On the Lie Algebra of Braid Groups

Joint with V. V. Vershinin and J. Wu

Jingyan Li

Department of Mathematics and Physics, Shijiazhuang Tiedao University

Combinatorial and Toric Homotopy, Young Topologist Seminar,11-19 August 2015

ヘロン 人間 とくほ とくほ とう

On the Lie Algebra of Braid Groups

Some Basic Definitions

- Brunnian Braid Groups
- Lie Algebra from Descending Central Series of Groups
- Tow Famous Results about the Lie Algebra of Pure Braid Groups
- Definition of the Relative Lie Algebra $L^{P}(\operatorname{Brun}_{n}(M))$
- 2 The Relative Lie Algebra $L^{P}(Brun_{n})$
 - Property of L^P(Brun_n)
 - Free Generators of the Relative Lie Algebra L^P(Brun_n)
 - The Symmetric Bracket Sum of Ideals
 - The Rank of $L_q^P(\operatorname{Brun}_n)$

Current Progress about $L^{P}(\operatorname{Brun}_{n}(S^{2}))$

< ∃⇒

Brunnian Braid Groups

Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{n}(M))$

イロト イポト イヨト イヨト

Brunnian Braid Groups

A braid $\beta \in B_n(M)$ is called **Brunnian** if (1) it is a pure braid and (2) it becomes trivial braid by removing any of its strands. Since the composition of any two Brunnian braids and the inverse of a Brunnian braid are still Brunnian, the set of Brunnian braids is a normal subgroup of the pure braid group which is denoted by $\operatorname{Brun}_n(M)$. For convenient, $\operatorname{Brun}_n(M)$ is denoted by Brun_n when M is the disc D^2 .

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{n}(M))$

ヘロト 人間 ト くほ ト くほ トー

Lie Algebra from Descending Central Series of Groups

For a group G, the descending central series

$$G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \ge \Gamma_i(G) \ge \Gamma_{i+1}(G) \ge \cdots$$

is defined by the formulas

$$\Gamma_1(G) = G, \Gamma_{i+1}(G) = [\Gamma_i(G), G] \ (i \ge 1).$$

The descending central series of a discrete group *G* gives rise to the associated graded Lie algebra (over \mathbb{Z}) L(G):

$$L(G) = \bigoplus_{q=1}^{\infty} \Gamma_q(G) / \Gamma_{q+1}(G).$$

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{R}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: $\left[A_{i,j}, A_{s,t}\right] = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$,

- 2 $[A_{i,j}, A_{i,k} + A_{j,k}] = 0$ if i < j < k,
- 3 $[A_{i,k}, A_{i,j} + A_{j,k}] = 0$ if i < j < k.

Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$. Reference

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{R}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: $A_{i,j} = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$,

2
$$[A_{i,j}, A_{i,k} + A_{j,k}] = 0$$
 if $i < j < k$,

3 $[A_{i,k}, A_{i,j} + A_{j,k}] = 0$ if i < j < k.

Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$. Reference

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{R}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: $A_{i,j} = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$,

2
$$[A_{i,i}, A_{i,k} + A_{i,k}] = 0$$
 if $i < j < k$,

3
$$[A_{i,k}, A_{i,j} + A_{j,k}] = 0$$
 if $i < j < k$.

Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$. Reference

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{R}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: $A_{i,j} = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$,

2
$$[A_{i,i}, A_{i,k} + A_{i,k}] = 0$$
 if $i < j < k$,

3
$$[A_{i,k}, A_{i,j} + A_{j,k}] = 0$$
 if $i < j < k$.

Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$. Reference

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{n}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: $A_{i,j}, A_{s,t}] = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$, $A_{i,j}, A_{i,k} + A_{j,k}] = 0$ if i < j < k, $A_{i,j} \in A_{i,j}, A_{i,j} + A_{j,k}] = 0$ if i < j < k. Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$.

