The topology and geometry of the moment-angle manifolds

Liman Chen
Joint work with Feifei Fan and Xiangjun Wang
(School of Mathematical Sciences, Nankai University)

Aug 17, 2015, National University of Singapore

- Topology of moment-angle manifolds
- Positive Ricci curvature of moment-angle manifolds

Definition

K is a simplicial n-1 complex. Let $[m]=\{1,\ldots,m\}$ represent the m vertices of the simplicial complex, σ be a simplex in the complex K, $|\sigma|$ is the number of the vertices of σ . Define

$$D_{\sigma}^{2|\sigma|} \times T_{\widehat{\sigma}} = \{(z_1, z_2, \cdots, z_m) \in (D^2)^m : |z_j| = 1 \text{ for } j \notin \sigma\}.$$

and define Z_K corresponding to K as

$$Z_K = \bigcup_{\sigma \in K} D_{\sigma}^{2|\sigma|} \times T_{\widehat{\sigma}} \subset (D^2)^m.$$

. A conjecture and the idea of the proof

We want to study the topology of the moment-angle manifold. Method: considering the change of Z(K) after we do some operation on K. One operation is making connected sum of K with $\partial \triangle^n$.

For this case, S.Gitler and S.Lopez conjecture:

Conjecture

let K be a simplicial n-1 sphere with m vertices and $K_{\sigma}=K\#_{\sigma}\partial\triangle^{n}$. Let Z and Z_{σ} be the corresponding moment-angle manifolds, then Z_{σ} is homeomorphic to

$$\partial \left[\left(Z - D^{\stackrel{\circ}{n+m}} \right) \times D^2 \right] \# \mathop{\#}_{j=1}^{m-n} \binom{m-n}{j} (S^{j+2} \times S^{m+n-j-1}).$$

If K is dual to the boundary of a simple polytope, the 'homeomorphism' will be 'diffeomorphism'.

By the definition, the moment-angle complex corresponding to ${\cal K}$ is:

$$Z = \bigcup_{\sigma \in K} D_{\sigma}^{2|\sigma|} \times T_{\widehat{\sigma}} \subset (D^2)^m.$$

Then we can express the moment-angle complex corresponding to K_{σ} as follows:

$$\begin{split} Z_{\sigma} &= \left(Z \times S^1 - T_{\widehat{\sigma}}^{m-n} \times \overset{\circ}{D_{\sigma}^{2n}} \times S^1 \right) \cup_{T_{\widehat{\sigma}}^{m-n} \times S_{\sigma}^{2n-1} \times S^1} T_{\widehat{\sigma}}^{m-n} \times S_{\sigma}^{2n-1} \times D^2 \\ &\simeq \partial \left[\left(Z - T_{\widehat{\sigma}}^{m-n} \times \overset{\circ}{D_{\sigma}^{2n}} \right) \times D^2 \right] \end{split}$$

In the case m<3n, S. Gitler and S. López firstly proved that $T^{m-n}_{\hat{\sigma}}\times\{0\}$ can be contracted to a point in Z. Since m<3n, it is isotopic to a (m-n)-torus inside an open disk in Z. therefore,

$$Z - T_{\widehat{\sigma}}^{m-n} \times \overset{\circ}{D_{\sigma}^{2n}} \cong Z - T^{m-n} \times \overset{\circ}{D^{2n}} \cong (Z - \overset{\circ}{D^{n+m}}) \cup (D^{n+m} - T^{m-n} \times \overset{\circ}{D^{2n}})$$

and

$$Z_{\sigma} \simeq \partial \left[\left(Z - D^{\stackrel{\circ}{n+m}} \right) \times D^2 \right] \# \partial \left[\left(S^{m+n} - T^{m-n} \times D^{\stackrel{\circ}{2n}} \right) \times D^2 \right].$$

Then they prove

$$\partial \left[\left(S^{m+n} - T^{m-n} \times \overset{\circ}{D^{2n}} \right) \times D^2 \right] \simeq \overset{m-n}{\underset{j=1}{\#}} \binom{m-n}{j} (S^{j+2} \times S^{m+n-j-1}).$$

We prove the conjecture in general case, the main idea is :

• Firstly, we construct an isotopy of $T_{\hat{\sigma}}^{m-n}$ in Z to move it to the regular embedding $T^{m-n} \subseteq D^{m-n+1} \subseteq D^{m+n} \subseteq Z$, thus we prove the following:

Proposition

 Z_{σ} is homeomorphic to

$$\partial \left[\left(Z - \stackrel{\circ}{D^{n+m}} \right) \times D^2 \right] \# \partial \left[\left(S^{m+n} - T^{m-n} \times \stackrel{\circ}{D^{2n}} \right) \times D^2 \right],$$

where $T^{m-n} \times \overset{\circ}{D^{2n}}$ is the regular embedding in S^{m+n} .

