Regular Maps on Spheres and Projective Spaces

Ren Shiquan a0109964@u.nus.edu Ph.D Student guided by Prof. Wu Jie Dept. Math. NUS

> Young Topologist Seminar 11 - 19 August 2015 IMS, NUS

Contents

- Introduction
- Preliminaries
- k-regular maps on topological spaces
- Sketch proofs of main results
- Plans
- References

Let X be a topological space and $k \geq 2$. Let \mathbb{K} denote the real numbers \mathbb{R} or the complex numbers \mathbb{C} . Let S^m denote the m-sphere and $\mathbb{R}P^m$, $\mathbb{C}P^m$ denote the real and complex projective spaces respectively.

Definition 1

A map $f: X \to \mathbb{K}^N$ is called (real or complex) k-regular if for any distinct k points $x_1, \dots, x_k \in X$, $f(x_1), \dots, f(x_k)$ are linearly independent over \mathbb{K} . For simplicity, a real k-regular map is also called a k-regular map.

Let $\alpha(k)$ denote the number of ones in the dyadic expansion of k. Some lower bounds of N for k-regular maps of \mathbb{R}^2 into \mathbb{R}^N were given in the following theorem.

Theorem 2 ([7], Example 1.2, Theorem 1.4)

If there exists a k-regular map of \mathbb{R}^2 into \mathbb{R}^N , then $N \ge 2k - \alpha(k)$. Moreover, when k is a power of 2, there exists a k-regular map of \mathbb{R}^2 into \mathbb{R}^N for $N = 2k - \alpha(k)$.

The following theorem partially generalized Theorem 2, giving a lower bound of N for k-regular maps of \mathbb{R}^d into \mathbb{R}^N for all $d \geq 1$.

Theorem 3 ([1], Theorem 2.1)

Let $d \ge 1$. If there exists a k-regular map of \mathbb{R}^d into \mathbb{R}^N , then $N \ge d(k - \alpha(k)) + \alpha(k)$.

The lower bounds of N for complex k-regular maps of Euclidean spaces into \mathbb{C}^N were studied in the following two theorems.

Theorem 4 ([2], Theorem 5.2)

Let p be an odd prime and $d \ge 1$. If there exists a complex p-regular map of \mathbb{R}^d into \mathbb{C}^N , then $N \ge [(d+1)/2](p-1)+1$.

Theorem 5 ([2], Theorem 5.3)

Let p be an odd prime, $\alpha_p(k)$ the sum of coefficients in the p-adic expansion of k and $d=p^t$ for some $t\geq 1$. If there exists a complex k-regular map of \mathbb{C}^d into \mathbb{C}^N , then $N\geq d(k-\alpha_p(k))+\alpha_p(k)$.

Motivated by Theorem 2 - Theorem 5, lower bounds of N for k-regular maps of non-Euclidean spaces into \mathbb{R}^N are of interest. For example, some 3-regular maps of S^m into \mathbb{R}^{m+2} can be constructed.

Example 6 ([1], Lemma 2.5, Example 2.6-(2))

Let $m \ge 1$. Let $i: S^m \to \mathbb{R}^{m+1}$ be the standard embedding and $1: S^m \to \mathbb{R}$ the constant map with image 1. There is a 3-regular map

$$S^m \xrightarrow{(1,i)} (\mathbb{R},\mathbb{R}^{m+1}) \cong \mathbb{R}^{m+2}.$$

From Example 6 and [8, Theorem 4.1], [15, Theorem 5.2, Theorem 5.7] and [18, Theorem 5] (resp. [22, Theorem 5.4]), we have the following corollary.

Corollary 7

There exist 3-regular maps of $\mathbb{R}P^m$ into \mathbb{R}^N (resp. 3-regular maps of $\mathbb{C}P^m$ into \mathbb{R}^N) in the cases listed in the following Table.

