On the Lie Algebra of Braid Groups

Joint with V. V. Vershinin and J. Wu

Jingyan Li

Department of Mathematics and Physics, Shijiazhuang Tiedao University
Combinatorial and Toric Homotopy, Young Topologist Seminar, 11-19 August 2015

On the Lie Algebra of Braid Groups

(1) Some Basic Definitions

- Brunnian Braid Groups
- Lie Algebra from Descending Central Series of Groups
- Tow Famous Results about the Lie Algebra of Pure Braid Groups
- Definition of the Relative Lie Algebra $L^{P}\left(\operatorname{Brun}_{n}(M)\right)$

2) The Relative Lie Algebra $L^{P}\left(\right.$ Brun $\left._{n}\right)$

- Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$
- Free Generators of the Relative Lie Algebra $L^{P}\left(\right.$ Brun $\left._{n}\right)$
- The Symmetric Bracket Sum of Ideals
- The Rank of $L_{q}^{P}\left(\operatorname{Brun}_{n}\right)$
(3) Current Progress about $L^{P}\left(\operatorname{Brun}_{n}\left(S^{2}\right)\right)$

Brunnian Braid Groups

A braid $\beta \in B_{n}(M)$ is called Brunnian if (1) it is a pure braid and (2) it becomes trivial braid by removing any of its strands. Since the composition of any two Brunnian braids and the inverse of a Brunnian braid are still Brunnian, the set of Brunnian braids is a normal subgroup of the pure braid group which is denoted by $\operatorname{Brun}_{n}(M)$. For convenient, $\operatorname{Brun}_{n}(M)$ is denoted by Brun_{n} when M is the disc D^{2}.

Lie Algebra from Descending Central Series of Groups

For a group G, the descending central series

$$
G=\Gamma_{1}(G) \geq \Gamma_{2}(G) \geq \cdots \geq \Gamma_{i}(G) \geq \Gamma_{i+1}(G) \geq \cdots
$$

is defined by the formulas

$$
\Gamma_{1}(G)=G, \Gamma_{i+1}(G)=\left[\Gamma_{i}(G), G\right] \quad(i \geq 1) .
$$

The descending central series of a discrete group G gives rise to the associated graded Lie algebra (over \mathbb{Z}) $L(G)$:

$$
L(G)=\bigoplus_{q=1}^{\infty} \Gamma_{q}(G) / \Gamma_{q+1}(G) .
$$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with
$1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or
"horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$.
Reference

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with
$1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or
"horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,
(2) $\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0$ if $i<j<k$,

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$.
Reference

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with
$1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or
"horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,
(2) $\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0$ if $i<j<k$,
(3) $\left[A_{i, k}, A_{i, j}+A_{j, k}\right]=0$ if $i<j<k$.

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$.
Reference

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with
$1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or
"horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,
(2) $\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0$ if $i<j<k$,
(3) $\left[A_{i, k}, A_{i, j}+A_{j, k}\right]=0$ if $i<j<k$.

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$.
Reference

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with
$1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or
"horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,
(2) $\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0$ if $i<j<k$,
(c) $\left[A_{i, k}, A_{i, j}+A_{j, k}\right]=0$ if $i<j<k$.

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$.
Reference

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L\left(P_{n}\right)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra
$L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with $1 \leq i<j \leq n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations:
(1) $\left[A_{i, j}, A_{s, t}\right]=0$ if $\{i, j\} \cap\{s, t\}=\emptyset$,
(2) $\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0$ if $i<j<k$,
(0) $\left[A_{i, k}, A_{i, j}+A_{j, k}\right]=0$ if $i<j<k$.