Reference

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{R}(M))$

Tow Famous Results about the Lie Algebra of Pure Braid Groups

A presentation of the Lie algebra $L(P_n)$ for the pure braid group was done in the work of T.Kohno, and can be described as follows. It is the quotient of the free Lie algebra $L[A_{i,j} | 1 \le i < j \le n]$ generated by elements $A_{i,j}$ with $1 \le i < j \le n$ modulo the "infinitesimal braid relations " or "horizontal 4T relation" given by the following three relations: **(a)** $[A_{i,j}, A_{s,t}] = 0$ if $\{i, j\} \cap \{s, t\} = \emptyset$, **(a)** $[A_{i,j}, A_{i,k} + A_{i,k}] = 0$ if i < j < k,

$$[A_{i,k}, A_{i,i} + A_{i,k}] = 0 \text{ if } i < j < k.$$

Where $A_{i,j}$ denote the projections of the $a_{i,j} \in P_n$ to $L(P_n)$. Reference

 Some Basic Definitions

 The Relative Lie Algebra $L^{P}(Brun_{n})$

 Current Progress about $L^{P}(Brun_{n}(S^{2}))$

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra $L^{P}(Brun_{n}(M))$

Y. Ihara gave a presentation of the Lie algebra $L(P_n(S^2))$ of the pure braid group of a sphere. It is the quotient of the free Lie algebra $L[B_{i,j}| 1 \le i, j \le n]$ generated by elements $B_{i,j}$ with $1 \le i, j \le n$ modulo the following relations:

$$\begin{cases} B_{i,j} = B_{j,i} \text{ for } 1 \le i, j \le n, \\ B_{i,i} = 0 \text{ for } 1 \le i \le n, \\ [B_{i,j}, B_{s,t}] = 0, \text{ if } \{i, j\} \cap \{s, t\} = \phi, \\ \sum_{j=1}^{n} B_{i,j} = 0, \text{ for } 1 \le i \le n. \end{cases}$$
(1)

Where $B_{i,j}$ denote the projections of the $b_{i,j} \in P_n(S^2)$ to $L(P_n)(S^2)$. Reference

• *Y. Ihara*, Galois group and some arithmetic functions. Proceedings of the International Congress of Mathematicians. Kyoto: Springer, (1991):99-C120.

Brunnian Braid Groups Lie Algebra from Descending Central Series of Groups Tow Famous Results about the Lie Algebra of Pure Braid Groups Definition of the Relative Lie Algebra L^P (Brunn(M))

イロト イポト イヨト イヨト

Definition of the Relative Lie Algebra $L^{P}(\operatorname{Brun}_{n}(M))$

Since $\operatorname{Brun}_n(M)$ is the normal subgroup of the pure braid group $P_n(M)$, we have the following descending central series

$$\operatorname{Brun}_n(M) = \Gamma_1(P_n(M)) \cap \operatorname{Brun}_n(M) \ge \Gamma_2(P_n(M)) \cap \operatorname{Brun}_n(M) \ge \cdots$$

and the relative Lie algebra

$$L^{P}(\operatorname{Brun}_{n}(M)) = \bigoplus_{q=1}^{\infty} \Gamma_{q}(P_{n}(M)) \cap \operatorname{Brun}_{n}(M)/\Gamma_{q+1}(P_{n}(M)) \cap \operatorname{Brun}_{n}(M).$$

Property of $L^{P}(Brun_{n})$

Proposition

(Proposition 1)

$$L^{\mathcal{P}}(\operatorname{Brun}_n) = \bigcap_{k=1}^n \operatorname{ker}(d_k : L(\mathcal{P}_n) \to L(\mathcal{P}_{n-1})).$$

Remarks.

Remark

The relative Lie algebra $L^{P}(Brun_{n})$ has better features: (1) it is freely generated; (2) it is of finite type; (3) it has connection to the theory of Vassiliev invariants.

Jingyan Li On the Lie Algebra of Braid Groups

ヘロア ヘビア ヘビア・

э

Property of $L^{P}(Brun_{n})$

Property of $L^{P}(Brun_{n})$

Proposition

(Proposition 1)

$$L^{P}(\operatorname{Brun}_{n}) = \bigcap_{k=1}^{n} \operatorname{ker}(d_{k} : L(P_{n}) \to L(P_{n-1})).$$

Remarks.

Remark

The relative Lie algebra $L^{P}(Brun_{n})$ has better features: (1) it is freely generated; (2) it is of finite type; (3) it has connection to the theory of Vassiliev invariants.

