Self-Dual Binary Codes from Small Covers and Simple Polytopes

— A joint work with Bo Chen and Zhi Lü

Li Yu

Department of Mathematics, Nanjing University

International Conference on Combinatorial and Toric Homotopy

August 24–28, 2015, Singapore

- §1.1 Binary Linear Codes
- $\S1.2$ Self-Dual Binary Codes from m -Involutions on Manifolds

Binary Linear Codes

A <u>binary linear code</u> C of length l — a linear subspace of the l-dimensional linear space \mathbb{F}_2^l over \mathbb{F}_2 .

The Hamming weight of an element $u=(u_1,...,u_l)\in \mathbb{F}_2^l$, denoted by wt(u), is the number of nonzero components u_i in u. The Hamming distance d(u,v) of any elements $u,v\in C$ is defined by

$$d(u,v) = wt(u-v).$$

The minimum of the distances d(u,v) for all $u,v\in C$, $u\neq v$, is called the <u>minimum distance</u> of C. It is also equal to the minimal Hamming weight of all the nonzero elements in C.

A binary code $C \subset \mathbb{F}_2^l$ is called $\underline{\mathsf{type}}\ [l,k,d]$ if $\dim_{\mathbb{F}_2} C = k$ and the minimum distance of C is d.

The inner product $\langle \ , \ \rangle$ on \mathbb{F}_2^l is defined by:

$$\langle u, v \rangle := \sum_{i=1}^{l} u_i v_i, \ u = (u_1, ..., u_l), v = (v_1, ..., v_l) \in \mathbb{F}_2^l.$$

Note that

$$\langle u, u \rangle = \sum_{i=1}^{l} u_i, \ u = (u_1, ..., u_l) \in \mathbb{F}_2^l.$$

- §1.1 Binary Linear Codes
- $\S1.2$ Self-Dual Binary Codes from $\mathrm{m} ext{-Involutions}$ on Manifolds

Self-dual Binary Code

Any binary linear code C in \mathbb{F}_2^l has a $\underline{\mathrm{dual\ code}\ }C^\perp$ defined by

$$C^\perp := \{u \in \mathbb{F}_2^l \, | \, \langle u,c \rangle = 0 \text{ for all } c \in C\}$$

It is clear that $\dim_{\mathbb{F}_2} C + \dim_{\mathbb{F}_2} C^{\perp} = n$. We call C <u>self-dual</u> if

$$C = C^{\perp}$$
.

If C is self-dual, we have:

- The code length $l=2\dim_{\mathbb{F}_2}C$ must be even;
- For any $u \in C$, the Hamming weight wt(u) is an even integer;
- ullet The minimum distance of C is an even integer.

m-involutions on manifolds

An involution au on a manifold M is called an m-involution if

- ullet au only has isolated fixed points, and
- ullet the number of fixed points of au is equal to $\sum_i b_i(M;\mathbb{F}_2).$

Let $G_{\tau} = \langle \tau \rangle \cong \mathbb{Z}_2$. Then we can show that

- (a) The number of fixed points $|M^{G_{\tau}}| = 2r$, $r \ge 1$.
- (b) $H^*_{G_{\tau}}(M;\mathbb{F}_2)$ is a free $H^*(BG_{\tau};\mathbb{F}_2)$ -module, so

$$H_{G_{\tau}}^*(M; \mathbb{F}_2) = H^*(M; \mathbb{F}_2) \otimes H^*(BG_{\tau}; \mathbb{F}_2).$$

Localization of Equivariant Cohomology

(c) The inclusion of the fixed point set, $\iota:M^{G_\tau}\hookrightarrow M$, induces a monomorphism

$$\iota^*: H^*_{G_\tau}(M; \mathbb{F}_2) \to H^*_{G_\tau}(M^{G_\tau}; \mathbb{F}_2) \cong \mathbb{F}_2^{2r} \otimes \mathbb{F}_2[t].$$

