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1. Lie groups: Classical equivalence of simply connected
Lie groups and Lie algebras (G — (T.(G),[—,—])).

2. The associated graded of arbitrary groups: For any
group G and elements x,y € G let [x,y] = (xy)(yx)"".
An N-series of G is a filtration

N:G:NlDNQD...

of G by subgroups N, such that [N;, N;] C N;;. Then
is an abelian group, and

V(G)=> Gr(G
k>1

is a graded Lie ring whose bracket is induced by the
commutator of G.
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1. The lower

where v,(G) = ([x1, ..., %] | x1, ..

[X]_,...

central series

v G:’)/]_(G)D’YQ(G)D

>Xn] - [X17 [X27 o

., Xn € G) with

AXn—1, Xa] - - ]
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1. The lower central series
v: G =m(G) D7(G)D...
where 7,(G) = ([x1, ..., xa] | x1, ..., X, € G) with
[x1, ..y Xxa] = [x1, [x2y - -« [Xn—1, Xa] - - ]

2. The dimension series: let K be a commutative ring.
Then the subgroups

D,x(G) =GN (1+ (G))

form an N-series where [7(G) denotes the n-th power of
the augmentation ideal of the group algebra K(G).
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3. Mal'cev/Lazard equivalence: There is a canonical
equivalence between the categories of radicable n-step
nilpotent groups and n-step nilpotent Lie algebras over
Q, based on the

4. Primitive operations on group algebras: Primitive
elements of Hopf algebras (the bialgebra type of group
algebras) form a Lie algebra under the usual ring
commutator.
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1. Lie groups
2. The associated graded of arbitrary groups
3. Mal'cev/Lazard equivalence

4. Primitive operations on group algebras

Given a suitable non-linear “algebraic” structure
generalizing groups,

- exhibit a related linear structure = type of algebras
( ), generalizing Lie algebras

- generalize the relations 1. to 4. above to this situation.
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- develop and use algebraic functor calculus to construct
a suitable notion of commutators and a suitable operad
in abelian groups, satisfying relation 2. (basically done)

- use polynomial functor theory to generalize relation
3., in particular the
(work in progress - done for n = 2 (T. Defourneau))

- combine this with Loday's theory of generalized
bialgebras in order to generalize relation 4. (project)

- try to generalize relation 1. ( )
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s:' Y = X,

, that is the morphism Ker(p) + Y — X
given by the injection of Ker(p) and s is a cokernel.
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- any abelian category

- the categories of groups, loops, w-groups (or one sided
loops) of any type, in particular the category of algebras
over any linear operad

- compact (Hausdorff) topological groups, C*-algebras

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
[-groups)

- the category of internal groupoids (< crossed modules
[Janelidze, H.-Van der Linden]) in a semi-abelian
category

- any localisation of a semi-abelian category

- the category of
(Gadjo-Gran-Vercruyssen)
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- C is pointed and has finite sums (= coproducts)

- D is semi-abelian.
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In the sequel, F: C — D denotes a functor between

categories satisfying
- C is pointed and has finite sums (= coproducts)

- D is semi-abelian.
The n-th cross-effect of F is defined to be the

multifunctor cr,F: C" — D given by
craF( X1, ..., X,) = F(Xe|...|X,) =

ﬂ;leer(F(X1+...+Xn)—>F(X1+...+)/<Z+...Xn)>
QF(X 4.+ X)
In particular, cri F(X) = Ker(F(O): F(X)— F(O)) and

crF(X,Y) = Ker<r12: FIX 4+ Y) — F(X) x F(Y)).
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- A functor F: A — B between abelian categories is
additive iff cr,F = 0.

- For T2: Ab — Ab, T2(A) = A® A, we have
crnT?(A,B)=(A® B)® (B® A),
craT?(A,B) =0 for n > 2.

- Let Gr denote the category of groups. Then for groups
Xi,...,X, and elements x, € X, k =1,...,n, we have

[Xl, e ,Xn] € ldGr(Xl‘ e |Xn)

If n = 2 these elements generate Idg, (X1|X2) (freely if
one takes xq, xp # €).