ヘロア ヘビア ヘビア・

э

Property of $L^{P}(Brun_{n})$

Property of $L^{r}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(Brun_{n})$

Definition of $\mathcal{K}(n)_k$

We recursively define the sets $\mathcal{K}(n)_k$, $1 \le k \le n$, in the reverse order as follows:

- 1) Let $\mathcal{K}(n)_n = \{A_{1,n}, A_{2,n}, \cdots, A_{n-1,n}\}.$
- 2) Suppose that $\mathcal{K}(n)_{k+1}$ is defined as a subset of Lie monomials on the letters $A_{1,n}, A_{2,n}, \cdots, A_{n-1,n}$ with k < n. Let

 $\mathcal{A}_k = \{ W \in \mathcal{K}(n)_{k+1} \mid W \text{ does not contain } A_{k,n} \text{ in its entries} \}.$

Define

$$\mathcal{K}(n)_k = \{ W' \text{ and } [\cdots [[W', W_1], W_2], \dots, W_t] \}$$

for $W' \in \mathcal{K}(n)_{k+1} \setminus \mathcal{A}_k$ and $W_1, W_2, \dots, W_t \in \mathcal{A}_k$ with $t \ge 1$. Note that $\mathcal{K}(n)_k$ is again a subset of Lie monomials on letters $A_{1,n}, A_{2,n}, \dots, A_{n-1,n}$.

Definition of $\mathcal{K}(n)_k$

Property of $L^{P}(\operatorname{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\operatorname{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(\operatorname{Brun}_{n})$

We recursively define the sets $\mathcal{K}(n)_k$, $1 \le k \le n$, in the reverse order as follows:

1) Let
$$\mathcal{K}(n)_n = \{A_{1,n}, A_{2,n}, \cdots, A_{n-1,n}\}.$$

2) Suppose that $\mathcal{K}(n)_{k+1}$ is defined as a subset of Lie monomials on the letters $A_{1,n}, A_{2,n}, \cdots, A_{n-1,n}$ with k < n. Let

 $\mathcal{A}_{k} = \{ W \in \mathcal{K}(n)_{k+1} \mid W \text{ does not contain } A_{k,n} \text{ in its entries} \}.$

Define

$$\mathcal{K}(n)_k = \{W' \text{ and } [\cdots [[W', W_1], W_2], \dots, W_t]\}$$

for $W' \in \mathcal{K}(n)_{k+1} \setminus \mathcal{A}_k$ and $W_1, W_2, \ldots, W_t \in \mathcal{A}_k$ with $t \ge 1$. Note that $\mathcal{K}(n)_k$ is again a subset of Lie monomials on letters $A_{1,n}, A_{2,n}, \cdots, A_{n-1,n}$.

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(Brun_{n})$

Free Generators of Lie Algebra $L^{P}(Brun_{n})$

Theorem

(Theorem 2) The relative Lie algebra $L^{P}(\operatorname{Brun}_{n})$ is a free Lie algebra generated by $\mathcal{K}(n)_{1}$ as a set of free generators.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(Brun_{n})$

ヘロン ヘアン ヘビン ヘビン

Example

Let n = 4. The set $\mathcal{K}(4)_1$ is constructed by the following steps: 1) $\mathcal{K}(4)_4 = \{A_{1,4}, A_{2,4}, A_{3,4}\}.$

- 2) $\mathcal{K}(4)_3 = \{ [[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] \mid 1 \le j_1, \cdots, j_t \le 2, t \ge 0 \},$ where, for $t = 0, [[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] = A_{3,4}.$
- 3) For constructing $\mathcal{K}(4)_2$, let $W = [[A_{3,4}, A_{j_1,4}], \dots, A_{j_t,4}] \in \mathcal{K}(4)_3$. If *W* does not contain $A_{2,4}$, then $W = A_{3,4}$ or $W = [[A_{3,4}, A_{1,4}], \dots, A_{1,4}]$. Let $\operatorname{ad}^t(b)(a) = [[a, b], \dots, b]$

with *t* entries of *b*, where $ad^{0}(b)(a) = a$. Then *W* does not contain $A_{2,4}$ if and only if

$$W = \mathrm{ad}^t(A_{1,4})(A_{3,4})$$

for $t \ge 0$.