So the image of $H^*_{G_\tau}(M;\mathbb{F}_2)$ in $\mathbb{F}_2^{2r}\otimes \mathbb{F}_2[t]$ under the map ι^* is isomorphic to $H^*_{G_\tau}(M;\mathbb{F}_2)$ as graded algebras. Define

$$V_k^M = \{ y \in \mathbb{F}_2^{2r} \mid y \otimes t^k \in \operatorname{Im}(\iota^*) \} \subset \mathbb{F}_2^{2r}, \ k = 0, \cdots, n.$$

We have a filtration:

$$\mathbb{F}_2 \cong V_0^M \subset V_1^M \subset \dots \subset V_{n-2}^M \subset V_{n-1}^M = \mathcal{V}_{2r} \subset V_n^M = \mathbb{F}_2^{2r}$$

where
$$\mathcal{V}_{2r} = \{x = (x_1, ..., x_{2r}) \in \mathbb{F}_2^{2r} \mid \langle x, x \rangle = 0\}.$$

Binary Codes Constructed from m-involutions

By the localization theorem for equivariant cohomology,

$$H^k(M^n; \mathbb{F}_2) \cong V_k^M / V_{k-1}^M, \ 0 \le k \le n.$$
 (1.1)

So we have: $\dim_{\mathbb{F}_2} V_k^M = \sum_{j=0}^k b_j(M; \mathbb{F}_2)$.

Moreover, we have

$$(V_k^M)^{\perp} = V_{n-1-k}^M. {(1.2)}$$

This is because V_{n-1-k}^M is perpendicular to V_k^M with respect to $\langle \;,\; \rangle$ and by the Poincaré duality of M, we have

$$\dim_{\mathbb{F}_2} V_k^M + \dim_{\mathbb{F}_2} V_{n-1-k}^M = \sum_{j=0}^n b_j(M; \mathbb{F}_2) = 2r.$$

Each V_k^M above can be thought of as a binary code in $\mathbb{F}_2^{2r}.$ So

when n is odd, $V_{\frac{n-1}{2}}^M$ is a self-dual binary code in \mathbb{F}_2^{2r} .

Theorem [Puppe 2001]

For any m-involution τ on a closed manifold M^n where n is odd, we obtain a self-dual binary code $V^M_{\frac{n-1}{2}}$ from the localization of $H^*_{G_{\tau}}(M^n;\mathbb{F}_2)$ to the fixed point sets.

Theorem [Puppe-Kreck 2012]

Any self-dual binary code can be obtained from an m-involution on some closed 3-manifold in the above way.

- 1.1 Binary Linear Codes
- $\S 1.2$ Self-Dual Binary Codes from $\operatorname{m-Involutions}$ on Manifolds

Self-dual binary codes \longleftrightarrow m-involutions on manifolds

Problem: Construct m-involutions on manifolds? (Not easy)

<u>Small covers</u> — closed n-manifold with locally standard $(\mathbb{Z}_2)^n$ -actions whose orbit space is a simple convex polytope.

They are introduced by Davis-Januszkiewicz (1991 Duke. Math. J.) as an analogue of toric manifolds.

- §1.1 Binary Linear Codes
- §1.2 Self-Dual Binary Codes from m-Involutions on Manifolds §1.3 Small Covers

Small Covers

Suppose M^n is a small cover whose orbit space under the locally standard $(\mathbb{Z}_2)^n$ -action is P^n (a simple n-polytope). Let

$$\pi:M^n\to P^n$$
 (the orbit map).

For any facet F_i of P^n , the isotropy subgroup of $\pi^{-1}(F_i) \subset M^n$ under the $(\mathbb{Z}_2)^n$ -action is a rank one subgroup of $(\mathbb{Z}_2)^n$ generated by a nonzero element, say $g_{F_i} \in (\mathbb{Z}_2)^n$. Then we obtain a map

$$\lambda_{M^n}: \mathcal{F}(P^n) \longrightarrow (\mathbb{Z}_2)^n$$

$$F_i \longmapsto g_{F_i}$$

We call λ_{M^n} the <u>characteristic function</u> associated to M^n .

