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Reminder: Relations between groups and

Lie algebras

1. Lie groups: Classical equivalence of simply connected
Lie groups and Lie algebras (G 7→ (Te(G ), [−,−])).

2. The associated graded of arbitrary groups: For any
group G and elements x , y ∈ G let [x , y ] = (xy)(yx)−1.
An N-series of G is a filtration

N : G = N1 ⊃ N2 ⊃ . . .

of G by subgroups Nn such that [Ni ,Nj ] ⊂ Ni+j . Then
GrNn (G ) = Nn/Nn+1 is an abelian group, and

GrN (G ) =
∑
k≥1

GrNn (G )

is a graded Lie ring whose bracket is induced by the
commutator of G .
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Examples of N-series

1. The lower central series

γ : G = γ1(G ) ⊃ γ2(G ) ⊃ . . .

where γn(G ) = 〈[x1, . . . , xn] | x1, . . . , xn ∈ G 〉 with

[x1, . . . , xn] = [x1, [x2, . . . [xn−1, xn] . . .]

.

2. The dimension series: let K be a commutative ring.
Then the subgroups

Dn,K(G ) = G ∩ (1 + I nK(G ))

form an N-series where I nK(G ) denotes the n-th power of
the augmentation ideal of the group algebra K(G ).
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Relations between groups and Lie

algebras - sequel

3. Mal’cev/Lazard equivalence: There is a canonical
equivalence between the categories of radicable n-step
nilpotent groups and n-step nilpotent Lie algebras over
Q, based on the Baker-Campbell-Hausdorff formula.

4. Primitive operations on group algebras: Primitive
elements of Hopf algebras (the bialgebra type of group
algebras) form a Lie algebra under the usual ring
commutator.
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Relations between groups and Lie

algebras - Summary

1. Lie groups

2. The associated graded of arbitrary groups

3. Mal’cev/Lazard equivalence

4. Primitive operations on group algebras

GOAL:

Given a suitable non-linear “algebraic” structure
generalizing groups,

- exhibit a related linear structure = type of algebras
(linear operad), generalizing Lie algebras

- generalize the relations 1. to 4. above to this situation.
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Approach

- develop and use algebraic functor calculus to construct
a suitable notion of commutators and a suitable operad
in abelian groups, satisfying relation 2. (basically done)

- use polynomial functor theory to generalize relation
3., in particular the Baker-Campbell-Hausdorff-formula
(work in progress - done for n = 2 (T. Defourneau))

- combine this with Loday’s theory of generalized
bialgebras in order to generalize relation 4. (project)

- try to generalize relation 1. (dream!)
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Framework

Definition [Janelidze, Márki, Tholen 2002]: A category
C is called semi-abelian if it is pointed, finitely complete
and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called
semi-abelian iff it satisfies the following four axioms:

1. C is pointed and finitely complete and cocomplete.

2. For any morphism p : X → Y in C admitting a section
s : Y → X , X “is generated by the kernel of p and the
image of s”, that is the morphism Ker(p) + Y → X
given by the injection of Ker(p) and s is a cokernel.

3. Any pullback of a cokernel is a cokernel.

4. Any image of a kernel by a cokernel is a kernel.
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Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or one sided
loops) of any type, in particular the category of algebras
over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed modules
[Janelidze, H.-Van der Linden]) in a semi-abelian
category

- any localisation of a semi-abelian category

- the category of cocommutative Hopf algebras
(Gadjo-Gran-Vercruyssen)
- .............
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The idea of the categorical (Higgins)

commutator calculus

(blackboard)
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Basic (algebraic) functor calculus

In the sequel, F : C → D denotes a functor between
categories satisfying
- C is pointed and has finite sums (= coproducts)
- D is semi-abelian.

The n-th cross-effect of F is defined to be the
multifunctor crnF : Cn → D given by

crnF (X1, . . . ,Xn) = F (X1| . . . |Xn) =⋂n
k=1 Ker

(
F (X1 + . . . + Xn)→ F (X1 + . . . + X̂k + . . .Xn)

)
C F (X1 + . . . + Xn)

In particular, cr1F (X ) = Ker
(

F (0) : F (X )→ F (0)
)

and

cr2F (X ,Y ) = Ker
(

r12 : F (X + Y ) ,2,2 F (X )× F (Y )
)
.
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Examples
- A functor F : A → B between abelian categories is
additive iff cr2F = 0.

