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GP equations for the dipolar BEC

In the ultracold gas, the dipole-dipole interaction (DDI)is long-range and
anisotropic. The DDI between alkali atoms is a thousand times smaller
than the short-range interaction. However, DDI between transition atoms
is large (52Cr) [Pfau,PRL§2005]. The dipolar BEC is governed by the 3D
Gross-Pitaevskii equation (GPE). By the dimensionless transformation, one
gets the following nonlocal GPE:

iψt(x, t) = (−1

2
∇2 + V(x) + β|ψ(x, t)|2 + λUdip ∗ |ψ(x, t)|2)ψ(x, t) (1)

where V (x) = 1
2 (γ2

1x
2 + γ2

2y
2 + γ2

3z
2) and Udip = Cdd

4π
1−3 cos2 θ
|x|3 .
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GP equations for the dipolar BEC

GPE has two conservation quantities, i.e, the number of the particles and
the total energy:∫

R3

|ψ(x, t)|2dx ≡
∫
R3
|ψ(x, 0)|2dx =

∫
R3
|ψ0(x)|2dx = 1 (2)

and

E (ψ(x, t)) =

∫
R3

(
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 +

λ

2
(Udip ∗ |ψ|2)|ψ|2

)
dx

≡ E (ψ(x, 0)) (3)

Some efficient numerical method: time-splitting spectral (Bao et.al.
2010¶Bao§et.al,arXiv:1410.3584;Markowich et. al.§2014);Finite
difference method;Finite element method"
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FEM for the ground state of the 1D dipolar BEC

To obtain the ground state of the 1D dipolar BEC, we apply the imaginary
time method, that is, solve the following equation and combine projection
method:

ψt(x , t) =
1

2
∇2ψ − V (x)ψ(x , t)− β|ψ(x , t)|2ψ(x , t)

−λ(Udip ∗ |ψ(x , t)|2)ψ(x , t),−a < x < a (4)

where V (x) = x2

2 , Udip = |x |−α with 0 < α < 1. The boundary condition
is ψ(−a, t) = ψ(a, t) = 0; Initial condition is ψ(x , 0) = ψ0(x)
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FEM for the ground state of the 1D dipolar BEC

FEM is to find the real function ψh(x , t) =
∑m

i=0 αi (t)φi (x) ∈ Vh(Ω),
which satisfies ∀φ(x) ∈ Vh(Ω), Ω = [−a, a]
∫

Ω ψhtφdx =
∫

Ω

(
1
2∇

2 − V (x)− β|ψh|2 − λ(Udip ∗ |ψh|2)

)
ψhφ dx ,∫

Ω ψh(x , 0)φdx =
∫
R ψ0(x)φdx ,

(5)
m∑
i=0

α′i (t)

∫
Ω
φi (x)φj(x)dx =

−1

2

m∑
i=0

αi (t)

∫
Ω
∇φi (x) · ∇φj(x)dx −

m∑
i=0

αi (t)

∫
Ω
V (x)φi (x)φj(x)dx

−β
m∑
i=0

αi (t)

∫
Ω
|

m∑
k=0

αk(t)φk(x)|2φi (x)φj(x)dx

−λ
m∑
i=0

αi (t)

∫
Ω
Udip ∗

(
|

m∑
k=0

αk(t)φk(x)|2
)
φi (x)φj(x)dx , 0 ≤ j ≤ m.
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FEM for the ground state of the 1D dipolar BEC

Denote Aij =
∫

Ω φi (x)φj(x)dx ,
Bij =

∫
Ω∇φi (x) · ∇φj(x)dx ,

Cij =
∫

Ω V (x)φi (x)φj(x)dx ,
D(α)ij =

∫
Ω |
∑m

k=0 αk(t)φk(x)|2φi (x)φj(x)dx
K (α)ij =

∫
Ω Udip ∗

(
|
∑m

k=0 αk(t)φk(x)|2
)
φi (x)φj(x)dx .