- 1.1 Binary Linear Codes
- §1.2 Self-Dual Binary Codes from m-Involutions on Manifolds §1.3 Small Covers
- Conversely, Davis-Januszkiewicz showed that up to equivariant homeomorphism, M^n can be recovered from (P^n, λ_{M^n}) by

$$M^n = P^n \times (\mathbb{Z}_2)^n / \sim \tag{1.3}$$

where $(p,g) \sim (p',g')$ if and only if p=p' and $g^{-1}g' \in G_p$ where

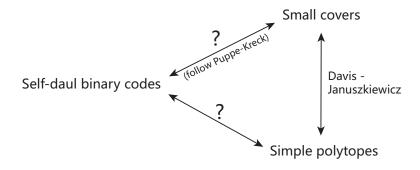
$$G_p=$$
 the subgroup of $(\mathbb{Z}_2)^n$ generated by $\{\lambda_{M^n}(F)\,|\, p\in F\}$

Many topological invairants (fundamental group, cohomology groups, characteristic classes etc.) can be explicitly computed from the combinatorics of P^n and λ . For example,

$$b_i(M; \mathbb{F}_2) = h_i(P^n), \ 0 \le i \le n$$

where $(h_0(P^n), h_1(P^n), ..., h_n(P^n))$ is the h-vector of P^n

- 1.1 Binary Linear Codes
- §1.2 Self-Dual Binary Codes from m-Involutions on Manifold
- §1.3 Small Covers



m-involutions on Small Covers

Let $\pi: M^n \to P^n$ be a small cover and $\lambda: \mathcal{F}(P^n) \to (\mathbb{Z}_2)^n$ be its characteristic function. Any $g \neq 0 \in (\mathbb{Z}_2)^n$ determines an involution τ_q on M^n , called a regular involution on M^n .

Theorem [Chen-Lü-Yu]

The following statements are equivalent.

- (a) There exists a regular m-involution on M^n .
- (b) There exists a regular involution on M^n with only isolated fixed points;
- (c) The image $\operatorname{Im}(\lambda)$ of λ is a basis of $(\mathbb{Z}_2)^n$ (which implies that P^n is n-colorable).

- §2.1 m-involutions on Small Covers
- §2.3 Binary Codes from General Simple Polytopes
 - 2.4 Properties of n-colorable simple n-polytope
- §2.5 Minimum Distance

Description of n-colorable simple n-polytopes

A simple polytope is \underline{n} -colorable if we can color all the facets of the polytope by n different colors so that any neighboring facets are assigned different colors.

Theorem [Joswig 2002]

Let P^n be an n-dimensional simple polytope. The following statements are equivalent.

- (a) P^n is n-colorable;
- (b) Each 2-face of P^n has an even number of vertices.
- (c) Each face of P^n with dimension greater than 0 (including P^n itself) has an even number of vertices.
- (d) Each k-face of P^n is k-colorable.

Let $\pi:M^n\to P^n$ be an *n*-dimensional small cover which admits a regular m-involution. Then by our preceding discussions,

- P^n is an *n*-dimensional *n*-colorable simple polytope.
- The characteristic function λ of M^n satisfies: $\operatorname{Im}(\lambda) = \{e_1, \cdots, e_n\}$ is a basis of $(\mathbb{Z}_2)^n$.
- $\tau_{e_1+\cdots+e_n}$ is an m-involution on M^n .
- Suppose P^n has 2r vertices. There is a filtration

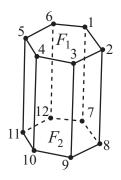
$$\mathbb{F}_2 \cong V_0^M \subset V_1^M \subset \cdots \subset V_{n-2}^M \subset V_{n-1}^M = \mathcal{V}_{2r} \subset V_n^M = \mathbb{F}_2^{2r}.$$

In particular, when n is odd, $C_{M^n}:=V^M_{\frac{n-1}{2}}\subset \mathbb{F}_2^{2r}$ is a self-dual binary code determined by $(M^n, \tau_{e_1+\cdots+e_n})$.