- Let Lp denote the category of loops. Then for loops
X1, X5, X3 and elements x, € X, the associator

A(Xl,XQ,X:J,) = (X1(X2X3))\((X1X2)X3) c lde(Xl\Xg‘X:g).
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- Inductive nature: for a multifunctor M: C" — D define
its OM: C™t — D by

aI(I\/,()<17 s >Xn+1)
= crn(M(X1,. .., Xe—1, — Xkg2, - - Xnr1)) (K, Xkg1)
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its OM: C"t — D by
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okernF = crpy 1 F
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- Inductive nature: for a multifunctor M: C" — D define
its OM: C™t — D by

M(Xq, ..., Xni1)
=cn(M(X1, ..., X1, — Xiway -+ s Xnw1)) (Xey Xr1)
Then there is a natural isomorphism
oxcrnF = crp 1 F
forall k=1,....n.
- The functor cr,: Func(C,D) — Func(C", D) is exact.
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- the multifunctor cr,F is symmetric and multi-reduced

- Inductive nature: for a multifunctor M: C" — D define
its OM: C™t — D by

M(Xq, ..., Xni1)
=cn(M(X1, ..., X1, — Xiway -+ s Xnw1)) (Xey Xr1)
Then there is a natural isomorphism
oxcrnF = crp 1 F
forall k=1,....n.
- The functor cr,: Func(C,D) — Func(C", D) is exact.

- "Pseudo-right-exactness” [Van der Linden]:

If F preserves coequalizers of reflexive parallel pairs of
morphisms (reflexive meaning that these morphisms
admit a common section) then so does cr,F in all
variables, for any n.
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A functor F: C — D as before preserves coequalizers of
reflexive parallel pairs iff for any right-exact sequence

A—=2sB-tsC 0
in C the sequence

(&) Fo)

F(A) + F(A|B) F(B)

in D is exact, where

a 2
5. F(AIB)Y ¥ F(B1B) > F(B+ B) YL F(B).
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- Operadic structure: Let C —F.D-_C.¢ be reduced
functors where the category £ is semi-abelian, too.

Denote “multi-objects”, i.e. sequences of objects in C,
by X; = Xj1,..., Xjx and concatination of such by

Xy U UX, =Xt Xk s Xty Xk

Then there is a natural transformation

CrnG<Crk1F(K1)7 R CrknF(Kn)>

l

ka1+...+k,,(G°F)(K1 Uu...uU Kn)

rendering a certain canonical diagram commutative.
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The functor F is polynomial of degree < n if
Cr,,+1F - O

A reduced functor between abelian
categories is linear (that is, polynomial of degree < 1)
it is additive.

The n-th tensor power functor
T": Ab — Ab, T"(A) = A®", is polynomial of degree n.
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Let F: C — D be a reduced functor as before.

For subobjects xx: Xy>——> X, k=1,...,n, of an

FOG] o 1Xo) s FOX 4+ 4 X)) T2 F )
Note that
(X, Xoligp < X,
and that

[Xi]r = Im (crlF(Xl) s F(X) Y F(X)).
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<X1 U Xy U X3) generated by the product
[X17 [X27 X3]]'[X27 [X37 Xl]]'[X37 [X17 X2]]
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then _



Linearisation of
algebraic
structures via
functor calculus

1. If D is the category of groups Gr then
- = [X1, Xa];
is the normal subgroup of
<X1 U Xy U X3) generated by the product
[X1, [ X2, X3]].[ X2, [ X3, X1]].[ X5, [ X1, X2]]-
In particular, if Xi, X5, X5 are subgroups of X
then _

Manfred Hartl

2. If D is the category of loops Lp, then

- is the normal subloop of (X; U Xj)
generated by the elements [xz, x1], A(x1, y1, y2),
A(x1, x2, 1), A(x1, X2, y2) A(x2, x1, y2), and
As(x1, x2, X1, y2) where x;, y; € X; and

[a, b] = ba\ab

As(a, b, c,d) = (A(a, b,c)A(a, b, d))\A(a, b, cd) .
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3. If D is a category of w-loops then is the
normal subobject of X; V X, generated by the elements

where x1,...,x, € X1, y1,...,¥n € Xo and 0 is a
generating operation of D.