It’s easy to see that A B,C ,D(α) and K (α) are symmetric, and A
B,C ,D(α) can be directly calculated, while K (α) needs to estimate
carefully
Let the convolution term F (x , t) = Udip ∗ |

∑m
i=0 αi (t)φi (x)|2. Notice

F (x , t) :=

∫ xm

x0

|
∑m

i=0 αi (t)φi (y)|2

|x − y |α
dy

= α2
0(t)

∫ x1

x0

φ2
0(y)

|x − y |α
dy + α2

m(t)

∫ xm

xm−1

φ2
m(y)

|x − y |α
dy

+
m−1∑
i=1

α2
i (t)

∫ xi+1

xi−1

φ2
i (y)

|x − y |α
dy + 2

∑
0≤i<j≤m

αi (t)αj(t)

∫ xm

x0

φi (y)φj(y)

|x − y |α
dy .
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FEM for the ground state of the 1D dipolar BEC

Setting that

Li (x) :=

∫ xi

xi−1

φ2
i (y)

|x − y |α
dy =

1

h2

∫ xi

xi−1

(y − x + x − xi−1)2

|x − y |α
dy ,

Ri (x) :=

∫ xi+1

xi

φ2
i (y)

|x − y |α
dy =

1

h2

∫ xi+1

xi

(xi+1 − x + x − y)2

|x − y |α
dy ,

Mi (x) :=

∫ xi+1

xi

φi (y)φi+1(y)

|x − y |α
dy =

1

h2

∫ xi+1

xi

(xi+1 − y)(y − xi )

|x − y |α
dy .

then we have

F (x , t) = α2
0(t)R0(x) +

m−1∑
i=1

α2
i (t)

(
Li (x) + Ri (x)

)
+ α2

m(t)Lm(x)+

2
∑m−1

i=0 αi (t)αi+1(t)Mi (x) (7)
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FEM for the ground state of the 1D dipolar BEC

Therefore K (α)ij =
∫

Ω F (x , t)φi (x)φj(x)dx can be estimated. Then we
have

A~α′(t) = −
(1

2
B + C + βD(~α) + λK (~α)

)
~α(t) (8)

The initial condition ψ(x , 0) = ψ0(x) shows that∫
Ω
ψh(x , 0)φj(x)dx =

∫
Ω
ψ0(x)φj(x)dx , 0 ≤ j ≤ m, (9)

and
A~α(0) = ~b (10)
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FEM for the ground state of the 1D dipolar BEC

Now we solve the ODEs (8) with the backward Euler scheme[
A + τ

(1

2
B + C + βD(~αk) + λK (~αk)

)]
~αk+1 = A~αk (11)

Furthermore, ∫
Ω
|ψh(x , t)|2dx = ~αTA~α , 0 ≤ t ≤ t0

After each discrete time level, ψh(x , t) should be normalized to satisfy∫
Ω |ψh(x , t)|2dx = 1, that is,

ψh(x , t) := ψh(x ,t)
‖ψh(x ,t)‖ .

In addition, the total energy can be rewritten

E (ψh(x , t)) =
1

2
~αTB~α + ~αTC~α +

β

2
~αTD(~α)~α +

λ

2
~αTK (~α)~α (12)

Xiang-Gui Li (BISTU) FEM for BEC 06/02/2015, Singapore 11 / 35



FEM for the ground state of the 1D dipolar BEC

Proposition 1. Suppose the initial condition ψ0(x) is bounded uniformly
and β ≥ 0, then we have

‖ψh(x , t)‖L2 ≤ C , (13)

where the constant C is independent of h and t.

Proposition 2. Suppose ‖ψht(x , 0)‖2
L2 is bounded with respect to h

uniformly and β ≥ 4λ(2a)1−α

1−α , then we have

‖ψht(x , t)‖L2 ≤ C , (14)

where C is independent of h and t.
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FEM for the ground state of the 1D dipolar BEC

Proposition 3. Under the assumptions of Proposition 1 and Proposition
2, we have

‖∇ψh‖L2 ≤ C , ‖V (x)|ψh|2‖L1 ≤ C ,

‖ψh‖L4 ≤ C , ‖(Udip ∗ |ψh|2)|ψh|2‖L1 ≤ C .
(15)

Theorem 1. Under the assumptions of Proposition 1, 2, 3, there exists any
T > 0 such that the finite element solution ψh(x , t) is convergent to the
generalized solution (4) on [0,T ].
The FEM for dynamical evolution of the 1D dipolar GPE is similar.
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Example 1

The initial condition is chosen to be ψ0(x) = 1
π1/4 e

−x2/2. The ground

state ψg := ψk+1
h =

∑m
j=0 α

k+1
j φj(x) is reached numerically when

‖~αk+1 − ~αk‖∞ := max
0≤j≤M

|αk+1
j − αk

j | ≤ ε := 10−6.

