The fixed point data and equivariant Chern numbers

joint work with: Zhi Lü; Wei Wang

Jun Ma

2015-08-11, NUS

- Preliminaries.
- Main Result.
- Proof.

G-manifold and G-map

NOTE : All the mfds and maps are smooth.

- G-manifold M :

$$
\theta: G \times M \rightarrow M
$$

satisfying:

1. $e \in G, \theta(e, x)=x$,
2. $g_{1}, g_{2} \in G, \theta\left(g_{1} g_{2}, x\right)=\theta\left(g_{1}, \theta\left(g_{2}, x\right)\right)$.

- G-map f :

$$
f: M \rightarrow N
$$

satisfying the following square commute,

$$
\begin{array}{cc}
G \times M \xrightarrow{(i d, f)} G \times N \\
\theta \downarrow & \\
\vdots & \theta \\
M \xrightarrow{f} & \stackrel{\downarrow}{l}
\end{array}
$$

G-(complex) bundle

- G-(complex) bundle Bundle $\xi: E \rightarrow M$ satisfied:

1. M is a G-manifold,
2. G acts linearly on the fibres (i.e. $g \in G, g: E_{x} \rightarrow E_{g x}$ is a G-(complex) liner map)

- G-unitary manifold M is a G-manifold and

$$
\tau(M) \oplus \underline{\mathbb{R}}^{l} \rightarrow M
$$

is a G-complex bundle for some l. Where $\underline{\mathbb{R}}^{l}$ is trivial G-bundle with trivial G-action on the fibres \mathbb{R}^{l}.

Fixed Point Set

fixed points: $M^{G}=\{m \in M \mid g m=m, \forall g \in G\}$.

Lemma

M is a G-manifold and $M^{G}=\coprod_{F} F$, where F be the connected component of the fixed point set:

1. F is a closed manifold with trivial G action,
2. $\nu_{F, M}$ is a G-bundle without trivial summand.

Lemma

M is a G-unitary manifold and $M^{G}=\coprod_{F} F$, where F be the connected component of the fixed point set:

1. F is an unitary manifold with trivial G action,
2. $\nu_{F, M}$ is a G-complex bundle without trivial summand.

Fixed Point Data

We focus on the following two cases.

- $G=\mathbb{Z}_{2}^{k}$-manifold M and the fixed point set $M^{G}=\coprod_{F} F$. $\left\{\nu_{F, M} \rightarrow F\right\}$ is called the Fixed Point Data of M.
- $G=T^{k}$-unitary manifold M and the fixed point set $M^{G}=\coprod_{F} F .\left\{\nu_{F, M} \rightarrow F\right\}$ is called the Fixed Point Data of the unitary manifold M.

Realising fixed point data

Question

For given a family \mathbb{Z}_{2}^{k}-bundle (or T^{k}-complex bundle)

$$
\left\{\nu_{F} \rightarrow F\right\},
$$

find necessary and sufficient conditions for the existence of a \mathbb{Z}_{2}^{k}-manifold (T^{k}-unitary manifold) with the given fixed point data.

Bordism Ring

- Unoriented Bordism Ring: $\Omega_{*}^{O}=\sum \Omega_{n}^{O}$

$$
\Omega_{n}^{O}=\{n \text {-dim closed mfds }\} / \sim .
$$

- Unitary Bordism Ring: $\Omega_{*}^{U}=\sum \Omega_{n}^{U}$

$$
\Omega_{n}^{U}=\{n \text {-dim closed unitary mfds }\} / \sim
$$

For given G-mfd M_{1}, M_{2}, we can define $G \curvearrowright M_{1} \times M_{2}$.

- geometric unoriented \mathbb{Z}_{2}^{k}-equivariant Bordism Ring:

$$
\begin{gathered}
\Omega_{*}^{O, \mathbb{Z}_{2}^{k}}=\sum \Omega_{n}^{O, \mathbb{Z}_{2}^{k}} \\
\Omega_{n}^{O, \mathbb{Z}_{2}^{k}}=\left\{n-\operatorname{dim} \mathbb{Z}_{2}^{k} \text { closed mfds }\right\} / \sim_{\mathbb{Z}_{2}^{k}} .
\end{gathered}
$$