- 3a) If D = Groups then [x,y]; = y"'x1yx and
[(X17X2)7 (y17y2)]~ = Xl[y17X2]'

- 3a) If D = Loops then

[(x1,¢). (y1, y2)]. = ((xay1) (ey2)) /((x2) (12)-
In particular, [(e, x2), ()1, €)]. = ()ax2)/(x2y1) and
[(x1, €), (y1, 2)]. = ((Gax)y2)/ (a(y1y2))-
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4. If D is the category of P-algebras P-Alg, then

=) (X @ .. @ XEP @ P(p)).

pk=>1

where p =p; + ... + p,.
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- Reducedness: if one of the X; = 0 then
[X1,...,X,]r =0.
- Distributivity law:

[A,BV Clr =[AB]e VIA Cle VI[A B, Clr

where AV B denotes the smallest subobject containing
both A and B.

- Removing internal brackets or repetitions of subobjects
enlarges the commutator (the relations below indicated
in red color are valid only if C is semi-abelian and F
preserves the class of cokernels):

[[A, Blia., ClrC[A, B, Clr D [[A, Blr, [ClF]idp
[A A B]r C [A B]r.
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- Reducedness: if one of the X; = 0 then
[X1,...,X,]r =0.
- Distributivity law:

[A,BV Clr =[AB]e VIA Cle VI[A B, Clr

where AV B denotes the smallest subobject containing
both A and B.

- Removing internal brackets or repetitions of subobjects
enlarges the commutator (the relations below indicated
in red color are valid only if C is semi-abelian and F
preserves the class of cokernels):
[[A, Bliae - ClFCIA, B, Clr D [[A, B, [ClFl i
[A> A7 B]F - [A7 B]F
- Preservation by morphisms: For f: X — Y in C,

[X17 - 7Xn]F :[f(X1)7 cre f(Xn)]F
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Suppose that F is reduced, i.e. that F(0) = 0. We then
obtain a filtration

of F(X)
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For an object X of D let
VEX) = X, X]r < F(X)

Suppose that F is reduced, i.e. that F(0) = 0. We then
obtain a filtration

FX)=n(X) 2% ((X)>...

of F(X) which is an N-series, that is,

for Ny = v£(X). In particular, taking F = Idp we obtain
the lower central series (c.l.c.s.)
of X,

X=1"(X) 2 1%"(X) > ...
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1. If D is the category of groups, then the categorically
defined lower central series coincides with the classical
l.c.s.

2. If D is the category of loops, then the categorically
defined lower central series coincides with the
commutator-associator filtration introduced by
Mostovoy.

3. If D is the category of P-algebras P-Alg, then
Id

0" (X) = 3 (X @ P(K)).

k>n
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Theorem. Let X(X): X = X; > X, > ... be a natural
filtration of all objects X in D by normal subobjects X,
of X. Then X (X) for all
X if and only if there exist

- multifunctors M,,: D" — D

- natural maps m,: M,(X,...,X) = X,

such that the following two conditions are satisfied:

1. Factorisations m, exist and are cokernels rendering
the following diagrams commutative:

May(X, ..., X) — = X,

l/tl l/q"
Vv v

(TLM,,)(X,,X) """""" >>X/Xn+1
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my: Mk(X,...,X)—>Xk‘—>Xn,

, jointly generate X, as a normal subobject of X.




Linearisation of
algebraic

structures via
functor calculus

2. The images of the maps

Manfred Hartl

my: Mk(X,...,X)—>Xk‘—>Xn,

, jointly generate X, as a normal subobject of X.
Application:
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2. The images of the maps
my . Mk(X,,X) — X — Xn,

, jointly generate X, as a normal subobject of X.
Application:
Proof of the identity /7 (X) = ~,(X) in D = Groups:
take
- M,(Xi,...,X,) to be the free group generated by the

set X1 X ... x X, modulo the normal subgroup generated
by the tuples (x1,. .., x,) where one of the x,'s is trivial

- m, to send a basis element (x,...,x,) € X" to
[x1,. .., Xa]-
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Let F: Groups — Ab be the functor sending a group G
to its group ring Z[G]. Then

7 (G) = 1"(G)
where ["(G) is the n-th power of the augmentation ideal
of Z[G].
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For any functor F: C — D as before let
T.F=F/v,(F)and t,: F—= T,F .