We solve this problem on [−16, 16] with h = 1/8 and τ = 0.01.

Fig.1. Ground state solution ψg .
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Example 1

Fig.1. The energy evolution of a dipolar BEC with λ = 10 and β = 500.
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Example 2

We solve this problem on [−8, 8] with h = 1/32 and τ = 0.005.

Fig.2. Ground state ψg and energy evolution with λ = 0.8 and β = 30.
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Because the dipolar interaction is not only nonlinear but also nonlocal,the
key difficulties are to efficiently and accurately calculate the nonlocal
interaction and deal with singularity for numerical method. The
convolution term can be split into a δ function (local) and directional
derivative of potential (nonlocal), that is, the dipolar GPE is equivalent to
the GPP:

iψt(x, t) =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 − 3λ∂ll(ω(x, t))

]
ψ (16)

∇2ω(x, t) = − |ψ|2 , (17)

It also can be rewritten as follows:

iψt(x, t) =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 + 3λ(∇(v · l) · l)

]
ψ, (18)

∇ · v = |ψ|2 , x ∈ R3, t > 0 (19)

v = −∇ω. (20)
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Semi-discrete combined DG finite element method

total energy becomes
E (ψ(x, t)) =∫

R3

(
1
2 |∇ψ|

2 + V (x)|ψ|2 + β−λ
2 |ψ|

4
)
dx + 3λ

2

∫
R3 ∇(v · l) · l|ψ|2dx.

The whole space is usually truncated into a bounded computational
domain Ω such as Ω = [−a, a]× [−b, b]× [−c , c] with homogeneous
Dirichlet boundary condition for wave function ψ and the Neumann
boundary condition for potential. In general, as |x| −→ ∞, the wave
function ψ tends to 0 fast, while the associated potential ω and its gradient
v tend to 0 slowly. Then we replace equations (19) in R3 by the following
equations in bounded domain Ω with the Neumann boundary condition

∇ · v = |ψ|2 , v · n|∂Ω =
1

|∂Ω|
. (21)

The boundary condition is chosen to avoid the inconsistency between the
equation ∇ · v = |ψ|2 and particle conservation.∫

Ω ∇ · vdx =
∫

Ω |ψ|
2 dx = 1
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Semi-discrete combined DG finite element method

Consider a regular partitioning of the domain Ω into polygonal elements K
forming a mesh Th satisfying the standard finite element conditions. Let εh
= {e : e is an edge of K for all K ∈ Th}, ε0

h = {e : e is an interior edge of
K} and ε∂h = εh ∩ ∂Ω. We define that averages and jumps for scalar and
vector function on e ∈ ε0:

ψ =
1

2
(ψint + ψext), [ψ] = ψint−ψext , on e ∈ ε0,

where ψext(ψint) represents ψ evaluated from outside (inside) of K .
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Semi-discrete combined DG finite element method

Define finite element spaces:

Ch = {ψ ∈ L2(Ω) : ψ|K ∈ Ck(K ),∀K ∈ Th},

Vh = {v ∈ L2(Ω)×L2(Ω)×L2(Ω) : v|K ∈ Pk(K )×Pk(K )×Pk(K ),∀K ∈ Th},

Wh = {w ∈ L2(Ω) : w |K ∈ Pk(K ),∀K ∈ Th}

and Lagrange multiplier ξ in the space

Mh = {η ∈ L2(εh) : η|e ∈ Pk(e),∀e ∈ εh}.

Then the DG finite element approximations ψ in Ch, v in Vh, ω in Wh,
and ξ in Mh, are determined by requiring that
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Semi-discrete combined DG finite element method

i 〈ψt , u〉K =
1

2
〈∇ψ,∇u〉K −

1

2

〈
ψ̂n, u

〉
∂K

+
1

4
〈[ψ], un〉∂K +

〈V (x)ψ, u〉K + (β − λ)
〈
|ψ|2 ψ, u

〉
K

+ (22)

3λ 〈(∇(v · l) · l)ψ(x, t), u〉K ,∑
K∈Th

〈v, r〉K −
∑
K∈Th

〈ω,∇ · r〉K +
∑
K∈Th

〈ξ, r · n〉∂K = 0, (23)

∑
K∈Th

〈∇ · v, p〉K =
∑
K∈Th

〈
|ψ|2 , p

〉
K
, (24)