We construct the regular embedding of T^k into \mathbb{R}^{k+1} as follows:

$$S^1 \subseteq D^2 \subseteq \mathbb{R}^2$$

assume that

$$T^{i-1} \subseteq D^i \subseteq \mathbb{R}^i$$

$$T^{i-1}\times S^1\subseteq D^i\times S^1\subseteq D^i\times S^1\cup S^{i-1}\times D^2-\{*\}\cong \mathbb{R}^{i+1}$$

The key lemma in the construction of the isotopy is:

Lemma

There are two embedding of the torus T^k into D^{k+2} :

1.
$$T^k \subset D^{k+1} \subset D^{k+2}$$

2.
$$T^k = T^{k-1} \times S^1 \subseteq D^k \times D^2 = D^{k+2}$$

The two embeddings are isotopic to each other in D^{k+2} .

• Then we prove the following by induction:

Proposition

$$\partial \left[\left(S^{m+n} - T^{m-n} \times \overset{\circ}{D^{2n}} \right) \times D^2 \right] \text{ is diffeomorphic to } \\ \overset{m-n}{\underset{j=1}{\#}} \binom{m-n}{j} (S^{j+2} \times S^{m+n-j-1}),$$

where $T^{m-n} \times D^{2n}$ is the regular embedding in S^{m+n} .

Combining these two propositions, the conjecture is proved.

Until now, we have proved the conjecture. However, we can prove the following:

Theorem

Let K_1 , K_2 are two simplicial (n-1)-spheres. Z_{K_1} and Z_{K_2} are the moment-angle manifolds corresponding to K_1 and K_2 . Let $K=K_1\#K_2$ be their connected sum at some maximal simplex σ_1 and σ_2 . The moment-angle manifold corresponding to K is homeomorphic to

$$\mathcal{G}^{m_2-n}(Z_{K_1})\#\mathcal{G}^{m_1-n}(Z_{K_2})\#M$$

$$M \cong \bigoplus_{\substack{j=1\\j=1}}^{m_1+m_2-2n-1} [\binom{m_1+m_2-2n}{j+1} - \binom{m_1-n}{j+1} - \binom{m_2-n}{j+1}] S^{j+2} \times S^{m_1+m_2-j-2}.$$

The operation $\mathcal G$ on an manifold M^k is defined as:

$$\mathcal{G}(M^k) = \partial[(M^k - \overset{\circ}{D^k}) \times D^2].$$

 $\mathcal{G}^p(M^k)$ means doing the operation \mathcal{G} on M^k p times. If K_1 , K_2 are dual to the boundary of simple polytopes P_1^n , P_2^n , the 'homeomorphism' will be 'diffeomorphism'.

By the definition, the moment-angle complex corresponding to ${\cal K}$ is:

$$Z_K = \bigcup_{\substack{\tau \in K_1 \text{ or } \tau \in K_2}} D_{\tau}^{2|\tau|} \times T^{m_1 + m_2 - n - |\tau|}.$$

which can be expressed as

$$(Z_{K_1} - T^{m_1 - n} \times D_{\sigma_1}^{\circ 2n}) \times T^{m_2 - n} \cup (Z_{K_2} - T^{m_2 - n} \times D_{\sigma_1}^{\circ 2n}) \times T^{m_1 - n}$$

where the two pieces are glued along

$$T^{m_1-n} \times S^{2n-1}_{\sigma_1} \times T^{m_2-n} \simeq T^{m_1-n} \times S^{2n-1}_{\sigma_2} \times T^{m_2-n},$$

using the identification of σ_1 and σ_2 .

Idea of the proof:

Firstly, using the method above, we prove that

$$(Z_{K_1} - T^{m_1 - n} \times D_{\sigma_1}^{2n}) \times T^{m_2 - n} \cup (Z_{K_2} - T^{m_2 - n} \times D_{\sigma_2}^{2n}) \times T^{m_1 - n}$$

is homeomorphic to

$$[Z_{K_1}\#(S^{m_1+n}-T^{m_1-n}\times \overset{\circ}{D^{2n}})]\times T^{m_2-n}\cup [Z_{K_2}\#(S^{m_2+n}-T^{m_2-n}\times \overset{\circ}{D^{2n}})]\times T^{m_1-n},$$