$\mathbb{R}P^m$	$m = 8q + 3 \text{ or } 8q + 5, \ q > 0$	$N \geq 2m - \min\{5, \alpha(q)\}$
	m = 8q + 1, q > 0	$N \geq 2m - \min\{7, \alpha(q)\} + 2$
	m = 32q + 7, q > 0	$N \ge 2m - 6$
	$m = 8q + 7, \ q > 1$	$N \ge 2m - 5$
	$m\equiv 3\ ({ m mod}\ 8),\ m\geq 19$	$N \ge 2m-4$
	$m\equiv 1\ ({ m mod}\ 4),\ m eq 2^i+1$	$N \ge 2m-2$
	$m = 4q + i$, $i = 0$ or 2, $q \neq 2^{j}$ or 0	$N \ge 2m-1$
	$m=2^j+1,j\geq 2$	$N \ge 2m-1$
	$m=2^j+2, j\geq 3$	$N \ge 2m$
$\mathbb{C}P^m$	$m \ge 5$, $m \ne 2^j$	$N \ge 4m$
	$m=2^j$, $j\geq 2$	$N \ge 4m + 1$

Main results

Our results are supplementary to [1, 2, 5, 7].

Theorem 8

Let $m \ge 2$. The following are equivalent

- (a). there exists a 3-regular map of S^m into \mathbb{R}^N ,
- (b). there exists a 2-regular map of S^m into \mathbb{R}^N ,
- (c). $N \ge m + 2$.

Theorem 9

Let $m \ge 2$. If there exists a complex 2-regular map of S^m into \mathbb{C}^N , then $N \ge m/2 + 2$ if m is even and $N \ge (m-1)/2 + 2$ if m is odd.

Main results

Theorem 10

Let $2^i \leq m < 2^{i+1}$, $i \geq 2$. If there exists a 2-regular map of $\mathbb{R}P^m$ into \mathbb{R}^N , then $N \geq 2^{i+1} + 1$.

Corollary 11

Let $m = 2^i + 1$, $i \ge 2$. Then the following are equivalent

- (a). there exists a 3-regular map of $\mathbb{R}P^m$ into \mathbb{R}^N ,
- (b). there exists a 2-regular map of $\mathbb{R}P^m$ into \mathbb{R}^N ,
- (c). $N \ge 2m 1$.

Main results

Theorem 12

Let $2^i \le m < 2^{i+1}$, $i \ge 2$. If there exists a 2-regular map of $\mathbb{C}P^m$ into \mathbb{R}^N , then $N \ge 2^{i+2}$.

Theorem 13

Let $m \ge 4$. If there exists a complex 2-regular map of $\mathbb{C}P^m$ into \mathbb{C}^N , then $N \ge 2m$.

Cohomology of Grassmannians

For positive integers $M \geq k$, let $G_k(\mathbb{K}^M)$ be the (real or complex) Grassmannian and $G_k(\mathbb{K}^\infty)$ the direct limit of $G_k(\mathbb{K}^M)$. Consider the inclusion $\mathbb{K}^N \to \mathbb{K}^\infty$ on the first N coordinates of \mathbb{K}^∞ . Then there is an induced map $i: G_k(\mathbb{K}^N) \to G_k(\mathbb{K}^\infty)$.

• Case 1: $\mathbb{K} = \mathbb{R}$. It is known that

$$H^*(G_k(\mathbb{R}^\infty); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2, \cdots, w_k]$$

where w_i is the *i*-th universal Stiefel-Whitney class with $|w_i| = i$. And

$$H^*(G_k(\mathbb{R}^M); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2, \cdots, w_k]/(\bar{w}_{M-k+1}, \bar{w}_{M-k+2}, \cdots, \bar{w}_M)$$

where \bar{w}_j is defined as the j-th degree term in the expansion of $(1+w_1+\cdots+w_k)^{-1}$ and $(\bar{w}_{M-k+1},\bar{w}_{M-k+2},\cdots,\bar{w}_M)$ is the ideal generated by $\bar{w}_{M-k+1},\,\bar{w}_{M-k+2},\cdots,\,\bar{w}_N$. The canonical inclusion $i:G_k(\mathbb{R}^M)\to G_k(\mathbb{R}^\infty)$ induces an epimorphism on mod 2 cohomology.