Then the functor T,F is polynomial of degree < n and
t, is initial among all natural transformations from F to
polynomial functors of degree < n.
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Manfred Hartl Id’D
7n+1(X) =0.

All objects of D are n-step
nilpotent iff the identity functor of D is polynomial of
degree < n. For arbitrary D, the “n-step nilization”
functor X — Nil,(X) = X/%I,‘j?l( ) equals T,ldp.

A single object X of D is n-step
nilpotent iff its “commutator map”
Idp V2
S ldp(X[X)>——= X+ X ——=X

is polynomial of degree < n— 1 in both (equivalently
any of the two) variables, which by definition means that
52“7’ factors through the bi-polynomialization

tho1.n-1: crldp(X, X) —> T,_1 ,_1(craldp)(X, X).
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Let D = Gr and n = 2. Here

X
Tsz’dcf: ()]
crldg, (X, X) = Free(|X*| x |X*|)

ltl,l: ()= (X" @(yY")
\4

Tl,l(chIdGr)(Xa X) - Xab Kz Xab

Hence 52“6’ is polynomial of degree < 1 in both variables
iff the classical commutator map c: X x X — X,

(x,y) — [x,y], is bi-additive, which indeed is a
well-known characterization of the fact that X is
2-nilpotent.
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Suppose that F: C — D is polynomial of degree < n.
Then:

1. F takes values in the full subcategory Nil,(D) of
n-step nilpotent objects in D.

2. If C is semi-abelian and F preserves coequalizers of
reflexive parallel pairs then F factors through the n-step
nilization functor Nil,: C —— Nil,(C) . Hence F factors
as

c—Fr—p

l/NiI,, I
Nil,(C) > Nil(D)
Abbreviating “pre” for “pseudo-right exact” we obtain

an equivalence of functor categories
Pol<,(C,D)pre =~ Pol<p(Nil,(C),Nilo(D))pre -
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Let NV: X = N; > N, > ... be an N-series of an object
X of D. Then each N, is normal in X, and the quotient

GrV(X) = N, /N, is abelian ,

SO

Gr¥(X) = P G6r'(X)

n>1

is a graded object in Ab(D).
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Let NV: X = N; > N, > ... be an N-series of an object
X of D. Then each N, is normal in X, and the quotient

GrV(X) = N, /N, is abelian ,

SO

Gr¥(X) = P G6r'(X)

n>1

is a graded object in Ab(D).

QUESTION: Does GrV(X) carry a natural global
multilinear “multiplicative” structure relating its various
components?
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Let N: X =N; >N, > ... bean
N-series of an object X of D. Then Gr'(X) has a
natural structure of graded algebra over

- a multilinear functor operad LinOp(D) on Ab(D)
whose underlying functors are Ty(cr,ldp) (which in fact
preserve all colimits in all variables, in particular are
right-exact), for categories D;
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Let N: X =N; >N, > ... bean
N-series of an object X of D. Then Gr'(X) has a
natural structure of graded algebra over

- a multilinear functor operad LinOp(D) on Ab(D)
whose underlying functors are Ty(cr,ldp) (which in fact
preserve all colimits in all variables, in particular are
right-exact), for categories D;

- an operad in abelian groups AbOp(D) if D is a
, that is the
in the sense of Lawvere;
here
AbOp(D)(n) = crp(UapoGr)oL)(1,...,1)

where Uap: Ab(D) — Ab is the forgetful functor and
L: FinSet — D is the functor assigning to the finite set
k={1,..., k} = 17 the canonical free object of rank
k.
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1. If D is the category of groups, then AbOp(D) @ Q is
the Lie operad.
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1. If D is the category of groups, then AbOp(D) @ Q is
the Lie operad.

2. If D is the category of loops, then AbOp(D) ® Q is
the Sabinin operad.

3. If D is the category of PP-algebras then
AbOp(D) = P.
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Let D be a . A set operad
Pp is defined by Pp(n) = D(L(1), L(n)) and operadic
composition induced by composition in the category D.
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rise to an operad in K-vector spaces K[Pp], by taking
K[Pp](n) to be the vector space with basis Pp(n).