∑
K∈Th

〈v · n, η〉∂K =

〈
1

|∂Ω|
, η

〉
∂Ω

. (25)
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property of Semi-discrete combined DG

The numerical fluxes for ψ by direct DG method are chosen as:

ψ̂n = α0
[ψ]

|e|
+∇ψ · n (26)

We have
Theorem 2. The scheme (23)-(25) keeps the particle conservation,

‖ψ(x, t)‖2 =

∫
R3

|ψ(x, t)|2 dx = ‖ψ(x, 0)‖2 = 1.
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Combined DG method for ground state

In order to obtain the ground states, we take the ansatz

ψ(x, t) = e−iµtφ(x), x ∈ R3, t ≥ 0, µ ∈ R (27)

Inserting (27) into the system (18)-(20), we get the time-independent
GP equation or the eigenvalue problem

µφ(x) = [−1

2
∇2 + V (x) + (β − λ)|φ(x)|2 + 3λ(∇(v · l) · l)]φ(x),(28)

v = −∇ω,∇ · v = |φ|2 , x ∈ R3

under the constraint

‖φ‖ =

√∫
x∈R3

|φ(x)|2dx = 1. (29)
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Combined DG method for ground state

Find φg ∈ S and µg ∈ R such that

E g := E (φg ) = min
φ∈S

E (φ), µg := µ(φg ), (30)

S is defined as
S := {φ(x) | ‖φ‖ = 1, E (φ) <∞}. (31)

and eigenvalue of (28)is defined as

µ(φ) =

∫
R3

[
1

2
|∇φ|2 + V (x)|φ|2 + (β − λ)|φ|4 + 3λ(∇(v · l) · l)|φ|2]dx

≡ E (φ) +

∫
R3

1

2
[(β − λ)|φ|4 − 3λ(∇(v · l) · l)|φ|2]dx,

v = −∇ω,∇ · v = |φ|2 .
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Combined DG method for ground state

The function φ(x, t) is the solution of the following gradient flow with
discrete normalization:

−∂φ
∂t

= [−1

2
∇2 + V (x) + (β − λ)|φ|2 + 3λ(∇(v · l) · l)]φ, (32)

v = −∇ω,∇ · v = |φ|2 , x ∈ Ω, t ∈ (tn, tn+1), (33)

φ(x, t)|∂Ω = 0, v · n|∂Ω =
1

|∂Ω|
, t ≥ 0, (34)

φ(x, 0) = φ0(x), ‖φ0‖ = 1, (35)

φ(x, tn+1) := φ(x, t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Ω, n ≥ 1, (36)
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DG for ground state

From time tn to tn+1, the combined DG with Euler backward
discretization in time for (32)-(33) is to find φ in Ch, v in Vh, ω in Wh,
and ξ in Mh such that the following

−〈φt , u〉K =
1

2
〈∇φ,∇u〉K −

1

2

〈
φ̂n, u

〉
∂K

+
1

4
〈[φ], un〉∂K +

〈V (x)φ, u〉K + (β − λ)
〈
|φn|2 φ, u

〉
K

+3λ 〈(∇(v · l) · l)ψ(x, t), u〉K ,∑
K∈Th

〈v, r〉K =
∑
K∈Th

〈ω,∇ · r〉K −
∑
K∈Th

〈ξ, r · n〉∂K ,∑
K∈Th

〈v,∇p〉K =
∑
K∈Th

〈
|φn|2 , p

〉
K
,

∑
K∈Th,

〈v · n, η〉∂K =

〈
1

|∂Ω|
, η

〉
∂Ω

,

hold for any u in Ch, r in Vh, p in Wh, and η in Mh .
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A semi-implicit time discretization for dynamic evolution

Turn to deal with the semi-discrete system for dynamic evolution. This
finite element scheme (23)-(25)is nonlinear ODEs. First solve velocity field
(24)-(25) to get v ,then integrate the nonlinear ODEs exactly in time. The
scheme (24)-(25) can be written into a matrix equation A −B C

Bt 0 0
C t 0 0

 Q
W
Ξ

 =

 0
F
Gn

 , (37)

Both the vectors of Q and W can now be easily eliminated to obtain an
equation for the multiplier only, namely,

DΞ = H, (38)

where D and H are given by

D = C t(SM−1S t − A−1)C ,

H = Gn − C tSM−1F ,

M = BtA−1B, S = A−1B.
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A semi-implicit time discretization for dynamic evolution

We substitute the gradient v in equation (23) and sum it over all elements
to get

i
∑
K∈Th

〈ψt , u〉K =

∑
K∈Th

1
2 〈∇ψ,∇u〉K +∑

e∈ε∂h ,
(

1
2 〈[ψ], [u]〉e + 1

2

〈
∇ψ · n[u]

〉
e

+ 1
2

〈
[ψ]∇u · n

〉
e

)
+
∑

K∈Th

(
〈V (x)ψ, u〉K + (β − λ)

〈
|ψn|2 ψ, u

〉
K

+ 3λ 〈(∇(v · l) · l)ψ, u〉K
)
.