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(Brun_{n})$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example

Let n = 4. The set $\mathcal{K}(4)_1$ is constructed by the following steps:

1)
$$\mathcal{K}(4)_4 = \{A_{1,4}, A_{2,4}, A_{3,4}\}.$$

2) $\mathcal{K}(4)_3 = \{ [[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] \mid 1 \le j_1, \cdots, j_t \le 2, t \ge 0 \},$ where, for $t = 0, [[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] = A_{3,4}.$

For constructing
$$\mathcal{K}(4)_2$$
, let
 $W = [[A_{3,4}, A_{j_1,4}], \dots, A_{j_t,4}] \in \mathcal{K}(4)_3$. If W does not contain
 $A_{2,4}$, then $W = A_{3,4}$ or $W = [[A_{3,4}, A_{1,4}], \dots, A_{1,4}]$. Let

th *t* entries of *b*, where $ad^{0}(b)(a) = a$. Then *W* does not the transformation A is found only if

$$W = \mathrm{ad}^t(A_{1,4})(A_{3,4})$$

for $t \ge 0$.

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(Brun_{n})$

イロン 不良 とくほう 不良 とうほ

Example

Let n = 4. The set $\mathcal{K}(4)_1$ is constructed by the following steps:

- 1) $\mathcal{K}(4)_4 = \{A_{1,4}, A_{2,4}, A_{3,4}\}.$ 2) $\mathcal{K}(4)_3 = \{[[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] \mid 1 \le j_1, \cdots, j_t \le 2, t \ge 0\},\$ where, for $t = 0, [[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}] = A_{3,4}.$
- 3) For constructing $\mathcal{K}(4)_2$, let $W = [[A_{3,4}, A_{j_1,4}], \dots, A_{j_t,4}] \in \mathcal{K}(4)_3$. If W does not contain $A_{2,4}$, then $W = A_{3,4}$ or $W = [[A_{3,4}, A_{1,4}], \dots, A_{1,4}]$. Let $\mathrm{ad}^t(b)(a) = [[a, b], \dots, b]$

with t entries of b, where $ad^{0}(b)(a) = a$. Then W does not contain $A_{2,4}$ if and only if

$$W = \mathrm{ad}^t(A_{1,4})(A_{3,4})$$

for $t \ge 0$.

Property of $L^{P}(\operatorname{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\operatorname{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(\operatorname{Brun}_{n})$

イロン 不良 とくほう 不良 とうほ

From the definition, $\mathcal{K}(4)_2$ is given by

$$[[A_{3,4}, A_{j_1,4}], \cdots, A_{j_t,4}]$$
 and

 $[[[[A_{3,4}, A_{j_1,4}], \dots, A_{j_t,4}], ad^{s_1}(A_{1,4})(A_{3,4})], \dots, ad^{s_q}(A_{1,4})(A_{3,4})],$ where $1 \le j_1, \dots, j_t \le 2$ with at least one $j_i = 2, s_1, \dots, s_q \ge 0$ and $q \ge 1$. 4) For constructing $\mathcal{K}(4)_1$, let *W* denote

 $[[[[A_{3,4}, A_{j_{1,4}}], \dots, A_{j_{t},4}], \mathrm{ad}^{s_1}(A_{1,4})(A_{3,4})], \cdots, \mathrm{ad}^{s_q}(A_{1,4})(A_{3,4})] \in \mathcal{K}(4)_{2,4}$

where, for q = 0, $W = [[A_{3,4}, A_{j_1,4}], \dots, A_{j_t,4}]$. Then *W* does not contain $A_{1,4}$ if and only if q = 0 and $W = [[A_{3,4}, A_{2,4}], \dots, A_{2,4}]$, namely

$$W = \mathrm{ad}^t(A_{2,4})(A_{3,4})$$

for $t \geq 1$.

Property of $L^{P}(\operatorname{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\operatorname{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(\operatorname{Brun}_{n})$

イロト 不得 とくほ とくほ とう

Thus $\mathcal{K}(4)_1$, which is a set of free generators for $L^{\mathcal{P}}(\operatorname{Brun}_4)$, is given by

$$W$$
 and $[[W, ad^{l_1}(A_{2,4})(A_{3,4})], \cdots, ad^{l_p}(A_{2,4})(A_{3,4})],$

where $I_i \ge 1$ for $1 \le i \le p$ with $p \ge 1$ and

 $W = [[[[A_{3,4}, A_{j_{1},4}], \cdots, A_{j_{t},4}], \mathrm{ad}^{s_{1}}(A_{1,4})(A_{3,4})], \cdots, \mathrm{ad}^{s_{q}}(A_{1,4})(A_{3,4})],$

so that each of $A_{2,4}$ and $A_{1,4}$ appears in W at least once.