Where $A_{i, j}$ denote the projections of the $a_{i, j} \in P_{n}$ to $L\left(P_{n}\right)$. Reference

- T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pure, Invent. Math., 82 (1985), 57-75.
Y. Ihara gave a presentation of the Lie algebra $L\left(P_{n}\left(S^{2}\right)\right)$ of the pure braid group of a sphere. It is the quotient of the free Lie algebra $L\left[B_{i, j} \mid 1 \leq i, j \leq n\right]$ generated by elements $B_{i, j}$ with $1 \leq i, j \leq n$ modulo the following relations:

$$
\left\{\begin{array}{l}
B_{i, j}=B_{j, i} \text { for } 1 \leq i, j \leq n, \\
B_{i, i}=0 \text { for } 1 \leq i \leq n, \tag{1}\\
{\left[B_{i, j}, B_{s, t}\right]=0, \text { if }\{i, j\} \cap\{s, t\}=\phi,} \\
\sum_{j=1}^{n} B_{i, j}=0, \text { for } 1 \leq i \leq n .
\end{array}\right.
$$

Where $B_{i, j}$ denote the projections of the $b_{i, j} \in P_{n}\left(S^{2}\right)$ to $L\left(P_{n}\right)\left(S^{2}\right)$.
Reference

- Y. Ihara, Galois group and some arithmetic functions.

Proceedings of the International Congress of Mathematicians. Kyoto: Springer, (1991):99-C120.

Definition of the Relative Lie Algebra $L^{P}\left(\operatorname{Brun}_{n}(M)\right)$

Since $\operatorname{Brun}_{n}(M)$ is the normal subgroup of the pure braid group $P_{n}(M)$, we have the following descending central series

$$
\operatorname{Brun}_{n}(M)=\Gamma_{1}\left(P_{n}(M)\right) \cap \operatorname{Brun}_{n}(M) \geq \Gamma_{2}\left(P_{n}(M)\right) \cap \operatorname{Brun}_{n}(M) \geq \cdots
$$

and the relative Lie algebra
$L^{P}\left(\operatorname{Brun}_{n}(M)\right)=\bigoplus_{q=1}^{\infty} \Gamma_{q}\left(P_{n}(M)\right) \cap \operatorname{Brun}_{n}(M) / \Gamma_{q+1}\left(P_{n}(M)\right) \cap \operatorname{Brun}_{n}(M)$.

Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$
Free Generators of the Relative Lie Algebra $L^{P}\left(\right.$ Brun $\left._{n}\right)$ The Symmetric Bracket Sum of Ideals
The Rank of $L_{q}^{P}\left(\right.$ Brun $\left._{n}\right)$

Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$

Proposition

(Proposition 1)

$$
L^{P}\left(\operatorname{Brun}_{n}\right)=\bigcap_{k=1}^{n} \operatorname{ker}\left(d_{k}: L\left(P_{n}\right) \rightarrow L\left(P_{n-1}\right)\right) .
$$

Remarks.

> The relative Lie algebra $\mathrm{L}^{\mathrm{P}}\left(\operatorname{Brun}_{n}\right)$ has better features: (1) it is freely generated; (2) it is of finite type; (3) it has connection to the theory of Vassiliev invariants.

Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$

Proposition
(Proposition 1)

$$
L^{P}\left(\operatorname{Brun}_{n}\right)=\bigcap_{k=1}^{n} \operatorname{ker}\left(d_{k}: L\left(P_{n}\right) \rightarrow L\left(P_{n-1}\right)\right) .
$$

Remarks.

> Remark
> The relative Lie algebra $\mathrm{L}^{\mathrm{P}}\left(\mathrm{Brun}_{n}\right)$ has better features: (1) it is freely generated; (2) it is of finite type; (3) it has connection to the theory of Vassiliev invariants.

Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$
Free Generators of the Relative Lie Algebra $L^{P}\left(\operatorname{Brun}_{n}\right)$ The Symmetric Bracket Sum of Ideals The Rank of $L_{q}^{P}\left(\right.$ Brun $\left._{n}\right)$

Definition of $\mathcal{K}(n)_{k}$

We recursively define the sets $\mathcal{K}(n)_{k}, 1 \leq k \leq n$, in the reverse order as follows:

1) Let $\mathcal{K}(n)_{n}=\left\{A_{1, n}, A_{2, n}, \cdots, A_{n-1, n}\right\}$.