- For T 2 : Ab→ Ab, T 2(A) = A⊗ A, we have

cr2T 2(A,B) = (A⊗ B)⊕ (B ⊗ A),

crnT 2(A,B) = 0 for n > 2.

- Let Gr denote the category of groups. Then for groups
X1, . . . ,Xn and elements xk ∈ Xk , k = 1, . . . , n, we have

[x1, . . . , xn] ∈ IdGr (X1| . . . |Xn).

If n = 2 these elements generate IdGr (X1|X2) (freely if
one takes x1, x2 6= e).

- Let Lp denote the category of loops. Then for loops
X1,X2,X3 and elements xk ∈ Xk the associator

A(x1, x2, x3) = (x1(x2x3))\((x1x2)x3) ∈ IdLp(X1|X2|X3).
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Basic properties of cross-effects
- the multifunctor crnF is symmetric and multi-reduced

- Inductive nature: for a multifunctor M : Cn → D define
its k-th derivative ∂kM : Cn+1 → D by

∂kM(X1, . . . ,Xn+1)

= cr2(M(X1, . . . ,Xk−1,−,Xk+2, . . . ,Xn+1))(Xk ,Xk+1)

Then there is a natural isomorphism

∂kcrnF ∼= crn+1F

for all k = 1, . . . , n.

- The functor crn : Func(C,D)→ Func(Cn,D) is exact.

- “Pseudo-right-exactness” [Van der Linden]:
If F preserves coequalizers of reflexive parallel pairs of
morphisms (reflexive meaning that these morphisms
admit a common section) then so does crnF in all
variables, for any n.
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Preservation of coequalizers of reflexive

parallel pairs

A functor F : C → D as before preserves coequalizers of
reflexive parallel pairs iff for any right-exact sequence

A a ,2 B b ,2 C ,2 0

in C the sequence

F (A) + F (A|B)

〈
F (a)
δ

〉
,2 F (B)

F (b) ,2 F (C ) ,2 0

in D is exact, where

δ : F (A|B)
F (a|1B),2 F (B |B) ,2 ,2 F (B + B)

F (∇2) ,2 F (B) .
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Operadic structure of cross-effects

- Operadic structure: Let C F ,2 D G ,2 E be reduced
functors where the category E is semi-abelian, too.

Denote “multi-objects”, i.e. sequences of objects in C,
by X j = Xj ,1, . . . ,Xj ,kj and concatination of such by

X 1 ∪ . . . ∪ X n = X1,1, . . . ,X1,k1 , . . . ,Xn,1, . . . ,Xn,kn .

Then there is a natural transformation

crnG
(

crk1F (X 1), . . . , crknF (X n)
)

��
crk1+...+kn(G ◦F )

(
X 1 ∪ . . . ∪ X n

)
rendering a certain canonical diagram commutative.
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Polynomial functors

Definition: The functor F is polynomial of degree ≤ n if
crn+1F = 0.

Example 1: A reduced functor between abelian
categories is linear (that is, polynomial of degree ≤ 1) iff
it is additive.

Example 2: The n-th tensor power functor
T n : Ab→ Ab,T n(A) = A⊗n, is polynomial of degree n.
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Commutators via functor calculus

Let F : C → D be a reduced functor as before.

For subobjects xk : Xk
,2 ,2 X , k = 1, . . . , n, of an

object X of C define the subobject [X1, . . . ,Xn]F of
F (X ) to be the image of the morphism

F (X1| . . . |Xn) ,2 ,2 F (X1 + . . . + Xn)
F (x1,...,xn),2 F (X )

Note that
[X1, . . . ,Xn]IdD ≤ X ,

and that

[X1]F = Im
(

cr1F (X1) ,2 ,2 F (X1)
F (x1) ,2 F (X )

)
.
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Examples
1. If D is the category of groups Gr then

- [X1,X2]IdGr = [X1,X2];

- [X1,X2,X3]IdGr is the normal subgroup of
〈X1 ∪ X2 ∪ X3〉 generated by the product

[X1, [X2,X3]].[X2, [X3,X1]].[X3, [X1,X2]].
In particular, if X1,X2,X3 are normal subgroups of X
then [X1,X2,X3]IdGr is their symmetric commutator.