Linearisation of
algebraic
structures via
functor calculus

Manfred Hartl

Let D be a . A set operad
Pp is defined by Pp(n) = D(L(1), L(n)) and operadic
composition induced by composition in the category D.

For K a field of characteristic 0, the set operad Pp gives
rise to an operad in K-vector spaces K[Pp], by taking
K[Pp](n) to be the vector space with basis Pp(n).

For an object X of C the vector space K[| X|] with basis
|X| has the structure of an algebra over K[Pp]; e.g. if
D = Gr, this is the structure of group algebra (including
the antipode). Let K[X] be this “object algebra” of X.
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Let D be a . A set operad
Pp is defined by Pp(n) = D(L(1), L(n)) and operadic
composition induced by composition in the category D.

For K a field of characteristic 0, the set operad Pp gives
rise to an operad in K-vector spaces K[Pp], by taking
K[Pp](n) to be the vector space with basis Pp(n).

For an object X of C the vector space K[| X|] with basis
|X| has the structure of an algebra over K[Pp]; e.g. if
D = Gr, this is the structure of group algebra (including
the antipode). Let K[X] be this “object algebra” of X.

K[| X]|] also is a cocommutative and coassociative
coalgebra defined by putting A(x) = x ® x for x € | X].
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Let D be a . A set operad
Pp is defined by Pp(n) = D(L(1), L(n)) and operadic
composition induced by composition in the category D.

For K a field of characteristic 0, the set operad Pp gives
rise to an operad in K-vector spaces K[Pp], by taking
K[Pp](n) to be the vector space with basis Pp(n).

For an object X of C the vector space K[| X|] with basis
|X| has the structure of an algebra over K[Pp]; e.g. if
D = Gr, this is the structure of group algebra (including
the antipode). Let K[X] be this “object algebra” of X.

K[| X]|] also is a cocommutative and coassociative
coalgebra defined by putting A(x) = x ® x for x € | X].

Thus K[X] is a (generalized) bialgebra which we call the
“object bialgebra” of X.
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The triple
(K[PD], Comy, AbOp(D) & K)
is a good triple of operads in the sense of Loday.

This in particular means that the subspace of primitive
elements of the graded object bialgebras Gr(K[X]) has a
canonical structure of an algebra over AbOp(D) @ K.
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(K[PD], Comy, AbOp(D) & K)
is a good triple of operads in the sense of Loday.

This in particular means that the subspace of primitive
elements of the graded object bialgebras Gr(K[X]) has a
canonical structure of an algebra over AbOp(D) @ K.

The n-th
dimension subobject D, x(X) = X N (1x + [Z(X)) is
Dn,K(X) -V 7n(X):
for suitably (already) defined notions of augmentation
filtration £2(X) of K[X] and of isolator v/S of S < X.
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The triple
(K[PD], Comy, AbOp(D) & K)
is a good triple of operads in the sense of Loday.

This in particular means that the subspace of primitive
elements of the graded object bialgebras Gr(K[X]) has a
canonical structure of an algebra over AbOp(D) @ K.

The n-th
dimension subobject D, x(X) = X N (1x + [Z(X)) is
D (X) = v/71(X),
for suitably (already) defined notions of augmentation
filtration £2(X) of K[X] and of isolator v/S of S < X.
There is a
natural isomorphism of graded K[Pp]|-algebras

Gr(K[X]) = U(Gr(X)®K).
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Suppose that D is

- n-step nilpotent, which by definition means that the
identity functor of D is polynomial of degree < n, or
equivalently, that all objects of D are n-step nilpotent;

- n-radicable, which by definition means that the abelian
group Endp(L(1)*) is a Z[1,. .., ]-module.

Then there is a (canonical?) equivalence of categories
D ~ Alg(AbOp(D))

This equivalence would also induce a generalized
Baker-Campbell-Hausdorff formula (actually, one for
each n > 1), expressing in
terms of the
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Use the theory of polynomial functors from D to Ab
which encodes them by kind of a “DNA"; the latter
involves intricate both algebraic and combinatorical
structures (e.g. non-linear pseudo-Mackey functors).

So far, this program is completely achieved only for
[H., Vespa; Defourneaul];

for , the necessary polynomial functor theory
is achieved only for and

(actually, also for
) [H., Pirashvili, Vespa].