Suppose that $\mathcal{K}(n)_{k+1}$ is defined as a subset of Lie monomials on the letters $A_{1, n}, A_{2, n}, \cdots, A_{n-1, n}$ with $k<n$. Let
$\mathcal{A}_{k}=\left\{M \in \mathcal{K}(n)_{k+1} \mid W\right.$ does not contain $A_{k, n}$ in its entries $\}$
Define

$$
K(n)_{k}=\left\{W^{\prime} \text { and }\left[\cdots\left[\left[W^{\prime}, W_{1}\right], W_{2}\right], \ldots, W_{t}\right]\right\}
$$

for $W^{\prime} \in \mathcal{K}(n)_{k+1} \backslash \mathcal{A}_{k}$ and $W_{1}, W_{2}, \ldots, W_{t} \in \mathcal{A}_{k}$ with $t \geq 1$
Note that $\mathcal{K}(n)_{k}$ is again a subset of Lie monomials on letters

Definition of $\mathcal{K}(n)_{k}$

We recursively define the sets $\mathcal{K}(n)_{k}, 1 \leq k \leq n$, in the reverse order as follows:

1) Let $\mathcal{K}(n)_{n}=\left\{A_{1, n}, A_{2, n}, \cdots, A_{n-1, n}\right\}$.
2) Suppose that $\mathcal{K}(n)_{k+1}$ is defined as a subset of Lie monomials on the letters $A_{1, n}, A_{2, n}, \cdots, A_{n-1, n}$ with $k<n$. Let
$\mathcal{A}_{k}=\left\{W \in \mathcal{K}(n)_{k+1} \mid W\right.$ does not contain $A_{k, n}$ in its entries $\}$.
Define

$$
\mathcal{K}(n)_{k}=\left\{W^{\prime} \text { and }\left[\cdots\left[\left[W^{\prime}, W_{1}\right], W_{2}\right], \ldots, W_{t}\right]\right\}
$$

for $W^{\prime} \in \mathcal{K}(n)_{k+1} \backslash \mathcal{A}_{k}$ and $W_{1}, W_{2}, \ldots, W_{t} \in \mathcal{A}_{k}$ with $t \geq 1$.
Note that $\mathcal{K}(n)_{k}$ is again a subset of Lie monomials on letters
$A_{1, n}, A_{2, n}, \cdots, A_{n-1, n}$.

Property of $L^{P}\left(\right.$ Brun $\left._{n}\right)$
Free Generators of the Relative Lie Algebra $L^{P}\left(\operatorname{Brun}_{n}\right)$ The Symmetric Bracket Sum of Ideals
The Rank of $L_{q}^{P}\left(\right.$ Brun $\left._{n}\right)$

Free Generators of Lie Algebra $L^{P}\left(\operatorname{Brun}_{n}\right)$

Theorem
 (Theorem 2) The relative Lie algebra $L^{P}\left(\operatorname{Brun}_{n}\right)$ is a free Lie algebra generated by $\mathcal{K}(n)_{1}$ as a set of free generators.

Example

Let $n=4$. The set $\mathcal{K}(4)_{1}$ is constructed by the following steps: 1) $\mathcal{K}(4)_{4}=\left\{A_{1,4}, A_{2,4}, A_{3,4}\right\}$.

3) For constructing $\mathcal{K}(4)_{2}$, let $W=\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j_{t}, 4}\right] \in \mathcal{K}(4)_{3}$. If W does not contain $A_{2,4}$, then $W=A_{3,4}$ or $W=\left[\left[A_{3,4}, A_{1}, 4\right], \cdots, A_{1,4}\right]$. Let

$$
\operatorname{ad}^{t}(b)(a)=[[a, b], \cdots, b]
$$

with t entries of b, where $\operatorname{ad}^{0}(b)(a)=a$. Then W does not contain $A_{2,4}$ if and only if

$$
W=\operatorname{ad}^{t}\left(A_{1,4}\right)\left(A_{3,4}\right)
$$

Example

Let $n=4$. The set $\mathcal{K}(4)_{1}$ is constructed by the following steps:

1) $\mathcal{K}(4)_{4}=\left\{A_{1,4}, A_{2,4}, A_{3,4}\right\}$.
2) $\mathcal{K}(4)_{3}=\left\{\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right] \mid 1 \leq j_{1}, \cdots, j_{t} \leq 2, t \geq 0\right\}$, where, for $t=0,\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right]=A_{3,4}$.
3) For constructing $\mathcal{K}(4)_{2}$, let $W=\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right] \in \mathcal{K}(4)_{3}$. If W does not contain $A_{2,4}$, then $W=A_{3,4}$ or $W=\left[\left[A_{3,4}, A_{1,4}\right], \cdots, A_{1,4}\right]$. Let

$$
\operatorname{ad}^{t}(b)(a)=[[a, b], \cdots, b]
$$

with t entries of b, where $\operatorname{ad}^{0}(b)(a)=a$. Then W does not contain $A_{2,4}$ if and only if

$$
\mathbf{I N \prime}_{\prime}=\operatorname{ad}^{t}\left(A_{1,4}\right)\left(A_{3,4}\right)
$$

Example

Let $n=4$. The set $\mathcal{K}(4)_{1}$ is constructed by the following steps:

1) $\mathcal{K}(4)_{4}=\left\{A_{1,4}, A_{2,4}, A_{3,4}\right\}$.
2) $\mathcal{K}(4)_{3}=\left\{\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j_{t}, 4}\right] \mid 1 \leq j_{1}, \cdots, j_{t} \leq 2, t \geq 0\right\}$, where, for $t=0,\left[\left[A_{3,4}, A_{j, 4}\right], \cdots, A_{j t, 4}\right]=A_{3,4}$.
3) For constructing $\mathcal{K}(4)_{2}$, let
$W=\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j_{t}, 4}\right] \in \mathcal{K}(4)_{3}$. If W does not contain
$A_{2,4}$, then $W=A_{3,4}$ or $W=\left[\left[A_{3,4}, A_{1,4}\right], \cdots, A_{1,4}\right]$. Let

$$
\operatorname{ad}^{t}(b)(a)=[[a, b], \cdots, b]
$$

with t entries of b, where $\operatorname{ad}^{0}(b)(a)=a$. Then W does not contain $A_{2,4}$ if and only if

$$
W=\operatorname{ad}^{t}\left(A_{1,4}\right)\left(A_{3,4}\right)
$$

for $t \geq 0$.

From the definition, $\mathcal{K}(4)_{2}$ is given by

$$
\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j_{t}, 4}\right] \quad \text { and }
$$

$\left[\left[\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right], \operatorname{ad}^{s_{1}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right], \cdots, \operatorname{ad}^{S_{q}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right]$, where $1 \leq j_{1}, \cdots, j_{t} \leq 2$ with at least one $j_{i}=2, s_{1}, \cdots, s_{q} \geq 0$ and $q \geq 1$.
4) For constructing $\mathcal{K}(4)_{1}$, let W denote
$\left[\left[\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \ldots, A_{j t, 4}\right], \operatorname{ad}^{s_{1}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right], \cdots, \operatorname{ad}^{s_{q}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right] \in \mathcal{K}(4)_{2}$, where, for $q=0, W=\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right]$. Then W does not contain $A_{1,4}$ if and only if $q=0$ and $W=\left[\left[A_{3,4}, A_{2,4}\right], \cdots, A_{2,4}\right]$, namely

$$
W=\operatorname{ad}^{t}\left(A_{2,4}\right)\left(A_{3,4}\right)
$$

for $t \geq 1$.

Thus $\mathcal{K}(4)_{1}$, which is a set of free generators for $L^{P}\left(\operatorname{Brun}_{4}\right)$, is given by
W and $\left[\left[W, \operatorname{ad}^{l_{1}}\left(A_{2,4}\right)\left(A_{3,4}\right)\right], \cdots, \operatorname{ad}^{I_{p}}\left(A_{2,4}\right)\left(A_{3,4}\right)\right]$,
where $I_{i} \geq 1$ for $1 \leq i \leq p$ with $p \geq 1$ and
$W=\left[\left[\left[\left[A_{3,4}, A_{j_{1}, 4}\right], \cdots, A_{j t, 4}\right], \operatorname{ad}^{S_{1}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right], \cdots, \operatorname{ad}^{S_{q}}\left(A_{1,4}\right)\left(A_{3,4}\right)\right]$,
so that each of $A_{2,4}$ and $A_{1,4}$ appears in W at least once.