- geometric unitary T^{k}-equivariant Bordism Ring:

$$
\begin{gathered}
\Omega_{*}^{U, T^{k}}=\sum \Omega_{n}^{U, T^{k}} \\
\Omega_{n}^{U, T^{k}}=\left\{n-\operatorname{dim} T^{k} \text { closed unitary mfds }\right\} / \sim_{T^{k}}
\end{gathered}
$$

Cobordism theory and Characteristic numbers

- $\Omega_{*}^{O} \longleftrightarrow$ Stiefel-Whitney numbers.
- $\Omega_{*}^{U} \longleftrightarrow$ Chern numbers.

equivariant Stiefel-Whitney class and number

$\pi: E G \rightarrow B G$ is the universal principal G-bundles.
The Borel construction gives us $E G \times{ }_{G} \tau_{M}$ over $E G \times_{G} M$.

- G equivariant Stiefel-Whitney class

$$
w^{G}(M):=w\left(E G \times{ }_{G} \tau_{M}\right) .
$$

- G equivariant Stiefel-Whitney number The constant map gives $p_{!}: H_{G}^{*}\left(M, \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(B G, \mathbb{Z}_{2}\right)$. Then

$$
w_{\omega}^{G}[M]:=p_{!}\left(w_{\omega}^{G}(M)\right)
$$

$\pi: E G \rightarrow B G$ is the universal principal G-bundles.
The Borel construction gives us $E G \times_{G} \tau_{M}$ over $E G \times_{G} M$.

- G equivariant Chern class

$$
c^{G}(M):=c\left(E G \times_{G} \tau_{M}\right)
$$

- G equivariant Chern number

The constant map gives $p_{!}: H_{G}^{*}(M) \rightarrow H^{*}(B G)$. Then

$$
c_{\omega}^{G}[M]:=p_{!}\left(c_{\omega}^{G}(M)\right)
$$

Equivariant case

- $\Omega_{*}^{O, \mathbb{Z}_{2}^{k}} \longleftrightarrow \mathbb{Z}_{2}^{k}$-equivariant Stiefel-Whitney numbers. (tom Dieck in 1971 lnventiones math)
- $\Omega_{*}^{U, T^{k}} \longleftrightarrow T^{k}$-equivariant Chern number. (Guillemin-Ginzburg-Karshon's conjecture, answered by Lü-Wang)

Unoriented \mathbb{Z}_{2}^{k}-manifold with only isolated fixed-points

Unoriented \mathbb{Z}_{2}^{k}-manifold with only isolated fixed-points:
Theorem (tom Dieck)
For given $G=\mathbb{Z}_{2}^{k}$ representation W^{1}, \ldots, W^{s}, they are the fixed point data of a closed G-manifold if and only if for any symmetric homogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over \mathbb{Z}_{2},

$$
\sum_{i=1}^{s} \frac{f\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)}{x_{1}^{r} \cdots x_{n}^{r}} \in H^{*}\left(B G, \mathbb{Z}_{2}\right)
$$

where $W^{r}=\oplus_{i=1}^{n} W_{i}^{r}$ and $x_{i}^{r}=w_{1}^{G}\left(W_{i}^{r}\right)$.

\mathbb{Z}_{2}-manifold

Unoriented \mathbb{Z}_{2}-case:
Theorem (Stong and Kosniowski)
For given \mathbb{Z}_{2}-bundle $\left\{\nu_{F}^{n-r} \rightarrow F^{r}\right\}$, they are the fixed point data of a \mathbb{Z}_{2}-manifold, if and only if for any symmetric polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over \mathbb{Z}_{2} of degree at most n,

$$
\sum_{r} \frac{f\left(1+y_{1}, \ldots, 1+y_{n-r}, z_{1}, \ldots, z_{r}\right)}{\prod\left(1+y_{i}\right)}[F]=0
$$

where $w\left(F^{r}\right)=\prod\left(1+z_{i}\right)$ and $w\left(\nu_{F}\right)=\prod\left(1+y_{i}\right) \in H^{*}\left(F ; \mathbb{Z}_{2}\right)$.

Orientation on the isolated fixed point of unitary T^{k}-manifold

Remark

p is an isolated fixed point of the unitary T^{k}-manifold M. The normal bundle $\nu_{p, M}$ has two orientations:

1. induced by the orientation of M which comes from the unitary structure
2. induced by the orientation of $\nu_{p, M}$.

