TORIC TOPOLOGY OF FULLERENES

NIKOLAY EROKHOVETS

The talk is based on the joint work with Victor Buchstaber.
Let P be a simple convex 3 -polytope. A k-belt is a cyclic sequence $\left(F_{1}, \ldots, F_{k}\right)$ of 2faces, such that $F_{i_{1}} \cap \cdots \cap F_{i_{r}} \neq \varnothing$ if and only if $\left\{i_{1}, \ldots, i_{r}\right\} \in\{\{1,2\}, \ldots,\{k-1, k\},\{k, 1\}\}$. P is a flag polytope if it is not a simplex and does not contain 3-belts.

Theorem 1. [$\mathrm{Bu}-\mathrm{Er}]$ A simple 3-polytope P is flag if and only if it is combinatorially equivalent to a polytope obtained from the cube by a sequence of edge truncations and truncations along two incident edges lying in a k-gonal face with $k \geqslant 6$.

A fullerene (see [DeSS13]) is a simple convex 3-polytope with all facets being pentagons and hexagons.

Theorem 2. Any fullerene P is a flag polytope [$\mathrm{Bu}-\mathrm{Er}]$. It contains no 4 -belts and has $12+k$ five-belts, where 12 belts surround pentagons and k belts consist of hexagons with any hexagon intersecting neighbours by opposite edges. Moreover, if $k>0$ then P consists of two dodecahedral caps and k hexagonal 5 -belts between them.

Toric topology associates to each simple n-polytope P with facets F_{1}, \ldots, F_{m} an $(m+n)$ dimensional moment-angle manifold \mathcal{Z}_{P} with canonical action of the torus $T^{m}=\left(S^{1}\right)^{m}$. This gives a tool to study the combinatorics of simple polytopes in terms of the algebraic topology of moment-angle manifolds an visa versa. V. Buchstaber and T.Panov proved (see $[\mathrm{Bu}-\mathrm{Pa}]$) that $\operatorname{Tor}_{\mathbb{Q}\left[v_{1}, \ldots, v_{m}\right]}(\mathbb{Q}[P], \mathbb{Q}) \simeq H^{*}\left(\mathcal{Z}_{P}, \mathbb{Q}\right)$, where $\mathbb{Q}[P]$ is the Stanley-Reisner ring $\mathbb{Q}[P]=\mathbb{Q}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \ldots v_{i_{k}}=0: F_{i_{1}} \cap \cdots \cap F_{i_{k}}=\varnothing\right)$.

Corollary. For a fullerene P we have $\beta^{-1,6}=\beta^{-2,8}=0, \beta^{-3,10}=12+k, k \geqslant 0$. Moreover, if $k>0$ then P has the form described in Theorem 2. The product map $H^{3}\left(\mathcal{Z}_{P}\right) \otimes H^{3}\left(\mathcal{Z}_{P}\right) \rightarrow H^{6}\left(\mathcal{Z}_{P}\right)$ is trivial.

The work is supported by the Russian President grant MK-600.2014.1 and the RFBR grant 14-01-31398-a.

References

[Bu-Er] V.M. Buchstaber, N. Erokhovets, Graph-truncations of simple polytopes, Proc. of Steklov Math Inst, MAIK, Moscow, vol. 289, 2015.
[Bu-Pa] V.M.Buchstaber, T.E.Panov, Toric Topology, AMS Math. Surveys and monogrpaphs. vol. 204, 2015. 518 pp.
[DeSS13] M. Deza, M. Dutour Sikiric, M.I. Shtogrin, Fullerenes and disk-fullerenes, Russian Math. Surveys, 68:4(2013), 665-720.

Lomonosov Moscow State University
E-mail address: erochovetsn@hotmail.com