The Symmetric Bracket Sum of Ideals

Let L be a lie algebra and I_{1}, \cdots, I_{n} are its ideals. The fat bracket sum $\left[\left[I_{1}, I_{2}, \cdots, I_{n}\right]\right]$ of these ideals is defined to be the sub Lie ideal of L generated by all of the commutators

$$
\beta^{t}\left(a_{i_{1}}, \cdots, a_{i_{t}}\right)
$$

where

1) $1 \leq i_{s} \leq n$;
2) β^{t} runs over all of the bracket arrangements of weight t (with $t \geq n$).

The Symmetric Bracket Sum of Ideals

Let L be a lie algebra and I_{1}, \cdots, I_{n} are its ideals. The fat bracket sum $\left[\left[I_{1}, I_{2}, \cdots, I_{n}\right]\right]$ of these ideals is defined to be the sub Lie ideal of L generated by all of the commutators

$$
\beta^{t}\left(a_{i_{1}}, \cdots, a_{i_{t}}\right)
$$

where

1) $1 \leq i_{s} \leq n$;
2) $\left\{i_{1}, \cdots, i_{t}\right\}=\{1, \cdots, n\}$, that is each integer in $\{1,2, \cdots, n\}$ appears as at least one of the integers i_{s};
3) β^{t} runs over all of the bracket arrangements of weight t (with $t \geq n$).

The Symmetric Bracket Sum of Ideals

Let L be a lie algebra and I_{1}, \cdots, I_{n} are its ideals. The fat bracket sum $\left[\left[I_{1}, I_{2}, \cdots, I_{n}\right]\right]$ of these ideals is defined to be the sub Lie ideal of L generated by all of the commutators

$$
\beta^{t}\left(a_{i_{1}}, \cdots, a_{i_{t}}\right)
$$

where

1) $1 \leq i_{s} \leq n$;
2) $\left\{i_{1}, \cdots, i_{t}\right\}=\{1, \cdots, n\}$, that is each integer in $\{1,2, \cdots, n\}$ appears as at least one of the integers i_{s};
3) $a_{j} \in l_{j}$;
4) β^{t} runs over all of the bracket arrangements of weight t (with $t \geq n$).

The Symmetric Bracket Sum of Ideals

Let L be a lie algebra and I_{1}, \cdots, I_{n} are its ideals. The fat bracket sum $\left[\left[I_{1}, I_{2}, \cdots, I_{n}\right]\right]$ of these ideals is defined to be the sub Lie ideal of L generated by all of the commutators

$$
\beta^{t}\left(a_{i_{1}}, \cdots, a_{i_{t}}\right)
$$

where

1) $1 \leq i_{s} \leq n$;
2) $\left\{i_{1}, \cdots, i_{t}\right\}=\{1, \cdots, n\}$, that is each integer in $\{1,2, \cdots, n\}$ appears as at least one of the integers i_{s};
3) $a_{j} \in l_{j}$;
4) β^{t} runs over all of the bracket arrangements of weight t (with $t \geq n$).

The symmetric bracket sum of these ideals is defined as

$$
\left[I_{1}, \ldots, I_{I}\right]_{S}:=\sum_{\sigma \in \Sigma_{n}}\left[\left[I_{\sigma(1)}, I_{\sigma(2)}\right], \cdots, I_{\sigma(n)}\right]
$$

where Σ_{n} is the symmetric group of degree n.

The symmetric bracket sum of these ideals is defined as

$$
\left[l_{1}, \ldots, I_{1}\right]_{S}:=\sum_{\sigma \in \Sigma_{n}}\left[\left[I_{\sigma(1)}, I_{\sigma(2)}\right], \cdots, I_{\sigma(n)}\right],
$$

where Σ_{n} is the symmetric group of degree n.

Lemma

(Lemma 3) Let l_{j} be any Lie ideals of a Lie algebra L with $1 \leq j \leq n$. Then

$$
\left[\left[I_{1}, I_{2}, \cdots, I_{n}\right]\right]=\left[\left[I_{1}, I_{2}\right], \cdots, I_{n}\right] s .
$$

Let us denote the ideal

$$
L\left[A_{k, n},\left[\cdots\left[A_{k, n}, A_{j, n}\right], \cdots, A_{j m, n}\right] \mid j_{i} \neq k, n ; i \leq m ; m \geq 1\right]
$$

by I_{k}. Then we have the following theorem.