Cohomology of Grassmannians

• Case 2: $\mathbb{K} = \mathbb{C}$. It is known that

$$H^*(G_k(\mathbb{C}^\infty); \mathbb{Z}) = \mathbb{Z}[c_1, c_2, \cdots, c_k]$$

where c_i is the *i*-th universal Chern class with $|c_i| = 2i$. And

$$H^*(G_k(\mathbb{C}^M);\mathbb{Z})=\mathbb{Z}[c_1,c_2,\cdots,c_k]/(\bar{c}_{M-k+1},\bar{c}_{M-k+2},\cdots,\bar{c}_M)$$

where \bar{c}_j is defined as the 2j-th degree term in the expansion of $(1+c_1+\cdots+c_k)^{-1}$ and $(\bar{c}_{M-k+1},\bar{c}_{M-k+2},\cdots,\bar{c}_M)$ is the ideal generated by $\bar{c}_{M-k+1},\bar{c}_{M-k+2},\cdots,\bar{c}_M$. The canonical inclusion $i:G_k(\mathbb{C}^M)\to G_k(\mathbb{C}^\infty)$ induces an epimorphism on integral cohomology.

Cohomology of unordered configuration spaces

Let Σ_k be the permutation group of order k and the k-th configuration space of X be

$$F(X, k) = \{(x_1, \dots, x_k) \in X \times \dots \times X \mid \text{ for any } i \neq j, x_i \neq x_i\}.$$

For any $\sigma \in \Sigma_k$, let σ act on F(M, k) by

$$\sigma(x_1,\cdots,x_k)=(x_{\sigma(1)},\cdots,x_{\sigma(k)})$$

and act on \mathbb{K}^k by

$$(r_1,\cdots,r_k)\sigma=(r_{\sigma^{-1}(1)},\cdots,r_{\sigma^{-1}(k)}).$$

Then we have a space $F(X,k)/\Sigma_k$, called the k-th unordered configuration space of X, and an $O(\mathbb{K}^k)$ -bundle

$$\xi_{X,k}^{\mathbb{K}}: \mathbb{K}^k \to F(X,k) \times_{\Sigma_k} \mathbb{K}^k \to F(X,k)/\Sigma_k.$$

Let $h: F(X,k)/\Sigma_k \to G_k(\mathbb{K}^{\infty})$ be the classifying map of $\xi_{X,k}^{\mathbb{K}}$.

Cohomology of unordered configuration spaces

For any $m \geq 1$, $F(S^m, 2)/\Sigma_2 \simeq \mathbb{R}P^m$. Consequently,

$$H^*(F(S^m, 2)/\Sigma_2; \mathbb{Z}_2) = \mathbb{Z}_2[u]/(u^{m+1}), |u| = 1,$$
 (1)

$$H^{*}(F(S^{m},2)/\Sigma_{2};\mathbb{Z}_{2}) = \mathbb{Z}_{2}[u]/(u^{m+1}), |u| = 1,$$

$$H^{*}(F(S^{m},2)/\Sigma_{2};\mathbb{Z}) = \begin{cases} \mathbb{Z}[x]/(2x,x^{\frac{m+2}{2}}), |x| = 2, \text{ if } m \text{ is even,} \\ \mathbb{Z}[x]/(2x,x^{\frac{m+1}{2}}), |x| = 2, \text{ if } m \text{ is odd.} \end{cases}$$
(2)

Cohomology of unordered configuration spaces

Theorem 14 ([8], Theorem 3.7)

As \mathbb{Z}_2 -algebras, $H^*(F(\mathbb{R}P^m,2)/\Sigma_2;\mathbb{Z}_2)$ is isomorphic to $\mathbb{Z}_2[u,x_1,x_2]/(u^2-ux_1,\tilde{\sigma}_m(x_1,x_2),\tilde{\sigma}_{m+1}(x_1,x_2))$. Here $u=w_1(\xi_{\mathbb{R}P^m,2}^\mathbb{R})$ and $|x_i|=i$, i=1,2.