Then we can define the sign of the isolated fixed point p :

$$
\zeta(p):= \begin{cases}+1, & \text { two orientations are same } \\ -1, & \text { otherwise }\end{cases}
$$

Question (B, P and R in [Toric genera])
For any set of signs $\zeta(x)$ and complex representation W_{x}, and necessary and sufficient conditions for the existence of a tangentially stably complex T^{k} manifold with the given fixed point data.

- Preliminaries.
- Main Result.
- Proof.

Unitary $G=T^{k}$-manifold

n is even.

1. isolated fixed points $x, n / 2$-dim complex representation W_{x}, and the sign $\zeta(x)$.
2. $G=T^{k}$ complex bundle $\nu_{F} \rightarrow F$ and $\operatorname{dimF}=r>0, \nu_{F}$ is $(n-r) / 2$-dim G-complex bundle over F. (l is large enough to stablize all the τ_{F}.)

Theorem

They are the fixed point data of an unitary G-manifold if and only if for any symmetric homogeneous polynomial $f(x)$ over \mathbb{Z} in $(n+l) / 2$ variables,

$$
\sum_{F} \frac{f(y, z)}{\prod y_{i}}[F]+\sum_{x} \zeta(x) \frac{f(u)}{\prod u_{i}} \in H^{*}(B G ; \mathbb{Z})
$$

where $c^{G}(F)=\prod\left(1+z_{i}\right), c^{G}\left(\nu_{F}\right)=\prod\left(1+y_{j}\right)$ and $c^{G}\left(W_{x}\right)=\Pi\left(1+u_{i}\right)$.
unitary T^{k}-manifold with only isolated points
n is even, W^{1}, \ldots, W^{s} are the $n / 2$-dim complex representations and $\zeta(r)$ is the sign of W^{r}.

Remark
They are the fixed point data of an unitary G-manifold if and only if for any symmetric homogeneous polynomial $f(x)$ over \mathbb{Z} in $n / 2$ variables,

$$
\sum_{i=1}^{s} \zeta(r) \frac{f\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)}{x_{1}^{r} \cdots x_{n}^{r}} \in H^{*}(B G)
$$

where $W^{r}=\oplus_{i=1}^{n} W_{i}^{r}$, and $x_{i}^{r}=c_{1}^{G}\left(W_{i}^{r}\right)$.

unoriented $G=\mathbb{Z}_{2}^{k}$-equivariant case

For given $\left\{\nu_{F} \rightarrow F\right\}$,

Theorem

They are the fixed point data of a G-manifold if and only if for any symmetric homogeneous polynomial $f(x)$ over \mathbb{Z}_{2}

$$
\sum_{F} \frac{f(y, z)}{\prod y_{i}}[F] \in H^{*}\left(B G ; \mathbb{Z}_{2}\right)
$$

where

$$
\begin{aligned}
w^{G}(F) & =\prod\left(1+z_{i}\right) \in H_{G}^{*}\left(F ; \mathbb{Z}_{2}\right) \\
w^{G}\left(\nu_{F}\right) & =\prod\left(1+y_{i}\right) \in H_{G}^{*}\left(F ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

- Preliminaries.
- Main Result.
- Proof.

Recall $G=\mathbb{Z}_{2}^{k}$ case

Theorem (tom Dieck)

$$
\Omega_{*}^{O, G} \xrightarrow{P T} M O_{G}^{*} \xrightarrow{\alpha} M O^{*}(B G) \xrightarrow{B} H_{G}^{*}(B G) \otimes \mathbb{Z}_{2}[[a]] .
$$

All the maps are injective.
$\xi: E \rightarrow X$ is G-vector bundle. There is the G-equivariant classifying map:

- Thom class:

$$
t(\xi):=\lim \left\{T h(f): T h(\xi) \rightarrow M O_{G}(n)\right\} \in M O_{G}^{n}(T h(\xi))
$$

$$
s: X \hookrightarrow T h(\xi)
$$

Euler class:

$$
e(\xi):=s^{*}(t(\xi)) \in M U_{G}^{n}(X)
$$

Theorem (tom Dieck)

$G=\mathbb{Z}_{2}^{k}$ equivariant cobordism theory:

$\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}, \Lambda^{\prime \prime \prime}$ and all the horizontal maps are injective.

