
Higher Whitehead product: computations

and applications

Marek Golasiński
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The aim of the talk is to present:

1 Properties and computations of higher order
Whitehead products;

2 Applications of higher order Whitehead
products.
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Properties and computations

Prerequisites
Recall that given f ∈ πk(X ), g ∈ πl(X ), the Whitehead
product [f , g ] ∈ πk+l−1(X ) is defined as follows: the product
Sk × Sl of spheres can be obtained by attaching a (k + l)-cell
to the wedge sum Sk ∨ Sl :
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Sk+l−1
� _

��

ω // Sk ∨ Sl
� _

��
Dk+l // Sk × Sl .

Then, the compose

Sk+l−1 ω−→ Sk ∨ Sl f ∨g−−→ X

represents [f , g ] ∈ πk+l−1(X ).
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Given maps f : ΣA→ X and g : ΣB → X , Arkowitz defined
the generalized Whitehead product [f , g ] ∈ π(Σ(A ∧ B),X ) as
the compose

Σ(A ∧ B)
ω−→ ΣA ∨ ΣB

f ∨g−−→ X ,

where ω : Σ(A ∧ B)→ ΣA ∨ ΣB (the Whitehead map) is
given by the pushout:

Σ(A ∧ B)� _

��

ω // ΣA ∨ ΣB� _

��
CΣ(A ∧ B) // ΣA× ΣB .
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For the category CO of simply-connected co-H-spaces, Gray
defined a functor (called the Theriault product):

◦ : CO × CO −→ CO

and a natural transformation w : A ◦ B −→ A ∨ B with a
pushout:

A ◦ B� _

��

w // A ∨ B� _

��
C (A ◦ B) // A× B .
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Given simply connected co-H-spaces A,B , by a result of Gray,
there are maps

A ◦ B ζ−→ Σ(ΩA ∧ ΩB)
κ−→ A ◦ B

with κζ = idA◦B and the homotopy fibration

Σ(ΩA ∧ ΩB)
w ′
−→ A ∨ B → A× B

determines a natural transformation

w : A ◦ B ζ−→ Σ(ΩA ∧ ΩB)
w ′
−→ A ∨ B

generalizing the Whitehead product map.

M. Golasiński (Poland) Higher Whitehead product: computations and applications



Armed with this construction, given maps f : A→ X and
g : B → X , the generalized Whitehead product
[f , g ] ∈ π(A ◦ B ,X ) is the compose

A ◦ B w→ A ∨ B
f ∨g−−→ X ,

generalizing the Whitehead map.

The existence of A ◦ B generalizes a result of Theriault who
showed that the smash product of two simply-connected
co-associative co-H-spaces is the suspension of a co-H-space.
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Given maps maps fi : Smi → X for i = 1, . . . , n with n ≥ 2,
Hardie follows Zeeman for n = 3 and deals with the nth order
spherical Whitehead product

[f1, . . . , fn] ⊆ πm1+···+mn−1(X )

for n ≥ 3 as follows:

the characteristic map

ωn : Sm1+···+mn−1 → T1(Sm1 , . . . ,Smn)

for attaching the top cell to the fat wedge T1(Sm1 , . . . ,Smn)
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Sm1+···+mn−1
� _

��

ωn // T1(Sm1 , . . . ,Smn)� _

��
Dm1+···+mn // Sm1 × · · · × Smn

leads the compose

Sm1+···+mn−1 ωn−→ T1(Sm1 , . . . ,Smn)
F→ X

which is an element of [f1, . . . , fn] provided

F : T1(Sm1 , . . . ,Smn) −→ X

is an extension of f1 ∨ · · · ∨ fn : Sm1 ∨ · · · ∨ Smn → X .
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Porter has generalized the Hardie’s construction and
introduced the notion of the nth order generalized
Whitehead product [f1, . . . , fn] of maps fi : ΣAi → X for
i = 1, . . . , n with n ≥ 2.

If n = 2 and A1,A2 are spheres it coincides with the
classical Whitehead product.