2. If D is the category of loops Lp, then

- [X1,X2]IdLp is the normal subloop of 〈X1 ∪ X2〉
generated by the elements [x2, x1], A(x1, y1, y2),
A(x1, x2, y1), A(x1, x2, y2) A(x2, x1, y2), and
A3(x1, x2, x1, y2) where xi , yi ∈ Xi and

[a, b] = ba\ab

A3(a, b, c , d) = (A(a, b, c)A(a, b, d))\A(a, b, cd) .
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Examples - sequel 1

3. If D is a category of ω-loops then [X1,X2]IdD is the
normal subobject of X1 ∨ X2 generated by the elements

[(x1, . . . , xn), (y1, . . . , yn)]θ =

θ(x1y1, . . . , xnyn)/(θ(x1, . . . , xn)θ(y1, . . . , yn))

where x1, . . . , xn ∈ X1, y1, . . . , yn ∈ X2 and θ is a
generating operation of D.

- 3a) If D = Groups then [x , y ]i = y−1x−1yx and
[(x1, x2), (y1, y2)]. = x1[y1, x2].

- 3a) If D = Loops then
[(x1, x2), (y1, y2)]. = ((x1y1)(x2y2))/((x1x2)(y1y2)).
In particular, [(e, x2), (y1, e)]. = (y1x2)/(x2y1) and
[(x1, e), (y1, y2)]. = ((x1y1)y2)/(x1(y1y2)).
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Examples - sequel

4. If D is the category of P-algebras P-Alg , then

[X1, . . . ,Xn]P-Alg=
∑
pk≥1

µp(X⊗p11 ⊗ . . .⊗ X⊗pnn ⊗ P(p)).

where p = p1 + . . . + pn.
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Properties
- Reducedness: if one of the Xi = 0 then
[X1, . . . ,Xn]F = 0.

- Distributivity law:

[A,B ∨ C ]F = [A,B]F ∨ [A,C ]F ∨ [A,B ,C ]F

where A ∨ B denotes the smallest subobject containing
both A and B .

- Removing internal brackets or repetitions of subobjects
enlarges the commutator (the relations below indicated
in red color are valid only if C is semi-abelian and F
preserves the class of cokernels):

[[A,B]IdC ,C ]F⊂[A,B ,C ]F ⊃ [[A,B]F , [C ]F ]IdD

[A,A,B]F ⊂ [A,B]F .
- Preservation by morphisms: For f : X → Y in C,

F (f )
(
[X1, . . . ,Xn]F

)
=[f (X1), . . . , f (Xn)]F .
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Lower central series
For an object X of D let

γFn (X ) = [X , . . . ,X ]F ≤ F (X )

Suppose that F is reduced, i.e. that F (0) = 0. We then
obtain a filtration

F (X ) = γF1 (X ) ≥ γF2 (X ) ≥ . . .

of F (X ) which is an N-series, that is,

[Nk1 , . . . ,Nkn ]IdD ⊂ Nk1+...+kn

for Nk = γFk (X ). In particular, taking F = IdD we obtain
the (categorically defined) lower central series (c.l.c.s.)
of X ,

X = γIdD1 (X ) ≥ γIdD2 (X ) ≥ . . .
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Examples

1. If D is the category of groups, then the categorically
defined lower central series coincides with the classical
l.c.s.

2. If D is the category of loops, then the categorically
defined lower central series coincides with the
commutator-associator filtration introduced by
Mostovoy.

3. If D is the category of P-algebras P-Alg , then

γ
Id

P-Alg
n (X ) =

∑
k≥n

µk(X⊗k ⊗ P(k)).

How to prove this?
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Characterisation of the c.l.c.s.

Theorem. Let X (X ) : X = X1 ≥ X2 ≥ . . . be a natural
filtration of all objects X in D by normal subobjects Xn

of X .