Let us denote the ideal

$$
L\left[A_{k, n},\left[\cdots\left[A_{k, n}, A_{j_{1}, n}\right], \cdots, A_{j_{m}, n}\right] \mid j_{i} \neq k, n ; i \leq m ; m \geq 1\right]
$$

by I_{k}. Then we have the following theorem.
Theorem
(Theorem 4)

$$
L^{P}\left(\operatorname{Brun}_{n}\right)=\left[\left[I_{1}, I_{2}\right], \cdots, I_{n-1}\right]_{s}
$$

Proof

It is evident that the symmetric bracket sum $\left[\left[I_{1}, I_{2}\right], \cdots, I_{n-1}\right]_{S}$ lies in the kernels of all d_{i}. On the other hand, from lemma 3 and theorem 2, $L^{P}\left(\right.$ Brun $\left._{n}\right)$ is given as "fat bracket sum" of I_{1}, \cdots, I_{n-1} because each element in $\mathcal{K}(n)_{1}$ is a Lie monomial containing each of $A_{1, n}, \cdots, A_{n-1, n}$. we know that

$$
\mathcal{K}(n)_{1} \subseteq\left[\left[I_{1}, \cdots, I_{n-1}\right]\right]=\left[\left[I_{1}, I_{2}\right], \cdots, I_{n-1}\right]_{S} .
$$

The Rank of $L_{q}^{P}\left(\operatorname{Brun}_{n}\right)$

Proposition
(Proposition 5) There is a decomposition

$$
L_{q}\left(P_{n}\right)=\bigoplus_{\substack{1 \leq i_{1}<\cdots<i_{k} \leq n \\ 0 \leq k \leq n-1}} d^{i^{k} k} d^{i_{k-1} \ldots d^{i_{1}}\left(L_{q}^{P}\left(\operatorname{Brun}_{n-k}\right)\right)}
$$

for each n and q.

Proposition

(Proposition 6) There is a formula

$$
\operatorname{rank}\left(L_{q}\left(P_{n}\right)\right)=\sum_{k=0}^{n-1}\binom{n}{k} \operatorname{rank}\left(L_{q}^{P}\left(\operatorname{Brun}_{n-k}\right)\right)
$$

for each n and q.

Let $b_{q}\left(P_{n}\right)=\operatorname{rank}\left(L_{q}\left(P_{n}\right)\right)$ and $b_{q}^{P}\left(\operatorname{Brun}_{n}\right)=\operatorname{rank}\left(L_{q}^{P}\left(\operatorname{Brun}_{n}\right)\right)$. we have

$$
\left(\begin{array}{c}
b_{q}\left(P_{n}\right) \\
b_{q}\left(P_{n-1}\right) \\
b_{q}\left(P_{n-2}\right) \\
\vdots \\
b_{q}\left(P_{1}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-1} \\
0 & 1 & \binom{n-1}{1} & \cdots & \binom{n-1}{n-2} \\
0 & 0 & 1 & \cdots & \binom{n-2}{n-3} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
b_{q}^{P}\left(\operatorname{Brun}_{n}\right) \\
b_{q}^{P}\left(\operatorname{Brun}_{n-1}\right) \\
b_{q}^{P}\left(\operatorname{Brun}_{n-2}\right) \\
\vdots \\
b_{q}^{P}\left(\operatorname{Brun}_{1}\right)
\end{array}\right)
$$

Let A_{n} be the coefficient matrix of the above linear equations. Then

$$
A_{n}^{-1}=\left(\begin{array}{cccccc}
1 & -\binom{n}{1} & \binom{n}{2} & -\binom{n}{3} & \cdots & (-1)^{n-1}\binom{n}{n-1} \\
0 & 1 & -\binom{n-1}{n} & \binom{n-1}{2} & \cdots & (-1)^{n-2}\binom{n-1}{n-2} \\
0 & 0 & 1 & -\binom{n-2}{1} & \cdots & (-1)^{n-3}\binom{n-2}{n-3} \\
0 & 0 & 0 & 1 & \cdots & (-1)^{n-4}\binom{n-3}{n-4} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Theorem