2.5 Minimum Distance

Let $\{v_1,\cdots,v_{2r}\}$ be all the vertices of P^n . Any face f of P^n determines an element $\underline{\xi_f}\in\mathbb{F}_2^{2r}$ where the i-th entry of ξ_f is 1 if and only if v_i is a vertex of f.

For example, $\xi_{v_i} = (0, \dots, \overset{\imath}{1}, \dots, 0), \ \xi_{P^n} = \underline{1} = (1, \dots, 1) \in \mathbb{F}_2^{2r}$.



$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ \end{pmatrix}$$

2.5 Minimum Distance

Main Theorem [Chen-Lü-Yu]

Let $\pi:M^n\to P^n$ be an n-dimensional small cover which admits a regular m-involution where n is odd. For any $0\le k\le n$,

$$V_k^M = \operatorname{Span}_{\mathbb{F}_2}\{\xi_f\,;\,f \text{ is a codimension-}k \text{ face of }P^n\}$$

ullet The self-dual binary code $C_{M^n}=V_{rac{n-1}{2}}^M$ is spanned by

$$\{\xi_f \, ; \, f \text{ is any face of } P^n \text{ with } \dim(f) = \frac{n+1}{2}\}.$$

• So the minimum distance of C_{M^n} is less or equal to $\min\{\#(\text{vertices of }f)\,;\,f\text{ is a }\tfrac{n+1}{2}\text{-dimensional face of }P^n\}.$

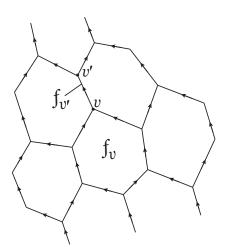
- 22.1 m-involutions on Small Covers
- §2.2 Self-daul Codes from Small Covers
- 82.4 Properties of n-colorable simple n-polytopes
- §2.5 Minimum Distance

A linear basis of V_k^M

- Choose a generic height function ϕ on P^n . Using ϕ , one makes the 1-skeleton of P^n into a directed graph by orienting each edge so that ϕ increases along it.
- For any face f of P^n with dimension > 0, $\phi|_f$ assumes its maximum (or minimun) at a vertex. Since ϕ is generic, each face f of P^n of a unique "top" and a unique "bottom" vertex.
- For any vertex v, let m(v) denote the number of incident edges which point toward v, and let f_v be the smallest face of P^n which contains all the inward pointing edges incident to v. It is clear that $\dim(f_v) = m(v)$.

§1 Backgrounds §2 Main Results

- §2.1 m-involutions on Small Covers §2.2 Self-daul Codes from Small Covers
- §2.2 Self-daul Codes from Small Covers
 - 2.4 Properties of n-colorable simple n-polytopes
 - 2.5 Minimum Distance



- 32.1 m-involutions on Small Covers
- §2.2 Self-daul Codes from Small Covers
- 32.4 Properties of a colorable simple a polytope
- 2.5 Minimum Distance

Fact

The number of vertices v of P^n with m(v) = k is equal to $h_k(P^n)$.

Proposition

Let $\pi:M^n\to P^n$ be an n-dimensional small cover which admits a regular m-involution where n is odd. For any $0\le k\le n$, the linear space V_k^M has a basis defined by

$$\mathcal{A}_k = \{\xi_{f_v} ; v \text{ is any vertex of } P^n \text{ with } n-k \leq m(v) \leq n, \} \subset (\mathbb{F}_2)^{2r}$$

So in particular, $\mathcal{A}_{\frac{n-1}{2}}$ is a basis of $C_{M^n}=V_{\frac{n-1}{2}}^M.$

- §2.3 Binary Codes from General Simple Polytopes

Binary Codes from General Simple Polytopes

Given an arbitrary n-dimensional simple polytope P^n , let the vertices of P^n be v_1, \dots, v_l . Then for any $0 \le k \le n$, the following definition still makes sense.

$$\mathfrak{B}_k(P^n):=\mathrm{Span}_{\mathbb{F}_2}\{\xi_f\,;\,f\text{ is a codimension-}k\text{ face of }P\}\subset\mathbb{F}_2^l.$$

Question:

For what simple polytope P^n and what $0 \le k \le n$, is the $\mathfrak{B}_k(P^n)$ a binary self-dual code?

