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Lie Groups

Recall that a Lie group is a space with a group structure where inversion and group
multiplication are smooth.

Three classes of classical compact, connected, non-abelian Lie groups are given by

SO(n) = {A ∈ Mn(R) | AᵀA = In, det(A) = 1},

SU(n) = {A ∈ Mn(C) | ĀᵀA = In, det(A) = 1},

Sp(n − 1) = {A ∈ Mn(H) | ĀᵀA = In−1, },

for each n ≥ 2.

Theorem (Classification of abelian Lie group)

A connected abelian Lie group is isomorphic to Tα × Rβ for some α, β.
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Homogeneous Spaces

Definition

A manifold M is called a homogeneous space if there is a Lie group G which acts
transitively on it.

Under weak assumptions this means that M is diffeomorphic to G/H for some closed
subgroup H of G .

Examples

Many common space are homogeneous spaces e.g.

1 Spheres Sn,

2 Projective space RPn or CPn,

3 Grassmannians Gr(r , n).

Proposition

When H is a closed connected subgroup of compact Lie group G we have a fibration

H ↪→ G → G/H.
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Complete Flag Manifolds

Definition

Subgroup T ⊆ G with T ∼= T n is a maximal torus, if any T ′ ⊇ T with T ′ ∼= T m

=⇒ T ′ = T .

For each Lie group G and maximal torus T , G/T is a homogeneous space called a
complete flag manifold.

Proposition

Maximal tori in G are conjugate.
G is covered by maximal tori.

Examples

For αj ∈ R A maximal torus in SU(n) is given by elements of the form
e2πα1 i 0

. . .

0 e2παn i

,

such that e2πα1 i · · · e2παn i = 1.
Without this condition this is a maxima torus for Sp(n).
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Complete Flag Manifolds

Examples

Maximal tori in SO(n) and SO(n + 1) are given by elements of the form

cos(θ1) −sin(θ1)

sin(θ1) cos(θ1) 0
. . .

0 cos(θ n
2

) −sin(θ n
2

)

sin(θ n
2

) cos(θ n
2

)


,



cos(θ1) −sin(θ1)

sin(θ1) cos(θ1) 0
. . .

cos(θ n
2

) −sin(θ n
2

)

0 sin(θ n
2

) cos(θ n
2

)

1


,

for θ1, . . . , θ n
2
∈ R
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Cohomology of Lie Groups

Theorem (Hopf)

Any compact connected Lie group G has free commutative cohomology algebra on
odd degree generators over a field.

Examples

For v ≥ 2 and n ≥ 1 as a Z-algebras

H∗(SU(n);Z) ∼= ΛZ(x3, x5, . . . , x2n−1),

H∗(Sp(n);Z) ∼= ΛZ(x3, x7, . . . , x4n−1),

where |xi | = i .

However the integral cohomology of SO(n) contains 2-torsion.
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Cohomology of Complete Flag Manifolds

Definition

A polynomial p ∈ Z[x1, . . . , xn] is called symmetric if it is invariant under permutations
of the indices 1, . . . , n.

Proposition

For each 1 ≤ i ≤ n the elements

σi =
∑

1≤j1<···<ji≤n

xi1 · · · xji ,

form an algebraically independent generating set for the ring of symmetric polynomials
in x1, . . . , xn.

The cohomology of many homogeneous spaces in the case when the subgroup has
maximal rank were given by Borel.

As a Z-algebras

H∗(SU(n + 1)/T n;Z) ∼= Z[x1,...,xn+1]
[σ1,...,σn+1]

|xi | = 2
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Cohomology of Complete Flag Manifolds

For v ≥ 2 and n ≥ 1 as a Z-algebras

H∗(SO(2v)/T v ;Z) ∼= Z[x1,x2,...,xv ]

[σ
(2)
1 ,σ

(2)
2 ,...,σ

(2)
v−1,σv ]

H∗(SO(2v + 1)/T v ;Z) ∼= Z[x1,x2,...,xv ]

[σ
(2)
1 ,σ

(2)
2 ,...,σ

(2)
v ]

,

H∗(Sp(n)/T n;Z) ∼= Z[x1,x2,...,xn ]

[σ
(2)
1 ,σ

(2)
2 ,...,σ

(2)
n ]

,

H∗(G2/T 2;Z) ∼= Z[x1,x2]

[σ2,σ
(2)
3 ]

,

with |xi | = 2 and

σ
(2)
i =

∑
1≤j1<···<ji≤n

x2
i1
· · · x2

ji
.
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Free Loop Cohomology

Definition (free loop space)

For any space X ,

L(X ) = Map(S1,X )

For a manifold M of dimension d .

Theorem (Gromoll, Meyer)

There are infinitely many geometrical distinct periodic geodesics for any metric on M
if the Betti numbers of L(M) are unbounded.

Theorem (Chas, Sullivan)

There is a shifted product structure on the homology of M,

◦ : Hp(LM)⊗ Hq(LM)→ Hp+q−d (LM)
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Free Loop Cohomology

Examples

The Free loop cohomology is known for classes of spaces such as

1 Spheres LSn,

2 Complex Projective Space LCPn,

3 Simple Lie groups LG

The Chas-Sullivan product is also known for 1,2 and most of 3.

I am interested in the free loop cohomology algebra of homogeneous spaces, in
particular that of the complete flag manifolds. I am currently studying the easiest case

H∗(L(SU(n + 1)/T n);Z).
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Free Loop Cohomology

SU(n + 1)/T n

'

��

∆

**
Ω(SU(n + 1)/T n) //

55

Map(I ,SU(n + 1)/T n)
eval // SU(n + 1)/T n × SU(n + 1)/T n

Ω(SU(n + 1)/T n) //

id

OO

L(SU(n + 1)/T n)
eval //

exp

OO

SU(n + 1)/T n

∆

OO

Proposition

As an algebra

H∗(Ω(SU(n + 1)/T n);Z) ∼= H∗(Ω(SU(n + 1);Z)⊗ H∗(T n;Z).

H∗(L(SU(2)/T 1);Z) ∼= H∗(L(S2);Z) ∼=
Λ(γ, y , yxk , γxk , yγxk )

[γ2, 2yγ, 2yγxk , yxkγxj −
(k+j

k

)
yγxk+j ]

,

where |y | = 1, |γ| = 2, |xi | = 2i and k, j ≥ 1.
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Thank you for your attention
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