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G-manifold and G-map

NOTE : All the mfds and maps are smooth.

I G-manifold M :
θ : G×M →M

satisfying:

1. e ∈ G, θ(e, x) = x,
2. g1, g2 ∈ G, θ(g1g2, x) = θ(g1, θ(g2, x)).

I G-map f :
f : M → N

satisfying the following square commute,

G×M

θ
��

(id,f) // G×N

θ
��

M
f // N



G-(complex) bundle

I G-(complex) bundle
Bundle ξ : E →M satisfied:

1. M is a G-manifold,
2. G acts linearly on the fibres (i.e. g ∈ G, g : Ex → Egx is a

G-(complex) liner map)

I G-unitary manifold
M is a G-manifold and

τ(M)⊕ Rl →M

is a G-complex bundle for some l. Where Rl is trivial
G-bundle with trivial G-action on the fibres Rl.



Fixed Point Set

fixed points: MG = {m ∈M | gm = m, ∀g ∈ G}.

Lemma

M is a G-manifold and MG =
∐
F F , where F be the connected

component of the fixed point set:

1. F is a closed manifold with trivial G action,

2. νF,M is a G-bundle without trivial summand.

Lemma

M is a G-unitary manifold and MG =
∐
F F , where F be the

connected component of the fixed point set:

1. F is an unitary manifold with trivial G action,

2. νF,M is a G-complex bundle without trivial summand.



Fixed Point Data

We focus on the following two cases.

I G = Zk2-manifold M and the fixed point set MG =
∐
F F .

{νF,M → F} is called the Fixed Point Data of M .

I G = T k-unitary manifold M and the fixed point set
MG =

∐
F F . {νF,M → F} is called the Fixed Point Data

of the unitary manifold M .



Realising fixed point data

Question

For given a family Zk2-bundle (or T k-complex bundle)

{νF → F},

find necessary and sufficient conditions for the existence of a
Zk2-manifold (T k-unitary manifold) with the given fixed point
data.



Bordism Ring

I Unoriented Bordism Ring: ΩO
∗ =

∑
ΩO
n

ΩO
n = {n-dim closed mfds}/ ∼ .

I Unitary Bordism Ring: ΩU
∗ =

∑
ΩU
n

ΩU
n = {n-dim closed unitary mfds}/ ∼ .



geometric G-equivariant Bordism Ring

For given G-mfd M1, M2, we can define GyM1 ×M2.

I geometric unoriented Zk2-equivariant Bordism Ring:

Ω
O,Zk2
∗ =

∑
Ω
O,Zk2
n

Ω
O,Zk2
n = {n-dim Zk2 closed mfds}/ ∼Zk2

.

I geometric unitary T k-equivariant Bordism Ring:

ΩU,Tk

∗ =
∑

ΩU,Tk

n

ΩU,Tk

n = {n-dim T k closed unitary mfds}/ ∼Tk .



Cobordism theory and Characteristic numbers

I ΩO
∗ ←→ Stiefel-Whitney numbers.

I ΩU
∗ ←→ Chern numbers.



equivariant Stiefel-Whitney class and number

π : EG→ BG is the universal principal G-bundles.

The Borel construction gives us EG×G τM over EG×GM.

I G equivariant Stiefel-Whitney class

wG(M) := w(EG×G τM ).

I G equivariant Stiefel-Whitney number
The constant map gives p! : H∗G(M,Z2)→ H∗(BG,Z2).
Then

wGω [M ] := p!(w
G
ω (M))



equivariant Chern class and number

π : EG→ BG is the universal principal G-bundles.

The Borel construction gives us EG×G τM over EG×GM.

I G equivariant Chern class

cG(M) := c(EG×G τM ).

I G equivariant Chern number
The constant map gives p! : H∗G(M)→ H∗(BG). Then

cGω [M ] := p!(c
G
ω (M))



Equivariant case

I Ω
O,Zk2
∗ ←→ Zk2-equivariant Stiefel-Whitney numbers. (tom

Dieck in 1971 lnventiones math)

I ΩU,Tk
∗ ←→ T k-equivariant Chern number.