Theorem 15 ([22], Theorem 4.9)

As a $H^*(G_2(\mathbb{C}^{m+1}); \mathbb{Z}_2)$ -module, the cohomology $H^*(F(\mathbb{C}P^m, 2)/\Sigma_2; \mathbb{Z}_2)$ has $\{1, v, v^2\}$ as a basis. Moreover, the ring structure of $H^*(F(\mathbb{C}P^m, 2)/\Sigma_2; \mathbb{Z}_2)$ is given by $v^3 = e_1v$. Here $v = w_1(\xi_{\mathbb{C}P^m, 2}^{\mathbb{R}})$.

Theorem 16 ([22], Theorem 4.10)

As a $H^*(G_2(\mathbb{C}^{m+1});\mathbb{Z})$ -module, the cohomology $H^*(F(\mathbb{C}P^m,2)/\Sigma_2;\mathbb{Z})$ has $\{1,u\}$ as generators with |u|=2. Moreover, the ring structure of $H^*(F(\mathbb{C}P^m,2)/\Sigma_2;\mathbb{Z})$ satisfies 2u=0 and $u^2=c_1u$. Here $c_1=c_1(\xi_{\mathbb{C}P^m,2}^{\mathbb{C}})$.

15 / 33

k-regular maps on topological spaces

Suppose $f:X \to \mathbb{K}^N$ is a (real or complex) k-regular map. We have a well-defined map

$$g: F(X,k)/\Sigma_k \rightarrow G_k(\mathbb{K}^N).$$

Proposition 17

The following diagram commutes

Let R be a ring. From Proposition 17, there is an induced commutative diagram on cohomology

$$H^{*}(F(X,k)/\Sigma_{k};R) \xleftarrow{g^{*}} H^{*}(G_{k}(\mathbb{K}^{N});R)$$

$$\downarrow^{i^{*}}$$

$$H^{*}(G_{k}(\mathbb{K}^{\infty});R).$$
(3)

k-regular maps on topological spaces

Case 1: $\mathbb{K} = \mathbb{R}$.

Lemma 18 ([7])

Lex X be a topological space and $f:X\to\mathbb{R}^N$ a k-regular map. If $\bar{w}_t(\xi_{X,k}^\mathbb{R})\neq 0$, then $N\geq t+k$.

Case 2: $\mathbb{K} = \mathbb{C}$.

Lemma 19 ([2])

Let X be a topological space and $f:X\to\mathbb{C}^N$ be a complex k-regular map. If $\bar{c}_t(\xi_{X,k}^\mathbb{C})\neq 0$, then $N\geq t+k$.

Proof of Theorem 8

Let $m \ge 2$. We first prove

$$\bar{w}_t(\xi_{S^m,2}^{\mathbb{R}}) \neq 0 \quad \text{for } t \leq m.$$
 (4)

Then by applying (4) to Lemma 18 and with the help of Example 6, we obtain Theorem 8.

Proof of Theorem 9

We first prove

$$\bar{c}_t(\xi_{S^m,2}^{\mathbb{C}}) \neq 0 \text{ for } t \leq \frac{m}{2}$$
 (5)

if m is even and

$$\bar{c}_t(\xi_{S^m,2}^{\mathbb{C}}) \neq 0 \text{ for } t \leq \frac{m-1}{2}$$
 (6)

if m is odd. Then by applying (5) and (6) to Lemma 19, we obtain Theorem 9.

Proofs of Theorem 10

We first prove that the smallest positive integer $\tau(m)$ such that for all $t \geq \tau(m)$, $\bar{w}_t(\xi_{\mathbb{R}P^m,2}^{\mathbb{R}}) = 0$ is

$$\tau(m) = 2^{i+1} \tag{7}$$

for $2^i \leq m < 2^{i+1}$, $i \geq 2$. Then by applying (7) to Lemma 18, we obtain Theorem 10.