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ **The Symmetric Bracket Sum of Ideals** The Rank of $L^{P}_{q}(\text{Brun}_{n})$

・ロト ・ 理 ト ・ ヨ ト ・

The Symmetric Bracket Sum of Ideals

Let *L* be a lie algebra and I_1, \dots, I_n are its ideals. The fat bracket sum $[[I_1, I_2, \dots, I_n]]$ of these ideals is defined to be the sub Lie ideal of *L* generated by all of the commutators

$$\beta^t(a_{i_1},\cdots,a_{i_t}),$$

where

1) $1 \le i_s \le n;$

- 2) $\{i_1, \dots, i_t\} = \{1, \dots, n\}$, that is each integer in $\{1, 2, \dots, n\}$ appears as at least one of the integers i_s
- 3) $a_j \in I_j;$

 β^t runs over all of the bracket arrangements of weight t (with t ≥ n).

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ **The Symmetric Bracket Sum of Ideals** The Rank of $L^{P}_{q}(\text{Brun}_{n})$

ヘロン ヘアン ヘビン ヘビン

The Symmetric Bracket Sum of Ideals

Let *L* be a lie algebra and I_1, \dots, I_n are its ideals. The fat bracket sum $[[I_1, I_2, \dots, I_n]]$ of these ideals is defined to be the sub Lie ideal of *L* generated by all of the commutators

$$\beta^t(a_{i_1},\cdots,a_{i_t}),$$

where

1) 1 ≤ *i*_s ≤ *n*;
 2) {*i*₁, ..., *i*_t} = {1, ..., *n*}, that is each integer in {1, 2, ..., *n*} appears as at least one of the integers *i*_s;
 3) *a*_j ∈ *l*_j;
 4) β^t runs over all of the bracket arrangements of weight *t*

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ **The Symmetric Bracket Sum of Ideals** The Rank of $L^{P}_{q}(\text{Brun}_{n})$

ヘロン ヘアン ヘビン ヘビン

The Symmetric Bracket Sum of Ideals

Let *L* be a lie algebra and I_1, \dots, I_n are its ideals. The fat bracket sum $[[I_1, I_2, \dots, I_n]]$ of these ideals is defined to be the sub Lie ideal of *L* generated by all of the commutators

$$\beta^t(a_{i_1},\cdots,a_{i_t}),$$

where

1) 1 ≤ i_s ≤ n;
 2) {i₁, ..., i_t} = {1, ..., n}, that is each integer in {1, 2, ..., n} appears as at least one of the integers i_s;
 3) a_j ∈ I_j;
 4) β^t runs over all of the bracket arrangements of weight t

β^t runs over all of the bracket arrangements of weight t (with t ≥ n).

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ **The Symmetric Bracket Sum of Ideals** The Rank of $L^{P}_{q}(\text{Brun}_{n})$

・ロト ・ 四ト ・ ヨト ・ ヨト

The Symmetric Bracket Sum of Ideals

Let *L* be a lie algebra and I_1, \dots, I_n are its ideals. The fat bracket sum $[[I_1, I_2, \dots, I_n]]$ of these ideals is defined to be the sub Lie ideal of *L* generated by all of the commutators

$$\beta^t(a_{i_1},\cdots,a_{i_t}),$$

where

- 1) 1 ≤ i_s ≤ n;
 2) {i₁, ..., i_t} = {1, ..., n}, that is each integer in {1, 2, ..., n} appears as at least one of the integers i_s;
 3) a_j ∈ I_j;
 4) e^t rups over all of the bracket arrangements of weight the second seco
- 4) β^t runs over all of the bracket arrangements of weight t (with t ≥ n).

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(\text{Brun}_{n})$

イロト 不得 とくほ とくほ とう

ъ

The symmetric bracket sum of these ideals is defined as

$$[I_1,\ldots,I_l]_{\mathcal{S}} := \sum_{\sigma\in\Sigma_n} [[I_{\sigma(1)},I_{\sigma(2)}],\cdots,I_{\sigma(n)}],$$

where Σ_n is the symmetric group of degree *n*.

(Lemma 3) Let I_j be any Lie ideals of a Lie algebra L with $1 \le j \le n$. Then

 $[[l_1, l_2, \cdots, l_n]] = [[l_1, l_2], \cdots, l_n]_S.$

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(\text{Brun}_{n})$

イロト イポト イヨト イヨト

The symmetric bracket sum of these ideals is defined as

$$[I_1,\ldots,I_l]_{\mathcal{S}} := \sum_{\sigma \in \Sigma_n} [[I_{\sigma(1)},I_{\sigma(2)}],\cdots,I_{\sigma(n)}],$$

where Σ_n is the symmetric group of degree *n*.