(Guillemin-Ginzburg-Karshon’s conjecture, answered by
Lü-Wang)



Unoriented Zk2-manifold with only isolated fixed-points

Unoriented Zk2-manifold with only isolated fixed-points:

Theorem (tom Dieck)

For given G = Zk2 representation W 1, . . . ,W s, they are the fixed
point data of a closed G-manifold if and only if for any
symmetric homogeneous polynomial f(x1, . . . , xn) over Z2,

s∑
i=1

f(xr1, . . . , x
r
n)

xr1 · · ·xrn
∈ H∗(BG,Z2).

where W r = ⊕ni=1W
r
i and xri = wG1 (W r

i ).



Z2-manifold

Unoriented Z2-case:

Theorem (Stong and Kosniowski)

For given Z2-bundle {νn−rF → F r}, they are the fixed point data
of a Z2-manifold, if and only if for any symmetric polynomial
f(x1, . . . , xn) over Z2 of degree at most n,∑

r

f(1 + y1, . . . , 1 + yn−r, z1, . . . , zr)∏
(1 + yi)

[F ] = 0,

where w(F r) =
∏

(1 + zi) and w(νF ) =
∏

(1 + yi) ∈ H∗(F ;Z2).



Orientation on the isolated fixed point of unitary T k-manifold

Remark

p is an isolated fixed point of the unitary T k-manifold M . The
normal bundle νp,M has two orientations:

1. induced by the orientation of M which comes from the
unitary structure

2. induced by the orientation of νp,M .

Then we can define the sign of the isolated fixed point p:

ζ(p) :=

{
+1, two orientations are same,
−1, otherwise.



Question (B, P and R in [Toric genera])

For any set of signs ζ(x) and complex representation Wx, and
necessary and sufficient conditions for the existence of a
tangentially stably complex T k manifold with the given fixed
point data.
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I Main Result.
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Unitary G = T k-manifold

n is even.

1. isolated fixed points x, n/2-dim complex representation
Wx, and the sign ζ(x).

2. G = T k complex bundle νF → F and dimF = r > 0, νF is
(n− r)/2-dim G-complex bundle over F .
(l is large enough to stablize all the τF .)



Theorem

They are the fixed point data of an unitary G-manifold if and
only if for any symmetric homogeneous polynomial f(x) over Z
in (n+ l)/2 variables,

∑
F

f(y, z)∏
yi

[F ] +
∑
x

ζ(x)
f(u)∏
ui
∈ H∗(BG;Z),

where cG(F ) =
∏

(1 + zi), c
G(νF ) =

∏
(1 + yj) and

cG(Wx) =
∏

(1 + ui).



unitary T k-manifold with only isolated points

n is even, W 1, . . . ,W s are the n/2-dim complex representations
and ζ(r) is the sign of W r.

Remark

They are the fixed point data of an unitary G-manifold if and
only if for any symmetric homogeneous polynomial f(x) over Z
in n/2 variables,

s∑
i=1

ζ(r)
f(xr1, . . . , x

r
n)

xr1 · · ·xrn
∈ H∗(BG),

where W r = ⊕ni=1W
r
i , and xri = cG1 (W r

i ).



unoriented G = Zk2-equivariant case

For given {νF → F},

Theorem

They are the fixed point data of a G-manifold if and only if for
any symmetric homogeneous polynomial f(x) over Z2∑

F

f(y, z)∏
yi

[F ] ∈ H∗(BG;Z2),

where
wG(F ) =

∏
(1 + zi) ∈ H∗G(F ;Z2),

wG(νF ) =
∏

(1 + yi) ∈ H∗G(F ;Z2).
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Recall G = Zk2 case

Theorem (tom Dieck)

ΩO,G
∗

PT //MO∗G
α //MO∗(BG)

B // H∗G(BG)⊗ Z2[[a]].

All the maps are injective.



Thom class and Euler class

ξ : E → X is G-vector bundle. There is the G-equivariant
classifying map:

E

ξ

��

// EOG(n)

��
X

f // BOG(n)

I Thom class:

t(ξ) := lim{Th(f) : Th(ξ)→MOG(n)} ∈MOnG(Th(ξ))

I

s : X ↪→ Th(ξ)

Euler class:
e(ξ) := s∗(t(ξ)) ∈MUnG(X)



Theorem (tom Dieck)

G = Zk2 equivariant cobordism theory:

ΩO,G∗

Λ

��

PT // MO∗G

Λ′

��

α // MO∗(BG)

Λ′′

��

B // H∗(BG) ⊗ Z2[[a]]

Λ′′′

��
Γ∗

��

Ψ◦ι // S−1MO∗G

��

S−1α// S−1MO∗(BG)

��

S−1B// S−1(H∗(BG) ⊗ Z2[[a]])

��
cokerΛ // cokerΛ′ // cokerΛ′′ // cokerΛ′′′

Λ, Λ′, Λ′′, Λ′′′ and all the horizontal maps are injective.