Then X (X ) coincides with the c.l.c.s. of X for all
X if and only if there exist
- multifunctors Mn : Dn → D
- natural maps mn : Mn(X , . . . ,X )→ Xn

such that the following two conditions are satisfied:

1. Factorisations mn exist and are cokernels rendering
the following diagrams commutative:

Mn(X , . . . ,X )
mn ,2

t1
����

Xn

qn

����

(T1Mn)(X , . . . ,X )
mn ,2,2 Xn/Xn+1
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X if and only if there exist
- multifunctors Mn : Dn → D
- natural maps mn : Mn(X , . . . ,X )→ Xn

such that the following two conditions are satisfied:

1. Factorisations mn exist and are cokernels rendering
the following diagrams commutative:

Mn(X , . . . ,X )
mn ,2

t1
����

Xn

qn

����

(T1Mn)(X , . . . ,X )
mn ,2,2 Xn/Xn+1
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2. The images of the maps

mk : Mk(X , . . . ,X )→ Xk ↪→ Xn,

k ≥ n, jointly generate Xn as a normal subobject of X .

Application:

Proof of the identity γIdDn (X ) = γn(X ) in D = Groups:
take
- Mn(X1, . . . ,Xn) to be the free group generated by the
set X1× . . .×Xn modulo the normal subgroup generated
by the tuples (x1, . . . , xn) where one of the xk ’s is trivial

- mn to send a basis element (x1, . . . , xn) ∈ X n to
[x1, . . . , xn].
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Lower central series of the group ring

functor

Let F : Groups → Ab be the functor sending a group G
to its group ring Z[G ]. Then

γFn (G ) = I n(G )

where I n(G ) is the n-th power of the augmentation ideal
of Z[G ].
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Polynomialization of functors

For any functor F : C → D as before let

TnF = F/γn(F ) and tn : F ,2,2 TnF .

Then the functor TnF is polynomial of degree ≤ n and
tn is initial among all natural transformations from F to
polynomial functors of degree ≤ n.
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Nilpotency
Define an object X of D to be n-step nilpotent if
γIdDn+1(X ) = 0.

“Polynomiality subsumes nilpotency”

1. Global statement: All objects of D are n-step
nilpotent iff the identity functor of D is polynomial of
degree ≤ n. For arbitrary D, the “n-step nilization”
functor X 7→ Niln(X ) = X/γIdDn+1(X ) equals TnIdD.

1. Local statement: A single object X of D is n-step
nilpotent iff its “commutator map”

S IdD
2 : IdD(X |X ) ,2 ,2 X + X ∇2

,2 X

is polynomial of degree ≤ n − 1 in both (equivalently
any of the two) variables, which by definition means that
S IdD
2 factors through the bi-polynomialization

tn−1,n−1 : cr2IdD(X ,X ) ,2,2 Tn−1,n−1(cr2IdD)(X ,X ).
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Example: 2-step nilpotency in groups

Let D = Gr and n = 2. Here

X

cr2IdGr (X ,X ) = Free(|X ∗| × |X ∗|)

S
IdGr
2 : (x ,y)7→[x ,y ]

LR

t1,1 : (x ,y)7→(xX ′)⊗(yY ′)
����

T1,1(cr2IdGr )(X ,X ) = Xab ⊗Z Xab

Hence S IdGr
2 is polynomial of degree ≤ 1 in both variables

iff the classical commutator map c : X × X → X ,
(x , y) 7→ [x , y ], is bi-additive, which indeed is a
well-known characterization of the fact that X is
2-nilpotent.
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Polynomial functors and nilpotency
Suppose that F : C → D is polynomial of degree ≤ n.
Then:

1. F takes values in the full subcategory Niln(D) of
n-step nilpotent objects in D.

2. If C is semi-abelian and F preserves coequalizers of
reflexive parallel pairs then F factors through the n-step
nilization functor Niln : C ,2 Niln(C) . Hence F factors
as

C
Niln
��

F ,2 D

Niln(C) F ,2 Niln(D)
_LR

LR

Abbreviating “pre” for “pseudo-right exact” we obtain
an equivalence of functor categories

Pol≤n(C,D)pre ' Pol≤n(Niln(C),Niln(D))pre .
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Associated graded object of an N-series

Let N : X = N1 ≥ N2 ≥ . . . be an N-series of an object
X of D. Then each Nn is normal in X , and the quotient

GrNn (X ) = Nn/Nn+1 is abelian ,

so
GrN (X ) =

⊕
n≥1

GrNn (X )

is a graded object in Ab(D).