where the two pieces are glued along

$$T^{m_1-n} \times S^{2n-1} \times T^{m_2-n} \stackrel{id}{\simeq} T^{m_1-n} \times S^{2n-1} \times T^{m_2-n}$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Secondly, we construct an isotopy of $\{*\} \times T^{m_2-n}(\{*\} \times T^{m_1-n})$ in

$$(S^{m_1+n} - T^{m_1-n} \times \overset{\circ}{D^{2n}}) \times T^{m_2-n} \cup (S^{m_2+n} - T^{m_2-n} \times \overset{\circ}{D^{2n}}) \times T^{m_1-n}$$

to move it to the regular embedding

$$T^{m_2-n}\subseteq D^{m_1+m_2}(T^{m_1-n}\subseteq D^{m_1+m_2})$$
. Thus we prove that

$$[Z_{K_1}\#(S^{m_1+n}-T^{m_1-n}\times \overset{\circ}{D^{2n}})]\times T^{m_2-n}\cup [Z_{K_2}\#(S^{m_2+n}-T^{m_2-n}\times \overset{\circ}{D^{2n}})]\times T^{m_1-n}$$

is homeomorphic to

$$(Z_{K_1} \times T^{m_2-n} \#_{T^{m_2-n}} S^{m_1+m_2}) \# (Z_{K_2} \times T^{m_1-n} \#_{T^{m_1-n}} S^{m_1+m_2}) \# M.$$

$$M = (S^{m_1+n} \times T^{m_2-n} \#_{T^{m_1-n} \times T^{m_2-n}} S^{m_2+n} \times T^{m_1-n})$$

Finally, we inductively prove that

- 1. $Z_{K_1} \times T^{m_2-n} \#_{T^{m_2-n}} S^{m_1+m_2} \simeq \mathcal{G}^{m_2-n}(Z_{K_1}).$
- 2. $Z_{K_2} \times T^{m_1-n} \#_{T^{m_1-n}} S^{m_1+m_2} \simeq \mathcal{G}^{m_1-n}(Z_{K_2}).$
- 3. $S^{m_1+n} \times T^{m_2-n} \#_{T^{m_1-n} \times T^{m_2-n}} S^{m_2+n} \times T^{m_1-n}$

is homeomorphic to

$$\# \mathop{\# \frac{m_1 + m_2 - 2n - 1}{j = 1}}_{j = 1}(\binom{m_1 + m_2 - 2n}{j + 1} - \binom{m_1 - n}{j + 1} - \binom{m_2 - n}{j + 1})S^{j + 2} \times S^{m_1 + m_2 - j - 2}.$$

Ricci curvature of moment-angle manifolds

 (D^2,S^1) : moment-angle manifolds. $(D^{k+1},S^k), k\geq 2$:generalised moment-angle manifolds. Similarly,

$$\overline{Z}_{\sigma} \approx \partial \left[\left(\overline{Z} - D^{n+km} \right) \times D^{k+1} \right] \# \underset{j=1}{\overset{m-n}{\#}} {\binom{m-n}{j}} (S^{k(j+1)+1} \times S^{k(m-j)+n-1}).$$

From this, we know that if \overline{Z} has a metrics of positive Ricci curvature, then \overline{Z}_{σ} also has a metrics of positive Ricci curvature. We ask: When Z(P) has a metrics of positive Ricci curvature?

Conjecture

For a simple polytope,

- 1. If $Z(D^k, S^{k-1})$ has a metrics of positive Ricci curvature, then $Z(D^{k+1}, S^k)$ also has a metrics of positive Ricci curvature.
- 2. $Z(D^{k+1}, S^k)$ has a metrics of positive Ricci curvature, for k > 2.

Definition

Let Q be a simplicial convex polytope in \mathbb{R}^n whose vertices are primitive lattice vectors $(\in \mathbb{Z}^n)$, and which contains 0 in the interior. If a_1, \ldots, a_n are the vertices of a facet of Q, we suppose $det(a_1, \ldots, a_n) = \pm 1$ for every facet. Then we call Q a Fano polytope.

The dual of Q:

$$P = \{ u \in \mathbb{R}^n | \langle u, v \rangle \le 1, \forall v \in Q \}$$

is a simple polytope. We claim that the moment-angle manifold corresponding to P has a metrics of positive Ricci curvature.

In fact, we can construct a smooth toric Fano variety X_P from the polytope P. According to the Calabi-Yau's theorem, it has a metrics of positive Ricci curvature. However, the moment-angle manifold Z(P) is a principal T^{m-n} bundle of X_P , by a theorem of Gilkey, we know that Z(P) has a metrics of positive Ricci curvature.

Thank you very much!