Write it into the global linear ODE system by inverting the mass matrix:

dΨ

dt
= GΨ, (39)

We integrate the equation (40) exactly from time tn to tn+1 and get

Ψn+1 = eG∆tΨn, (40)

The Krylov subspace approximation is adopted

eG∆tΨn = βVm+1e
4tHm+1e1 (41)
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A semi-implicit time discretization for dynamic evolution

The orthonormal basis and the upper Hessenberg matrix resulting from the
following Arnoldi process:
Algorithm 1
Hm+2 = zeros[m + 2,m + 2];
1. Compute the initial vector: v1 = Ψn/‖Ψn‖2;
2. Perform iterations: Do j = 1, 2, . . . ,m:

(1) Compute the vector p = Gvj ;
(2) Do i = 1, 2, . . . , j :

(2.1) Compute the inner product hij = (p, vi );
(2.2) Compute the vector p = p− hijvi ;

(3) Compute hj+1,j = ‖p‖2;
(4) If hj+1,j = 0, then stop the iteration;

Else compute the next basis vector vj+1 = p/hj+1,j .
3. H(m + 2,m + 1) = 1.
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Numerical results for the 3D problem

Here we apply the combined DG method to compute the ground states
and dynamics of dipolar BEC in the three-dimensional (3D) space with
hexahedra mesh.The combined DG method is applied with the
lowest-order Raviart-Thomas element for the solution of Poisson equation.
In solving the linear algebra equations, we use the Conjugate Gradient
(CG) method. The ground states reached numerically when

‖ψ(k+1) − ψ(k)‖∞ := max
K∈Th

|ψ(k+1) − ψ(k)| ≤ ε = 10−6.

The DDG method for the computing of GP equation is applied with linear
element. The time step is chosen as ∆t = 10−3 in the computation.
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Example 3.Ground states of dipolar BECs
We take the bounded computation domain Ω = [−8, 8]3 with the
Neumann boundary condition. The dipolar direction is fixed with
l = (0, 0, 1)T ,the harmonic potential V (x) = 1

2

(
x2 + y2 + 0.25z2

)
and

β = 207.16, λ = 33.146. The ‘exact’ values for the energy and chemical
are E g = 2.72842 and µg = 3.58331 which is found using P2 element and
a 64× 64× 64 mesh. We adopt it as the reference value and chose the
relative error in the energy as the measure of the discretization error.
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Example 3. Ground states of dipolar BECs with different
potentials

Consider the following three different potentials, i.e. that harmonic
potential

V (x) =
1

2

(
x2 + y2 + z2

)
,

double-well potential

V (x) =
1

2

(
x2 + y2 + z2

)
+ 4e−z

2/2,

and optical lattice potential,

V (x) =
1

2
(x2 + y2 + z2) + 100

(
sin2(

πx

2
) + sin2(

πy

2
) + sin2(

πz

2
)
)
.

The initial condition is φ0(x , y , z) = π−3/4e−(x2+y2+z2). Figure 3 depicts
the ground state φg , i.e., the isosurface of |φg | = 0.01 and slice view of
φg (x , 0, z).
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Fig.3. Surface plots of ground state |φg (x , 0, z)|2 (right column) and
isosurface plots of |φg (x , 0, z)| = 0.01 (left column) of a dipolar BEC
under harmonic potential (top row), double-well potential (middle row)
and optical lattice potential (bottom row).
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Example 4.Dynamics of dipolar BECs
Now we study the dynamics behaviors 3D dipolar BEC system with dipolar
direction l = (0, 0, 1)T , potential V (x) = 1

2

(
x2 + y2 + 25z2

)
, β = 103.58

and λ = 82.864. We take the bounded computational domain
[−8, 8]2 × [−4, 4].Table 2 shows the L2 and maximum norm errors, e.g.
‖e‖L2 and ‖e‖∞ , with different meshes at t=0.8.
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From Fig. 4(a), we can see that semi-implicit time discretization
demonstrate the one-order convergence rate in time.The DG method can
approximate the particle very well(up to 6 significant digits,cf Figure
4(b)).