If A1,A2 are any spaces then the 2nd order Whitehead
product coincides with the generalized Whitehead product
studied by Arkowitz.
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More precisely, the pushout (up to homotopy)

Σn−1A1 ∧ · · · ∧ An� _

��

ωn // T1(ΣA1, . . . ,ΣAn)� _

��
C (Σn−1A1 ∧ · · · ∧ An) // ΣA1 × · · · × ΣAn

leads the compose

Σn−1A1 ∧ · · ·An
ωn−→ T1(ΣA1, . . . ,ΣAn)

F→ X

which is an element of [f1, . . . , fn] provided

F : T1(ΣA1, . . . ,ΣAn) −→ X

is an extension of f1 ∨ · · · ∨ fn : ΣA1 ∨ · · · ∨ ΣAn → X .
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In virtue of Porter, it is non-empty if and only if all the lower
products [fk1 , . . . , fkm ] for 1 ≤ k1 ≤ · · · ≤ km ≤ n with
m = 2, . . . , n − 1 contain the zero element 0.

We note that the set [f1, . . . , fn] can be empty even if fi = 0
for some i .

This is the case for [0, ι2, ι2], since the classical Whitehead
product [ι2, ι2] = 2η2 6= 0.
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Theorem (Porter)

Let fi : ΣAi → ΣBi , gi : ΣBi → X and k : X → Y be maps
for i = 1, . . . , n. Then:

1 k∗[g1, . . . , gn] ⊆ [kg1, . . . , kgn];

2 If X is an H-space then [f1, . . . , fn] = 0;

3 0 ∈ [f1, . . . , fr ] if and only if
f1 ∨ · · · ∨ fr : ΣA1 ∨ · · · ∨ ΣAn → X has an extension to
ΣA1 × · · · × ΣAn.

Corollary.

If [f1, . . . , fr ] 6= ∅ and fi0 = 0i0 for some 1 ≤ i0 ≤ n then
0 ∈ [f1, . . . , fn].
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M. Golasiński (Poland) Higher Whitehead product: computations and applications



Theorem (Porter)

Let fi : ΣAi → ΣBi , gi : ΣBi → X and k : X → Y be maps
for i = 1, . . . , n. Then:

1 k∗[g1, . . . , gn] ⊆ [kg1, . . . , kgn];

2 If X is an H-space then [f1, . . . , fn] = 0;

3 0 ∈ [f1, . . . , fr ] if and only if
f1 ∨ · · · ∨ fr : ΣA1 ∨ · · · ∨ ΣAn → X has an extension to
ΣA1 × · · · × ΣAn.

Corollary.

If [f1, . . . , fr ] 6= ∅ and fi0 = 0i0 for some 1 ≤ i0 ≤ n then
0 ∈ [f1, . . . , fn].
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Referring to Williams, we say that a space X has property Pn

if for every fi : ΣAi → X with i = 1, . . . , n, we have
0 ∈ [f1, . . . , fn].

Certainly, in view of the theorem above, any H-space posses
not only property Pn for all r ≥ 2 but 0 is the only element of
[f1, . . . , fn].

(Williams has asked: We note at this point that it is
unresolved conjecture as to whether X has property Pn implies
that 0 is the only element of [f1, . . . , fn].)
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Remark. The higher Whitehead product [f1, . . . , fn] might be
a singleton and non-zero.

Namely, consider the inclusion map Jn : S2 ↪→ CPn into the
complex projective n-space for n ≥ 1. Then,
(Arkowitz+Porter)

[jn, ×n+1. . . , jn] = (n + 1)!γn

for the projection γn : S2n+1 → CPn.

In particular, we get the classical homotopy theory result
[ι2, ι2] = 2η2 for ι2 = idS2 and η2 : S3 → S2 the Hopf fibration.
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We make use of the Theriault product to define the higher
order Gray–Whitehead product for co-H-spaces
(A1, . . . ,An) = A.

First, applying Σ(A1 ◦ A2) = A1 ∧ A2 (Gray), the inductive
procedure shows that

(A1 ◦ A2) ∧ A3 ∧ · · · ∧ An = Σn−2(A1 ◦ · · · ◦ An).
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The Porter’s homotopy fibration

Σn−1ΛΩ(A)→ T1(A)→ A1 × · · · × An

and coretractions νi : Ai → ΣΩAi for i = 1, . . . , n yields the
generalized Gray–Whitehead map

wn : Σn−2(A1 ◦ · · · ◦ An) −→ T1(A1, . . . ,An)

with a pushout (up to homotopy)

Σn−2(A1 ◦ · · · ◦ An)� _

��

wn // T1(A1, . . . ,An)� _

��
CΣn−1(A1 ◦ · · · ◦ An) // A1 × · · · × An.
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Computations

Given fi : Sni → X for i = 1, 2, 3, Hardie has proved that:

Theorem

If the triple Whitehead product [f1, f2, f3] is non-empty then it
is a coset of the subgroup

J(f1, f2, f3) = [πn2+n3(X ), f1] + [πn1+n3(X ), f2] + [πn1+n2(X ), f3]

of πn1+n2+n3−1(X ).