Lemma

(Lemma 3) Let I_j be any Lie ideals of a Lie algebra L with $1 \le j \le n$. Then

$$[[I_1, I_2, \cdots, I_n]] = [[I_1, I_2], \cdots, I_n]_{\mathcal{S}}.$$

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(Brun_{n})$

Let us denote the ideal

 $L[A_{k,n}, [\cdots [A_{k,n}, A_{j_1,n}], \cdots, A_{j_m,n}] \mid j_i \neq k, n; i \leq m; m \geq 1]$

by I_k . Then we have the following theorem.

(Theorem 4)

 $L^{\mathcal{P}}(\operatorname{Brun}_{n}) = [[l_{1}, l_{2}], \cdots, l_{n-1}]_{\mathcal{S}}.$

ヘロト 人間 とくほとく ほとう

ъ

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(Brun_{n})$

イロト 不得 とくほ とくほとう

ъ

Let us denote the ideal

$$L[A_{k,n}, [\cdots [A_{k,n}, A_{j_1,n}], \cdots, A_{j_m,n}] \mid j_i \neq k, n; i \leq m; m \geq 1]$$

by I_k . Then we have the following theorem.

Theorem

(Theorem 4)

$$L^{\mathcal{P}}(\operatorname{Brun}_{n}) = [[I_{1}, I_{2}], \cdots, I_{n-1}]_{\mathcal{S}}.$$

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(\text{Brun}_{n})$

イロト 不得 とくほと くほとう

Proof

It is evident that the symmetric bracket sum $[[I_1, I_2], \dots, I_{n-1}]_S$ lies in the kernels of all d_i . On the other hand, from lemma 3 and theorem 2, $L^P(\operatorname{Brun}_n)$ is given as "fat bracket sum" of I_1, \dots, I_{n-1} because each element in $\mathcal{K}(n)_1$ is a Lie monomial containing each of $A_{1,n}, \dots, A_{n-1,n}$. we know that

$$\mathcal{K}(n)_1 \subseteq [[I_1, \cdots, I_{n-1}]] = [[I_1, I_2], \cdots, I_{n-1}]_S.$$

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(\text{Brun}_{n})$

The Rank of $L_q^P(\operatorname{Brun}_n)$

Proposition

(Proposition 5) There is a decomposition

$$L_q(P_n) = \bigoplus_{\substack{1 \le i_1 < \cdots < i_k \le n \\ 0 \le k \le n-1}} d^{i_k} d^{i_{k-1}} \cdots d^{i_1} (L_q^P(\operatorname{Brun}_{n-k}))$$

for each n and q.

イロト 不得 とくほ とくほとう

э

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{\mathbf{a}}(\text{Brun}_{n})$

Proposition

(Proposition 6) There is a formula

$$\operatorname{rank}(L_q(P_n)) = \sum_{k=0}^{n-1} \binom{n}{k} \operatorname{rank}(L_q^P(\operatorname{Brun}_{n-k}))$$

for each n and q.

ヘロト 人間 とくほとくほとう

3

Property of $L^{P}(Brun_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(Brun_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{a}(Brun_{n})$

イロト 不得 とくほ とくほとう

ъ

Let $b_q(P_n) = \operatorname{rank}(L_q(P_n))$ and $b_q^P(\operatorname{Brun}_n) = \operatorname{rank}(L_q^P(\operatorname{Brun}_n))$. we have

$$\begin{pmatrix} b_q(P_n) \\ b_q(P_{n-1}) \\ b_q(P_{n-2}) \\ \vdots \\ b_q(P_1) \end{pmatrix} = \begin{pmatrix} 1 & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-1} \\ 0 & 1 & \binom{n-1}{1} & \cdots & \binom{n-1}{n-2} \\ 0 & 0 & 1 & \cdots & \binom{n-2}{n-3} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} b_q^P(\operatorname{Brun}_n) \\ b_q^P(\operatorname{Brun}_{n-2}) \\ \vdots \\ b_q^P(\operatorname{Brun}_1) \end{pmatrix}$$

Jingyan Li On the Lie Algebra of Braid Groups

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{\mathbf{a}}(\text{Brun}_{n})$