Fig.4. Time evolution of the errors between the discretized energy and
particle
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Case 1
Study the dynamics of suddenly changing the dipolar direction from

l = (0, 0, 1)T to l = (1, 0, 0)T at t = 0. The time evolution of kinetic
energy Ekin(ψ), potential energy Epot(ψ), interaction energy Eint(ψ),
dipolar energy Edip(ψ) and total energy E (ψ) are plotted in Fig. 5 (a).
We can also observe that the total energy conserved very well. The
isosurface of density function |ψ(x, t)|2 = 0.01 are plotted in Fig. 6 at
time t = 0, 1, 2, 3. The results agree well with the reference spectral
results in.
Case 2

study the dynamics of a dipolar BECs when the trap potential is
suddenly changed from 1

2 (x2 + y2 + 25z2) to 1
2 (x2 + y2 + z2) at time

t = 0. Fig. 5 (b) plots time evolution of kinetic energy Ekin(ψ), potential
energy Epot(ψ), interaction energy Eint(ψ), dipolar energy Edip(ψ) and
total energy E (ψ). From Fig. 5 (a) and (b), one can see that the total
energy keeps conservation well for Case 1 and 2. The isosurface plots of
density ρ(x, t) := |ψ(x, t)|2 = 0.01 at time t = 0, 1, 2, 3. for dipolar
BECs are plotted in Fig. 7.
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Fig.5. Time evolution of different energy quantities for (a) Case 1, (b)
Case 2 of dynamics of dipolar BECs.
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Fig.6. The isosurface plots of density ρ(x, t) := |ψ(x, t)|2 = 0.01 at (a)
t = 0, (b) t = 1, (c) t = 2, (d) t = 3 for dipolar BECs with the dipolar
direction changing from n = (0, 0, 1)T to (1, 0, 0)T suddenly at time
t = 0.
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Fig.7. The isosurface plots of density ρ(x, t) := |ψ(x, t)|2 = 0.01 at (a)
t = 0, (b) t = 1, (c) t = 2, (d) t = 3 for dipolar BECs with the trap
potential V (x) changing from 1

2 (x2 + y2 + 25z2) to 1
2 (x2 + y2 + z2)

suddenly at time t = 0.
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Case 3
study the collapse of dipolar BEC with changing the dipolar

interaction from λ = 82.864 to λ = 414.32 suddenly at t = 0. Fig. 8 (c)
plots time evolution of kinetic energy Ekin(ψ), potential energy Epot(ψ),
interaction energy Eint(ψ), dipolar energy Edip(ψ) and total energy E (ψ).
The isosurface of density function |ψ(x, t)|2 = 0.01 are plotted in Fig. 9
at time t = 0, 0.7, 1.1, 1.3.
Case 4

study the collapse of dipolar BEC with changing the interaction
constant β from β = 103.58 to β = −569.69 suddenly at t = 0. Fig. 8
(d) plots time evolution of kinetic energy Ekin(ψ), potential energy
Epot(ψ), interaction energy Eint(ψ), dipolar energy Edip(ψ) and total
energy E (ψ). The isosurface of density function |ψ(x, t)|2 = 0.01 are
plotted in Fig. 10 at time t = 0, 0.1, 0.15, 0.20.
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Fig.8. Time evolution of different energy quantities for (c) Case 3 and (d)
Case 4 of dynamics of dipolar BECs.
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Fig.9. The isosurface plots of density ρ(x, t) := |ψ(x, t)|2 = 0.01 at (a)
t = 0.0, (b) t = 0.7, (c) t = 1.1, (d) t = 1.3 for dipolar BECs with the
dipolar interaction constant λ changing from 82.864 to 414.32 suddenly at
time t = 0.
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Fig.10. The isosurface plots of density ρ(x, t) := |ψ(x, t)|2 = 0.01 at (a)
t = 0.0, (b) t = 0.1, (c) t = 0.15, (d) t = 0.2 for dipolar BECs with the
interaction constant β changing from 103.58 to −569.69 suddenly at time
t = 0.
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Thanks!
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