Notice that this result is “in the spirit” of the Toda brackets.
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A trivial triple spherical Whitehead product means that
[f1, f2, f3] = J(f1, f2, f3) or equivalently, 0 ∈ [f0, f2, f3].

Hardie has stated:

Problem.

We do not know of a case when the triple (spherical) product
[f1, f2, f3] is non-trivial for a sphere, and for X = S4, the triple
product [η4, η

2
4, 2ι4] ⊆ π14(S4) is possibly non-trivial.
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We have shown:

Proposition.

The groups [π9(S4), η2
4] and [π10(S4), η4] are trivial. In

particular,
J(η4, η

2
4, 2ι4) = [π11(S4), 2ι4]

and it is a subgroup of π14(S4) with order fifteen. In addition,
the triple product [η4, η

2
4, ι4] is trivial.
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It follows from the Hardie’s theorem above that the triple
Whitehead product [f1, f2, f3] is an empty or a single set
element provided fi : Sni → X for i = 1, 2, 3 with X = S2 or
RP2, the real projective plane. More, generally:

Theorem (Baues)

If fi : Smi → S2 for i = 1, . . . , n with n ≥ 2 then the higher
Whitehead product [f1, . . . , fn] = 0 provided
m1 + · · ·+ mn 6= 4.

Notice that a similar result might be stated for RP2 as well.
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Let now fi : ΣAi → X for i = 1, 2, 3. Then, the Hardie’s result
above we have generalized as follows:

Theorem

If the triple Whitehead product [f1, f2, f3] is non-empty then it
is a coset of the subgroup

J(f1, f2, f3) = [π(Σ2(A2∧A3),X ), f1]+[π(Σ2(A1∧A3),X ), f2]

+ [π(Σ2(A1 ∧ A2),X ), f3]

of π(Σ2(A1 ∧ A2 ∧ A3),X ).

It follows [01, 02, 03] = 0 for the trivial maps 0i : ΣAi → X
with i = 1, 2, 3.
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Question. What about [01, . . . , 0n] = 0 for n ≥ 4?
We have shown:

Proposition

If n ≥ 4 and S = (Sm1 , . . . ,Smn) with mi ≥ 1 for i = 1, . . . , n
then the quotient map

T1Σ(S)→ T1Σ(S) / Sm1 ∨ · · · ∨ Smn

leads to a non-trivial element of the nth order generalized
Whitehead product [01, . . . , 0n].

Remark. We are deeply grateful to Jie Wu for his idea on the
proof.
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Applications

(I) Given a simplicial complex K on n vertices, Davis and
Januszkiewicz associated two fundamental objects of toric
topology: the moment–angle complex ZK and the
Davis–Januszkiewicz space DJK .

The homotopy fibration sequence

ZK
ω̃−→ DJK →

n∏
i=1

CP∞

and its generalization has been studied by J. Grbić and S.
Theriault, and K. Iriye and D. Kishimoto, respectively. It was
shown that ω̃ : ZK → DJK is a sum of higher and iterated
Whitehead products for appropriate complexes K .
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Applications

(II) The homotopy type of the Euclidean ordered configuration
space F(Rn+1,m), for n ≥ 2, admits a minimal cellular model

∗ = X0 ⊆ Xn ⊆ X2n ⊆ · · · ⊆ Xmn

whose cells are attached via higher order Whitehead products.

More precisely, let Sn
k = (Sn, ×k. . . ,Sn), for k = 1, . . . ,m.
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Theorem (P. Salvatore)

The pushout of the diagram

T1(Sn
k)

νk //
� _

��

X(k−1)n

Sn × · · ·k × Sn

for some map νk : T1(Sn
k)→ X(k−1)n is obtained by attaching

a kn-cell to X(k−1)n.

Consequently, kn-cells are attached to X(k−1)n via elements of
higher order Whitehead products.
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Applications

(III) Recall that the exterior Whitehead product {α1, . . . , αn}
of maps αi : ΣAi → Xi for i = 1, . . . , n with n ≥ 2 is the
composition

T1(α)ωn : Σn−1(A1 ∧ · · · ∧ An)→ T1(X1, . . . ,Xn).

