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The classical problems

(Normal generation conjecture) Let G be any finitely generated
perfect group, i.e. G = [G ,G ], the commutator subgroup of G . Then
G can be normally generated by a single element.

(Swan’s problem) For a finitely presented group G , define the
deficiency def (G ) be the maximum of d − k over all (finite)
presentations 〈g1, . . . , gd | r1, . . . , rk〉 of G .
Consider a resolution of Z by finitely generated free Z[G ]-modules:

F : · · · → F2 → F1 → F0 → Z→ 0.

If Fi is free of rank fi , define µn(F ) = fn− fn−1 + fn−2− . . .+ (−1)nf0.
The partial Euler characteristic is µn(G ) = infimumFµn(F ).
Swan: def (G ) ≤ 1− µ2(G ).
Question: is def (G ) = 1− µ2(G )?
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The classical problems

(Wall’s D(2) problem, Johnson’s formulation) If X is a finite
3-dimensional CW complex of cohomological dimension at most 2
(any local coefficient system), then X is homotopy equivalent to a
2-dimensional CW complex.

(The Whitehead asphericity conjecture) A CW complex X is called
aspherical if the universal cover X̃ of X is contractible.
Any subcomplex of an aspherical 2-dimensional CW complex is
aspherical.
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Quillen’s plus construction

X a CW complex, G = π1(X ), P : a perfect normal subgroup of G .

(Quillen) There is a CW complex X+ (unique up to homotopy
equivalence) such that π1(X+) = G/P andHn(X ; f∗M) ∼= Hn(X+;M)
for any n and local coefficient system M.

Theorem

Let X be a finite 2-dimensional CW complex. P is the perfect normal
subgroup of π1(X ) normally generated by n elements. Then the plus
construction (X ∨ (S2)n)+, taken w.r.t P, is homotopy equivalent to the
2-skeleton of X+. In particular, (X ∨ (S2)n)+ is homotopy equivalent to a
2-dimensional CW complex.
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The stable D(2) problem

(The D(2, n) problem) Let n ≥ 0 be an integer. If X is a finite
3-dimensional CW complex of cohomological dimension at most 2,
then X ∨ (S2)n is homotopy equivalent to a 2-dimensional CW
complex.

Theorem

Normal generation conjecture ⇒ D(2, 1) problem holds for X with π1(X )
finite.
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The stable D(2) problem

(Following the idea of Johnson in treating the D(2) problem) Say a finitely
presented group G has the D(2, n) property if the D(2, n) problem holds
true for any finite X with π1(X ) = G .

Theorem

G satisfies D(2, n) problem ⇒ def (G ) ≥ (1− n)− µ2(G ).

If G is a finite group, then G has D(2, n) property for
n = 2− def (G )− µ2(G ).
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µg
n(G )

For a finitely presented group G , define a (G , n)-complex as a finite
n-dimensional CW complex X with fundamental group G and
πi (X ) = 0, i = 2, . . . , n − 1. In particular, a (G , 2)-complex is a usual
2-dimensional CW complex with π1 = G .

Define µgn(G ) = min{(−1)nχ(X ) | X is a (G , n)-complex}. If there is
no such X , define µgn(G ) = +∞.

Ji Feng (Joint with Ye Shengkui) Partial Euler characteristic, normal generations and the stable D(2) problemAugust 10, 2015 7 / 9



Partial Euler characteristic, deficiency and the asphericity
problem

Let G be a group having a finite n-dimensional classifying space BG .
Then µn(G ) = µgn(G ). It is realized by the classifying space. In
particular, µ2(G ) = 1− def (G ) if G has a finite 2-dimensional BG .

If X is a finite aspherical 2-complex and Y is a subcomplex, then Y
realizes µg2 (π1(Y )).

The complex Y (above) is aspherical if and only if the fundamental
group π1(Y ) has a finite classifying space of dimension at most 2.
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The end

Thank you.
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