QUESTION: Does GrN (X ) carry a natural global
multilinear “multiplicative” structure relating its various
components?
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YES!!!!



Linearisation of
algebraic

structures via
functor calculus

Manfred Hartl

MAIN THEOREM. Let N : X = N1 ≥ N2 ≥ . . . be an
N-series of an object X of D. Then GrN (X ) has a
natural structure of graded algebra over

- a multilinear functor operad LinOp(D) on Ab(D)
whose underlying functors are T1(crnIdD) (which in fact
preserve all colimits in all variables, in particular are
right-exact), for general semi-abelian categories D;

- an operad in abelian groups AbOp(D) if D is a
(semi-abelian) algebraic category, that is the category of
models of an algebraic theory in the sense of Lawvere;
here

AbOp(D)(n) = crn(UAb ◦Grγn◦L)(1, . . . , 1)

where UAb : Ab(D)→ Ab is the forgetful functor and
L : FinSet → D is the functor assigning to the finite set
k = {1, . . . , k} ∼= 1+k the canonical free object of rank
k .
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Examples

1. If D is the category of groups, then AbOp(D)⊗Q is
the Lie operad.

2. If D is the category of loops, then AbOp(D)⊗Q is
the Sabinin operad.

3. If D is the category of P-algebras then
AbOp(D) = P .
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Work in progress
Let D be a semi-abelian algebraic category. A set operad
PD is defined by PD(n) = D(L(1), L(n)) and operadic
composition induced by composition in the category D.

For K a field of characteristic 0, the set operad PD gives
rise to an operad in K-vector spaces K[PD], by taking
K[PD](n) to be the vector space with basis PD(n).

For an object X of C the vector space K[|X |] with basis
|X | has the structure of an algebra over K[PD]; e.g. if
D = Gr , this is the structure of group algebra (including
the antipode). Let K[X ] be this “object algebra” of X .

K[|X |] also is a cocommutative and coassociative
coalgebra defined by putting ∆(x) = x ⊗ x for x ∈ |X |.

Thus K[X ] is a (generalized) bialgebra which we call the
“object bialgebra” of X .
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Conjectures
1. Primitives conjecture. The triple(

K[PD], ComK,AbOp(D)⊗K
)

is a good triple of operads in the sense of Loday.

This in particular means that the subspace of primitive
elements of the graded object bialgebras Gr(K[X ]) has a
canonical structure of an algebra over AbOp(D)⊗K.

2. Conjectural generalized Jennings theorem. The n-th
dimension subobject Dn,K(X ) = X ∩ (1X + I nK(X )) is

Dn,K(X ) =
√
γn(X ),

for suitably (already) defined notions of augmentation
filtration I nK(X ) of K[X ] and of isolator

√
S of S ≤ X .

3. Conjectural generalized Quillen theorem. There is a
natural isomorphism of graded K[PD]-algebras

Gr(K[X ]) ∼= U(Grγ(X )⊗K).
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Conjectures-II
3. Conjectural generalized Lazard theorem.

Suppose that D is

- n-step nilpotent, which by definition means that the
identity functor of D is polynomial of degree ≤ n, or
equivalently, that all objects of D are n-step nilpotent;

- n-radicable, which by definition means that the abelian
group EndD(L(1)ab) is a Z[1

2
, . . . , 1

n
]-module.

Then there is a (canonical?) equivalence of categories

D ' Alg(AbOp(D))

This equivalence would also induce a generalized
Baker-Campbell-Hausdorff formula (actually, one for
each n ≥ 1), expressing operations of arity n in D in
terms of the operations given by the operad AbOp(D).
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APPROACH

Use the theory of polynomial functors from D to Ab
which encodes them by kind of a “DNA”; the latter
involves intricate both algebraic and combinatorical
structures (e.g. non-linear pseudo-Mackey functors).

So far, this program is completely achieved only for
n = 2 and all D [H., Vespa; Defourneau];

for all n ≥ 2, the necessary polynomial functor theory
is achieved only for D = Groups and D = Loops
(actually, also for D = free finitely generated free
algebras over a set-operad) [H., Pirashvili, Vespa].