If Ai = Smi is the mi -sphere with mi ≥ 1 for i = 1, . . . , n then
{α1, . . . , αn} has been defined by Hardie.

We refer to such a product as the spherical one.
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Now, let Jn(X ) be the nth-stage of the James construction.
Given mi ≥ 1 for i = 1, . . . , n with n ≥ 2, write
m′ = m1 + · · ·+ mn and m′′ = m′ − min

1≤i≤n
{mi}.

Next, consider the restriction

µm(X )| : T1(Jm1(X ), . . . , Jmn(X ))→ Jm′′(X )

of the canonical multiplication

µm(X ) : Jm1(X )× · · · × Jmn(X )→ Jm′(X ).
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The interior Whitehead product 〈α1, . . . , αn〉 of maps
αi : ΣAi → Jmi

(X ) for i = 1, . . . , n is the composition

{α1, . . . , αn}µm(X )|

and 〈α1, . . . , αn〉 ∈ π(Σn−1(A1 ∧ · · · ∧ An), Jm′′(X )).
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In particular, for αi : ΣAi → X with i = 1, . . . , n, we have
〈α1, . . . , αn〉 ∈ π(Σn−1(A1 ∧ · · · ∧ An), Jn−1(X )).

Denote by idΣA : ΣA→ J1(ΣA) the identity map. Then, we
get (as it was shown by Jie Wu) a pushout (up to homotopy)

Σn−1(A ∧ · · · ∧ A)
〈idΣA,...,idΣA〉 //

� _

��

Jn−1(ΣA)� _

��
CΣn−1(A ∧ · · · ∧ A) // Jn(ΣA).

M. Golasiński (Poland) Higher Whitehead product: computations and applications



In particular, for αi : ΣAi → X with i = 1, . . . , n, we have
〈α1, . . . , αn〉 ∈ π(Σn−1(A1 ∧ · · · ∧ An), Jn−1(X )).

Denote by idΣA : ΣA→ J1(ΣA) the identity map. Then, we
get (as it was shown by Jie Wu) a pushout (up to homotopy)

Σn−1(A ∧ · · · ∧ A)
〈idΣA,...,idΣA〉 //

� _

��

Jn−1(ΣA)� _

��
CΣn−1(A ∧ · · · ∧ A) // Jn(ΣA).
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Let SPn(X ) be the nth symmetric power on X , write
qn : Jn(X )→ SPn(X ) for the quotient map and

〈idΣA, . . . , idΣA〉′ = qn〈idΣA, . . . , idΣA〉.

Thus, the diagram

Σn−1(A ∧ · · · ∧ A)
〈idΣA,...,idΣA〉′ //

� _

��

SPn−1(ΣA)� _

��
CΣn−1(A ∧ · · · ∧ A) // SPn(ΣA)

is a pushout (up to homotopy).
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Next, write ιn = idSn , ιm,n : Sn ↪→ Jm(Sn) for the canonical
inclusion map and ηn ∈ πn+1(Sn) for generators with n ≥ 2.

Proposition. (Hardie+Shar)

1 The element 〈ιn, ×m. . . , ιn〉 is of infinite order provided n is
odd and m 6= 2 or n is even;

2 πmn−1(Jm−1(Sn)) ≈ Z⊕ πmn(Sn+1) and 〈ιn, ×m. . . , ιn〉 is a
generator of the infinite cyclic group;

3 [ιm−2,n, 〈ιn, ×(m−1). . . . . . , ιn〉] = 0 if and only if n = 2 and m is
an odd prime; this element has order m otherwise.
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M. Golasiński (Poland) Higher Whitehead product: computations and applications



Given αi : ΣAi → Jmi
(X ) for i = 1, . . . , n, we say that

F : ΣA1× · · · ×ΣAn → J(X ) is strongly of type (α1, . . . , αn)k

if its image is contained in Jk(X ) and coincides on
T1(ΣA1, . . . ,ΣAn) with F ′ = µm(X )(α1 × · · · × αn).

For F : ΣA1 × · · · × ΣAn → J(X ), the generalized Hopf
construction leads to a map c(F ) : Σn+1(A1∧ · · ·∧An)→ ΣX .

The proposition above implies the existence of a map F
strongly of type

(ιm−2,2, 〈ι2, ×(m−1). . . . . . , ι2〉)m−2

for an odd prime m which yields in view of Hardie an element
c(F ) of order m in π2m(S3).
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Great thanks for your
kind attention!
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