- 2.1 m-involutions on Small Covers
- §2.3 Binary Codes from General Simple Polytopes
- 82.4 Properties of n-colorable simple n-polytopes
- 2.5 Minimum Distance

Theorem [Chen-Lü-Yu]

Let P be an n-dimensional simple polytope. Then $\mathfrak{B}_k(P)$ is a self-dual code if and only if P is n-colorable, n is odd and $k=\frac{n-1}{2}$.

Therefore, the set of self-dual binary codes we can obtain from simple polytopes agree with those obtained from small covers!

Properties of n-colorable simple n-polytopes

Proposition [Chen-Lü-Yu]

Let P^n be an *n*-dimensional simple polytope with m facets. Then the following statements are equivalent.

- (1) P^n is n-colorable.
- (2) There exists a partition $\mathcal{F}_1, ..., \mathcal{F}_n$ of the set $\mathcal{F}(P^n)$ of all facets, such that for each $1 \le i \le n$, all the facets in \mathcal{F}_i are pairwise disjoint and $\sum_{F \in \mathcal{F}_i} \xi_F = \underline{1}$ (i.e., each vertex of P^n is incident to exactly one facet from every \mathcal{F}_i).
- (3) $\mathfrak{B}_0(P^n) \subset \mathfrak{B}_1(P^n) \subset \cdots \subset \mathfrak{B}_{n-1}(P^n) \subset \mathfrak{B}_n(P^n) \cong$
- (4) $\mathfrak{B}_{n-2}(P^n) \subset \mathfrak{B}_{n-1}(P^n)$.
- (5) $\dim_{\mathbb{F}_2} \mathfrak{B}_1(P^n) = m n + 1.$

Proposition [Chen-Lü-Yu]

Let P^n be an n-colorable simple n-polytope. For any codimension-k face f of P^n . Then $|V(P^n)| > 2^k |V(f)|$. Moreover, $|V(P^n)| = 2^k |V(f)|$ if and only if $P = f \times [0, 1]^k$.

Corollary

For any n-colorable simple n-polytope P^n , we must have $|V(P^n)| > 2^n$. In particular, $|V(P^n)| = 2^n$ if and only if $P^n = [0,1]^n$ (the *n*-dimensional cube).

- 2.1 m-involutions on Small Covers
- §2.3 Binary Codes from General Simple Polytopes
 - 2.4 Properties of n-colorable simple n-polytopes
- §2.5 Minimum Distance

Minimum Distance of Self-Dual Codes from Simple Polytopes

Proposition [Chen-Lü-Yu]

For a 3-dimensional 3-colorable simple polytope P^3 , the minimum distance of the self-dual code $\mathfrak{B}_1(P^3)$ is always equal to 4.

Conjecture: For an n-colorable simple n-polytope P^n where n is odd, the minimum distance of the self-dual binary code $\mathfrak{B}_{\frac{n-1}{2}}(P^n)$ is equal to

 $\min\{\#(\text{vertices of }f)\,;\,f\text{ is a }\frac{n+1}{2}\text{-dimensional face of }P^n\}.$

- §2.1 m-involutions on Small Covers
- §2.2 Self-daul Codes from Small Covers
- g2.3 Binary Codes from General Simple Polytopes
- 2.4 Properties of n-colorable simple n-polytopes
- §2.5 Minimum Distance

End of Talk

August 24, 2015

Singapore National University