(Theorem 7)

$$
\operatorname{rank}\left(L_{q}^{P}\left(\operatorname{Brun}_{n}\right)\right)=\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k} \operatorname{rank}\left(L_{q}\left(P_{n-k}\right)\right)
$$

for each n and q, where $P_{1}=0$ and, for $m \geq 2$,

$$
\operatorname{rank}\left(L_{q}\left(P_{m}\right)\right)=\frac{1}{q} \sum_{k=1}^{m-1} \sum_{d \mid q} \mu(d) k^{q / d}
$$

with μ the Möbis function.

Property of $L^{P}\left(\operatorname{Brun}_{n}\left(S^{2}\right)\right)$

The removing-strand operation on braids induces an operation

$$
d_{k}: L\left(P_{n}\left(S^{2}\right)\right) \longrightarrow L\left(P_{n-1}\left(S^{2}\right)\right)
$$

Proposition
(Proposition 8) There is an inclusion of Lie algebras

$$
\mathrm{L}^{\mathrm{P}}\left(\operatorname{Brun}_{\mathrm{n}}\left(\mathrm{~S}^{2}\right)\right) \subset \bigcap_{i=1}^{n} \operatorname{ker}\left(d_{i}: L\left(P_{n}\left(S^{2}\right)\right) \rightarrow L\left(P_{n-1}\left(S^{2}\right)\right)\right)
$$

The Homotopy Group of a Lie Algebra

Let $L=\left\{L_{n}\right\}_{n \geq 0}$ denote a simplicial Lie algebra with faces $d_{i}: L_{n} \longrightarrow L_{n-1}$ for $0 \leq i \leq n$. The Moore complex $N(L)=\left\{N_{n}(L)\right\}_{n \geq 0}$ of L is defined by

$$
N_{n}(L)=\bigcap_{i=1}^{n} \operatorname{ker}\left(d_{i}: L_{n} \rightarrow L_{n-1}\right) .
$$

Then $N(L)$ with d_{0} is a chain complex of Lie algebra. The Moore cycle and Moore boundary of L are defined by

$$
Z_{n}(L)=\operatorname{ker}\left(d_{0}: N_{n}(L) \longrightarrow N_{n-1}(L)\right)=\bigcap_{i=0}^{n} \operatorname{ker}\left(d_{i}: L_{n} \longrightarrow L_{n-1}\right)
$$

and

$$
B_{n}(L)=d_{0}\left(N_{n+1}(L)\right)
$$

respectively. The nth homotopy group is defined to be the quotient of

$$
\pi_{n}(L)=Z_{n}(L) / B_{n}(L)
$$

Lie Algebra $L(\widehat{F})$

Let \widehat{F}_{n+1} be the quotient of the free group $F\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ subject to the single relation $x_{0} x_{1} \cdots x_{n}=1$. Let \widehat{x}_{j} be the image of x_{j} in \widehat{F}_{n+1}. The group \widehat{F}_{n+1} is written $\widehat{F}\left(\widehat{x}_{0}, \widehat{x}_{1}, \cdots, \widehat{x}_{n}\right)$ in case the generators \widehat{x}_{j} are used. Clearly

$$
\widehat{F}_{n} \cong F\left(\widehat{x}_{0}, \widehat{x}_{1}, \cdots, \widehat{x}_{n-1}\right)
$$

is a free group of rank n. Define the faces $\widehat{d}_{i}: \widehat{F}_{n+1} \longrightarrow \widehat{F}_{n}$ and degeneracies $\widehat{s}_{i}: \widehat{F}_{n} \longrightarrow \widehat{F}_{n+1}$ on $\widehat{F}=\left\{\widehat{F}_{n+1}\right\}_{n \geq 0}$ as follows:

$$
\widehat{d}_{i} \widehat{x}_{j}=\left\{\begin{array}{l}
\widehat{x}_{j}, \text { if } j<i, \tag{2}\\
1, \text { if } j=i, \\
\widehat{x}_{j-1}, \\
\text { if } j>i .
\end{array} \quad \widehat{s}_{i} \widehat{x}_{j}=\left\{\begin{array}{l}
\widehat{x}_{j}, \text { if } j<i, \\
\widehat{x}_{j} \widehat{x}_{j+1}, \text { if } j=i, \\
\widehat{x}_{j+1}, \text { if } j>i .
\end{array}\right.\right.
$$