$G=T^{k}$ equivariant cobordism

Theorem (tom Dieck, Sinha, Hanke)

$$
\begin{aligned}
& \Omega_{*}^{U, G} \xrightarrow{P T} M U_{G}^{*} \xrightarrow{\alpha} M U^{*}(B G)
\end{aligned}
$$

The diagram is a pull back square. And

$$
\begin{gathered}
S^{-1} M U_{*}^{G} \cong M U_{*}(B) \otimes \mathbb{Z}\left[e_{1}(V)^{-1}, e_{1}(V)\right] \\
\Gamma=M U_{*}(B) \otimes \mathbb{Z}\left[e_{1}(V)^{-1}\right] \subset S^{-1} M U_{*}^{G} .
\end{gathered}
$$

- $\eta: E \rightarrow F$ is a G equivariant complex bundle where F is compact unitary manifold without boundary with trivial G action.

By using Segal's theorem:

$$
\Gamma(F, \eta) \in \Gamma_{*} .
$$

- For $[M]_{G} \in \Omega_{*}^{U, G},\left\{\nu_{F, M} \rightarrow F\right\}$ is the fixed point data of M.

$$
\Lambda\left([M]_{G}\right):=\sum_{F} \Gamma\left(F, \nu_{F, M}\right) \in \Gamma_{*}
$$

Unitary $G=T^{k}$-equivariant cobordism theory:
Theorem

$\Lambda, \Lambda^{\prime}, \Lambda^{\prime \prime}, \Lambda^{\prime \prime \prime}$ and all the horizontal maps are injective.

T^{k} equivariant Chern numbers

$$
\Omega_{*}^{U, G} \xrightarrow{P T} M U_{G}^{*} \xrightarrow{\alpha} M U^{*}(B G) \xrightarrow{B} H^{*}(B G) \otimes \mathbb{Z}[[a]]
$$

Proposition
Denote $c^{G}(M)=\prod\left(1+x_{i}\right)$ then

$$
B \cdot \alpha \cdot P T\left([M]_{G}\right)=\sum_{\omega} S_{\omega}[M] b^{\omega}
$$

where $\left(1+b_{1} t+b_{2} t^{2}+\cdots\right) \cdot\left(1+a_{1} t+a_{2} t^{2}+\cdots\right)=1$.
$\Gamma^{*} \xrightarrow{\Psi \circ \iota} S^{-1} M U_{G}^{*} \xrightarrow{S^{-1} \alpha} S^{-1} M U^{*}(B G) \xrightarrow{S^{-1} B} S^{-1}\left(H^{*}(B G) \otimes \mathbb{Z}[[a]]\right)$

Theorem

$\nu_{F} \rightarrow F$ as above,

$$
S^{-1}(B \circ \alpha) \circ \Psi \circ \iota\left(\Gamma\left(F, \nu_{F}\right)\right)=\frac{\bar{v}\left(\nu_{F}\right) \cdot \bar{v}\left(\tau_{F}\right)}{e^{G}\left(\nu_{F}\right)}
$$

$$
\sum_{F} \frac{\bar{v}\left(\nu_{F}\right) \cdot \bar{v}\left(\tau_{F}\right)}{e^{G}\left(\nu_{F}\right)} \in H^{*}(B G) \otimes \mathbb{Z}[[a]] .
$$

Then there must be an unitary G-manifold M satisfying

$$
\Lambda\left([M]_{G}\right)=\sum_{F} \Gamma\left(F, \nu_{F}\right) .
$$

If $\nu_{F} \rightarrow F$ and $\nu_{F^{\prime}} \rightarrow F^{\prime}$ are r-dim complex G bundle,

$$
\Gamma\left(F, \nu_{F}\right)=-\Gamma\left(F^{\prime}, \nu_{F^{\prime}}\right) \in \Gamma_{*}
$$

and $\operatorname{dim} F=\operatorname{dim} F^{\prime}=s$.
Lemma
There must be a $(s+2 r)$-dim unitary G-manifold M_{F} which $M_{F} \sim_{G} 0$, and $\left\{\nu_{F} \rightarrow F, \nu_{F^{\prime}} \rightarrow F^{\prime}\right\}$ are the fixed point data of M_{F}.

Theorem
$\left\{\nu_{F} \rightarrow F\right\}$ is the fixed point data of an unitary G-manifold if and only if

$$
\sum_{F} \frac{\bar{v}\left(\nu_{F}\right) \cdot \bar{v}\left(\tau_{F}\right)}{e^{G}\left(\nu_{F}\right)}[F] \in H^{*}(B G) \otimes \mathbb{Z}[[a]] .
$$

Thank You!

