, 3 C(e,~, s,V M) > 0 such that for all 0 < e < %

1 1
E(v) > 5llvlF. - Cloll, IIvIIHs > (5 =l — Cle, s llvll2).
(4)
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Secondly, there exists Cp > 0,
dy < —Cph < 0.

N
Indeed, take v, = pZ R(pnx), where p, > 0 and R is a function such
that ||v.||3 = ||R||3 = M. We deduce that

_ 2 2
3 J 161 o *dg - i f J R dady

- 2
Pn f|f|23|R| d¢ — f 1R(=@) 7| R()|* )| \R(y)| IR@ITIRWI g7y,

E(vn)

Since 0 < v < 2s, we can choose p, > 0 sufficiently small such that there
exists Co > 0 such that E(v,) < —Cp < 0.



Stability Thirdly, we prove the existence of minimizers of (3). Take the mini-

for
NGl mizing sequence {v, };723 C H* of (3) satisfying that as n — +o0,
E(vn) = dy and |lva]|3 — M. (6)
1. Equation Then, for n large enough, E(v,,) satisfies E(v,) < du + 1. From (5), for

2. Known
Studies

any 0 < e < % and n > 1 large enough, we deduce that

3. Problems

1
(5 = llvnllFye < dar+1+Cle, 7,5, M).

Hence, {v,}25 is bounded in H*. Apply Proposition 2, we see that

5. Orbital

Stability

}{mf:xhilit_v Un(m) = Z V7 (93 - z%) + Uiu (7)

j=1

l 1
l[vnll? = Z IVIlE+Hlonliz+o(1), llvnll. = Z IV s +llvnll s +o(1),

Jon(@)Plon @) / /IV“ 2PV / /|v
/ / |x—y|v sy - Z |x—y|~ sy e




Stability
for
Nonlinear
FLS

1. Equation

2. Known
Studies

3. Problems

5. Orbital
Stability

6.
Instability

Thus, we have

E(va) =Y E(V’(z — ) + E(vy,) + o(1). (8)

Jj=1

i i I = 5V (5p—g7 i J— VM
Take the scaling transformation V7, = p; V7 (v—27,) with p; = TVt 2

1. We have ||VPJJ |3 = M. We deduce that as n — +oc0 and | — 400

Vi(e—al) 2|V (y—a})|?

- _V;L gl nll L da:dy) + E@L) + o

=1\ 7
: 5 .
Vi J VI (y—zd )|2 PR
> ;1%4- <Z f‘/‘\ (z—=d, il Iyl’Y(y z7)| d;r:dy) + Hv&lbd

J

where Cy > 0. Therefore, there exists only one term V7 = 0 in the

decomposition (7) such that [|[V7[|3 = M. V’° is the minimizer of (3).
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Theorem 2 Let k = 0 and N > 2. Assume 0 < I = s < 1.
Then, the ground state solitary waves €“'Q(x) of the fractional non-
linear Schrodinger equation (1) are unstable in the following sense: For
arbitrary € > 0, there ewist the radial initial data {uo »}125 C H® with

so = max{2s, 225} satisfying |z|uon € L, @ - Vuon € L?,

[uo,n — Qllas <e 9)

and the corresponding solution {un(t,z)}12° blows up in the finite time,

where Q is the ground state solution of
1

|x|25

(—2)°Q+Q - (=5 *1QP)Q =0. (10)
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Proposition 3 Let N > 2 and 0 < s < 1. Then,

) } !
/|v|2dm < i (/ﬁx(—A)l_sxvdm> (/T)(—A)%dm) , YveH".

Proof.

For all v € H®, we have
[IwPdz =2 [F[V - (av)]F ' [v]d¢
% [ Fv] & VeFluldg
< 2 [IEPIFWI 11| VeFlo]|dg

s (fﬁ(_A)sUdm)% (fﬁw(—A)l_swvdx)% .

N

IN
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Proposition 4 (see [Cho, Hwang, Kwon and Lee, 2012]) Let k = 0, N >
2,0 < s < 1andy = 2s. Assume that up € H" with so = max{2s, 211}
is radial symmetric, and |z|ug € L? and = - Vug € L?. If u(t,x) is the
solution of the Cauchy problem (1)-(2), then for all ¢ € I (the maximal

time interval), [uz(—A)""*udz is nonnegative and

/Em(—A)l_swud:c < 25E(uo)t* 4+ Ct + C.



Stability Let {cn} 22 € C\{0} be such that |c,| > 1 and lim |e,| = 1, and
for n—+oo

Nonlinear +oo aF i = initi
= {pn},;2 CRT be such that ngl-lkloo pn = 1. We take the initial data

N
w0,n = cnpr Q(pn),

1. Equation

. Known

where @ is the ground state solution of (10). We see that for all n > 1,
lluo,nll2 > [I1Qll2 and

lim_fluonlls = lim_leal QU2 = 1@l
5. Orbital
Stability and
6. g °
tastability im luomllge = im el 5 1Ql e = 1@l e

Hence, from the Brézis-Lieb Lemma, V ¢ > 0, |luo,n — Q|lgs < € as n is
sufficiently large.
On the other hand, we see that

12l |4) 528
E(ug.n) = W”QHZ < —Cy<0.

)
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Then,
/Mx(—A)l_sxund:c < —2sCot? + Ct + C,

which implies that there exists 0 < 7' < 4+oc0 such that
lim /mx(—A)l_sxundz =0.
t—T

Finally, using the conservation of mass and applying the inequality in Propo-

sition 3 to un, we see that for all time ¢

1 1
luomll = lun@®I3 < F (J@nz(=L)' " wundz)? ([ Tn(~L) undz)?

1
< % (=)' wundz) 2 [lun(®)] o

Therefore, there exists 0 < T' < +o0o such that

Jimy [fun (&) 0 = +oo.
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