It is straightforward to check that the sequence of groups $\widehat{F}=\left\{\widehat{F}_{n+1}\right\}_{n \geq 0}$ is simplicial group under \widehat{d}_{i} and \widehat{s}_{i} defined as above.
Let $L(\widehat{F})=\left\{L\left(\widehat{F}_{n+1}\right)\right\}_{n \geq 0}$ denote the free simplicial Lie algebra generated by \widehat{F}.

The Intersection of the Kernel $\left.d_{i}: L\left(P_{n+1}\left(S^{2}\right)\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)\right)$

Proposition

(Proposition 9) The intersection of the kernel $\left.d_{i}: L\left(P_{n+1}\left(S^{2}\right)\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)\right)$ is the Moore cycle of $L(\widehat{F})$, i.e.
$\bigcap_{i=1}^{n+1} \operatorname{ker}\left(d_{i}: L\left(P_{n+1}\left(S^{2}\right)\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)\right)=\bigcap_{i=0}^{n-1} \operatorname{ker}\left(\widehat{d}_{i}: L\left(\widehat{F}_{n}\right) \rightarrow L\left(\widehat{F}_{n-1}\right)\right)$.

Let us denote the ideal

$L\left[B_{k, n+1},\left[\cdots\left[B_{k, n+1}, B_{j, n+1}\right], \cdots, B_{j m, n+1}\right] \mid j_{i} \neq k, n+1 ; i \leq m ; m \geq 1\right]$
by J_{k}. Then we have the following theorem.

Remarks.

Let us denote the ideal
$L\left[B_{k, n+1},\left[\cdots\left[B_{k, n+1}, B_{j_{1}, n+1}\right], \cdots, B_{j m, n+1}\right] \mid j_{i} \neq k, n+1 ; i \leq m ; m \geq 1\right]$
by J_{k}. Then we have the following theorem.

Proposition

(Proposition 10) For $n \geq 4$, there is an isomorphism of groups:
$\bigcap_{i=1}^{n+1} \operatorname{ker}\left(d_{i}: L\left(P_{n+1}\left(S^{2}\right)\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)\right) /\left[\left[J_{1}, J_{2}\right], \cdots, J_{n-1}\right]_{S}$
$\cong \pi_{n-1}(L(\widehat{F})) \cong \pi_{n-1}\left(L\left(F\left[S^{1}\right]\right) \cong \pi_{n-1}\left(L\left(G\left(S^{2}\right)\right)\right.\right.$.

Remarks.

$\pi_{*}\left(L\left(G\left(S^{2}\right)\right)\right.$ can be computed by using Λ - algebra.

Let us denote the ideal
$L\left[B_{k, n+1},\left[\cdots\left[B_{k, n+1}, B_{j_{1}, n+1}\right], \cdots, B_{j_{m, n+1}}\right] \mid j_{i} \neq k, n+1 ; i \leq m ; m \geq 1\right]$
by J_{k}. Then we have the following theorem.

Proposition

(Proposition 10) For $n \geq 4$, there is an isomorphism of groups:
$\bigcap_{i=1}^{n+1} \operatorname{ker}\left(d_{i}: L\left(P_{n+1}\left(S^{2}\right)\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)\right) /\left[\left[J_{1}, J_{2}\right], \cdots, J_{n-1}\right]_{S}$
$\cong \pi_{n-1}(L(\widehat{F})) \cong \pi_{n-1}\left(L\left(F\left[S^{1}\right]\right) \cong \pi_{n-1}\left(L\left(G\left(S^{2}\right)\right)\right.\right.$.

Remarks.

Remark

$\pi_{*}\left(L\left(G\left(S^{2}\right)\right)\right.$ can be computed by using \wedge - algebra.

Thanks for your attention!