G = T k equivariant cobordism

Theorem (tom Dieck, Sinha, Hanke)

ΩU,G
∗

Λ

��

PT //MU∗G

Λ′

��

α //MU∗(BG)

Λ′′

��
Γ∗

Ψ◦ι // S−1MU∗G
S−1α // S−1MU∗(BG)

The diagram is a pull back square. And

S−1MUG∗
∼= MU∗(B)⊗ Z[e1(V )−1, e1(V )]

Γ = MU∗(B)⊗ Z[e1(V )−1] ⊂ S−1MUG∗ .



Λ

• η : E → F is a G equivariant complex bundle where F is
compact unitary manifold without boundary with trivial G
action.

By using Segal’s theorem:

Γ(F, η) ∈ Γ∗.

• For [M ]G ∈ ΩU,G
∗ , {νF,M → F} is the fixed point data of M .

Λ([M ]G) :=
∑
F

Γ(F, νF,M ) ∈ Γ∗.



Unitary G = T k-equivariant cobordism theory:

Theorem

ΩU,G∗

Λ

��

PT // MU∗G

Λ′

��

α // MU∗(BG)

Λ′′

��

B // H∗(BG) ⊗ Z[[a]]

Λ′′′

��
Γ∗

��

Ψ◦ι // S−1MU∗G

��

S−1α// S−1MU∗(BG)

��

S−1B// S−1(H∗(BG) ⊗ Z[[a]])

��
cokerΛ // cokerΛ′ // cokerΛ′′ // cokerΛ′′′

Λ, Λ′, Λ′′, Λ′′′ and all the horizontal maps are injective.



T k equivariant Chern numbers

ΩU,G
∗

PT //MU∗G
α //MU∗(BG)

B // H∗(BG)⊗ Z[[a]]

Proposition

Denote cG(M) =
∏

(1 + xi) then

B · α · PT ([M ]G) =
∑
ω

Sω[M ]bω,

where (1 + b1t+ b2t
2 + · · · ) · (1 + a1t+ a2t

2 + · · · ) = 1.



Γ∗
Ψ◦ι // S−1MU∗G

S−1α// S−1MU∗(BG)
S−1B// S−1(H∗(BG)⊗ Z[[a]])

Theorem

νF → F as above,

S−1(B ◦ α) ◦Ψ ◦ ι(Γ(F, νF )) =
v(νF ) · v(τF )

eG(νF )
.



ΩU,G∗

Λ

��

PT // MU∗G

Λ′

��

α // MU∗(BG)

Λ′′

��

B // H∗(BG)⊗ Z[[a]]

Λ′′′

��
Γ∗

��

Ψ◦ι // S−1MU∗G

��

S−1α// S−1MU∗(BG)

��

S−1B// S−1(H∗(BG)⊗ Z[[a]])

��
cokerΛ // cokerΛ′ // cokerΛ′′ // cokerΛ′′′

∑
F

v(νF ) · v(τF )

eG(νF )
∈ H∗(BG)⊗ Z[[a]].

Then there must be an unitary G-manifold M satisfying

Λ([M ]G) =
∑
F

Γ(F, νF ).



If νF → F and νF ′ → F ′ are r-dim complex G bundle,

Γ(F, νF ) = −Γ(F ′, νF ′) ∈ Γ∗

and dimF = dimF ′ = s.

Lemma

There must be a (s+ 2r)-dim unitary G-manifold MF which
MF ∼G 0, and {νF → F, νF ′ → F ′} are the fixed point data of
MF .



Theorem

{νF → F} is the fixed point data of an unitary G-manifold if
and only if ∑

F

v(νF ) · v(τF )

eG(νF )
[F ] ∈ H∗(BG)⊗ Z[[a]].



Thank You!
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