イロン 不得 とくほ とくほ とうほ

Let A_n be the coefficient matrix of the above linear equations. Then

$$A_n^{-1} = \begin{pmatrix} 1 & -\binom{n}{1} & \binom{n}{2} & -\binom{n}{3} & \cdots & (-1)^{n-1}\binom{n}{n-1} \\ 0 & 1 & -\binom{n-1}{1} & \binom{n-1}{2} & \cdots & (-1)^{n-2}\binom{n-1}{n-2} \\ 0 & 0 & 1 & -\binom{n-2}{1} & \cdots & (-1)^{n-3}\binom{n-2}{n-3} \\ 0 & 0 & 0 & 1 & \cdots & (-1)^{n-4}\binom{n-3}{n-4} \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Property of $L^{P}(\text{Brun}_{n})$ Free Generators of the Relative Lie Algebra $L^{P}(\text{Brun}_{n})$ The Symmetric Bracket Sum of Ideals The Rank of $L^{P}_{q}(\text{Brun}_{n})$

イロト 不得 とくほと くほとう

ъ

Theorem

(Theorem 7)

$$\operatorname{rank}(L_q^P(\operatorname{Brun}_n)) = \sum_{k=0}^{n-1} (-1)^k \binom{n}{k} \operatorname{rank}(L_q(P_{n-k}))$$

for each n and q, where $P_1 = 0$ and, for $m \ge 2$,

$$\operatorname{rank}(L_q(P_m)) = \frac{1}{q} \sum_{k=1}^{m-1} \sum_{d|q} \mu(d) k^{q/d}$$

with μ the Möbis function.

Property of $L^{P}(\operatorname{Brun}_{n}(S^{2}))$

The removing-strand operation on braids induces an operation

$$d_k \colon L(P_n(S^2)) \longrightarrow L(P_{n-1}(S^2)).$$

Proposition

(Proposition 8) There is an inclusion of Lie algebras

$$L^{P}(\operatorname{Brun}_{n}(S^{2})) \subset \bigcap_{i=1}^{n} \operatorname{ker}(d_{i}: L(P_{n}(S^{2})) \rightarrow L(P_{n-1}(S^{2}))).$$

くロト (過) (目) (日)

э

The Homotopy Group of a Lie Algebra

Let $L = \{L_n\}_{n \ge 0}$ denote a simplicial Lie algebra with faces $d_i : L_n \longrightarrow L_{n-1}$ for $0 \le i \le n$. The Moore complex $N(L) = \{N_n(L)\}_{n \ge 0}$ of *L* is defined by

$$N_n(L) = \bigcap_{i=1}^n \ker(d_i : L_n \to L_{n-1}).$$

Then N(L) with d_0 is a chain complex of Lie algebra. The Moore cycle and Moore boundary of *L* are defined by

$$Z_n(L) = \ker(d_0: N_n(L) \longrightarrow N_{n-1}(L)) = \bigcap_{i=0}^n \ker(d_i: L_n \longrightarrow L_{n-1}),$$

and

$$B_n(L)=d_0(N_{n+1}(L))$$

respectively. The nth homotopy group is defined to be the quotient of

$$\pi_n(L) = Z_n(L)/B_n(L). \quad \text{and } A = 0 \text{ for all } A = 0 \text{ for al$$

Lie Algebra $L(\widehat{F})$

Let \widehat{F}_{n+1} be the quotient of the free group $F(x_0, x_1, \dots, x_n)$ subject to the single relation $x_0x_1 \dots x_n = 1$. Let \widehat{x}_j be the image of x_j in \widehat{F}_{n+1} . The group \widehat{F}_{n+1} is written $\widehat{F}(\widehat{x}_0, \widehat{x}_1, \dots, \widehat{x}_n)$ in case the generators \widehat{x}_j are used. Clearly

$$\widehat{F}_n \cong F(\widehat{x}_0, \widehat{x}_1, \cdots, \widehat{x}_{n-1})$$

is a free group of rank *n*. Define the faces $\widehat{d}_i : \widehat{F}_{n+1} \longrightarrow \widehat{F}_n$ and degeneracies $\widehat{s}_i : \widehat{F}_n \longrightarrow \widehat{F}_{n+1}$ on $\widehat{F} = \{\widehat{F}_{n+1}\}_{n \ge 0}$ as follows:

$$\widehat{d}_{i}\widehat{x}_{j} = \begin{cases} \widehat{x}_{j}, & \text{if } j < i, \\ 1, & \text{if } j = i, \\ \widehat{x}_{j-1}, & \text{if } j > i. \end{cases} \qquad \widehat{s}_{i}\widehat{x}_{j} = \begin{cases} \widehat{x}_{j}, & \text{if } j < i, \\ \widehat{x}_{j}\widehat{x}_{j+1}, & \text{if } j = i, \\ \widehat{x}_{j+1}, & \text{if } j > i. \end{cases}$$
(2)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

It is straightforward to check that the sequence of groups $\widehat{F} = \{\widehat{F}_{n+1}\}_{n\geq 0}$ is simplicial group under \widehat{d}_i and \widehat{s}_i defined as above. Let $L(\widehat{F}) = \{L(\widehat{F}_{n+1})\}_{n\geq 0}$ denote the free simplicial Lie algebra generated by \widehat{F} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Intersection of the Kernel $d_i : L(P_{n+1}(S^2)) \rightarrow L(P_n(S^2)))$

Proposition

(Proposition 9) The intersection of the kernel $d_i : L(P_{n+1}(S^2)) \to L(P_n(S^2)))$ is the Moore cycle of $L(\widehat{F})$, i.e.

$$\bigcap_{i=1}^{n+1} \ker(d_i : L(P_{n+1}(S^2)) \to L(P_n(S^2))) = \bigcap_{i=0}^{n-1} \ker(\widehat{d}_i : L(\widehat{F}_n) \to L(\widehat{F}_{n-1})).$$

Jingyan Li On the Lie Algebra of Braid Groups

ヘロト 人間 とくほ とくほ とう

Let us denote the ideal

 $L[B_{k,n+1}, [\cdots [B_{k,n+1}, B_{j_1,n+1}], \cdots, B_{j_m,n+1}] \mid j_i \neq k, n+1; i \leq m; m \geq 1]$

by J_k . Then we have the following theorem.

(Proposition 10) For $n \ge 4$, there is an isomorphism of groups: $\bigcap_{i=1}^{n+1} \ker(d_i : L(P_{n+1}(S^2)) \to L(P_n(S^2))) / [[J_1, J_2], \cdots, J_{n-1}]_S$ $\cong \pi_{n-1}(L(\widehat{F})) \cong \pi_{n-1}(L(F[S^1]) \cong \pi_{n-1}(L(G(S^2))).$

Remarks.

k - Markennik

 $\pi_*(L(G(S^2))$ can be computed by using N- algebra.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Let us denote the ideal

 $L[B_{k,n+1}, [\cdots [B_{k,n+1}, B_{j_1,n+1}], \cdots, B_{j_m,n+1}] \mid j_i \neq k, n+1; i \leq m; m \geq 1]$

by J_k . Then we have the following theorem.

Proposition

(Proposition 10) For $n \ge 4$, there is an isomorphism of groups: $\bigcap_{i=1}^{n+1} \ker(d_i : L(P_{n+1}(S^2)) \to L(P_n(S^2))) / [[J_1, J_2], \cdots, J_{n-1}]_S$ $\cong \pi_{n-1}(L(\widehat{F})) \cong \pi_{n-1}(L(F[S^1])) \cong \pi_{n-1}(L(G(S^2)).$

Remarks.

 $\pi_*(L(G(S^2))$ can be computed by using Λ - algebra.

ヘロト ヘアト ヘビト ヘビト

Let us denote the ideal

 $L[B_{k,n+1}, [\cdots [B_{k,n+1}, B_{j_1,n+1}], \cdots, B_{j_m,n+1}] \mid j_i \neq k, n+1; i \leq m; m \geq 1]$

by J_k . Then we have the following theorem.

Proposition

(Proposition 10) For $n \ge 4$, there is an isomorphism of groups: $\bigcap_{i=1}^{n+1} \ker(d_i : L(P_{n+1}(S^2)) \to L(P_n(S^2))) / [[J_1, J_2], \cdots, J_{n-1}]_S$ $\cong \pi_{n-1}(L(\widehat{F})) \cong \pi_{n-1}(L(F[S^1])) \cong \pi_{n-1}(L(G(S^2)).$

Remarks.

Remark

 $\pi_*(L(G(S^2))$ can be computed by using Λ - algebra.

・ロト ・ 理 ト ・ ヨ ト ・

Thanks for your attention!

Jingyan Li On the Lie Algebra of Braid Groups

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