Proof of Theorem 12

We first prove that the smallest positive integer $\lambda(m)$ such that for all $t \geq \lambda(m)$, $\bar{w}_t(\xi_{\mathbb{C}P^m,2}^{\mathbb{R}}) = 0$ is

$$\lambda(m) = 2^{i+2} - 1 \text{ for } 2^i \le m < 2^{i+1}, i \ge 2.$$
 (8)

Then by applying (8) to Lemma 18, we obtain Theorem 12.

Proof of Theorem 13

Let $\kappa(m)$ be the smallest positive integer such that for all $t \geq \kappa(m)$, $\bar{c}_t(\xi_{\mathbb{C}P^m,2}^{\mathbb{C}}) = 0$. We first prove that

$$\kappa(m) \ge 2m - 1. \tag{9}$$

Then by applying (9) to Lemma 19, we obtain Theorem 13.

Configuration spaces

Let M be a manifold of dimension m and X be a topological space with non-degenerate base-point. The configuration space C(M;X) is defined by

$$C(M;X) = \bigsqcup_{k=0}^{\infty} F(M,k) \times_{\Sigma_k} X^k / \approx$$

where $F(M,0) imes_{\Sigma_0} X^0$ is defined to be the base-point * and \approx is generated by

$$(a_1,\cdots,a_k;x_1,\cdots,x_k)\approx(a_1,\cdots,a_{k-1};x_1,\cdots,x_{k-1})$$

if $x_k = *$. The length of a configuration induces a natural filtration of C(M; X) by the subspaces

$$C_k(M;X) = \bigsqcup_{j=0}^k F(M,j) \times_{\Sigma_j} X^j / \approx .$$

For k > 1, define the quotient spaces

$$D_k(M;X) = C_k(M;X)/C_{k-1}(M;X).$$

Configuration spaces

• My aim is to obtain cup-lengths of elements in the cohomology ring

$$H^*(D_k(M;S^0);\mathbb{Z}_2)$$

and use this to study the lower bounds of N for k-regular maps of M into \mathbb{R}^N .

• I want to study the cohomology ring

$$H^*(C(M; S^0); \mathbb{Z}_2).$$

then find ways to derive the cohomology ring

$$H^*(D_k(M;S^0);\mathbb{Z}_2).$$

Configuration spaces

• For primes $p \ge 2$, let $\beta_q = \dim_{\mathbb{Z}_p} H_q(M; \mathbb{Z}_p)$ and a tensor product of finite number of Hopf algebras $H_*(\Omega^{t-q}\Sigma^{t-q}S^{r+q}; \mathbb{Z}_p)$ (cf. [6]) as

$$\mathcal{C}^{t}(H_{*}(M;\mathbb{Z}_{p});S^{r}) = \bigotimes_{q=0}^{t} \bigotimes_{q=0}^{\beta_{q}} H_{*}(\Omega^{t-q}S^{t+r};\mathbb{Z}_{p}).$$

For $r \geq 2$ and $n \geq 2$, we have that as a \mathbb{Z}_p -filtered algebra (cf. [21]),

$$H_*(C(M \times \mathbb{R}^n; S^r); \mathbb{Z}_p) \cong \mathcal{C}^{m+n}(H_*(M; \mathbb{Z}_p); S^r). \tag{10}$$

I want to consider the case n=1 and r=0 in (10) and study the algebra structure of

$$H_*(C(M \times \mathbb{R}; S^0); \mathbb{Z}_2).$$

The group-completion theorem

Let $\mathcal M$ be a topological monoid up to homotopy. Let the homology be taken with integral coefficients. Then the H-space structure on $\mathcal M$ implies that $H_*(\mathcal M)$ is a Pontrjagin ring. It is known that $H_0(\mathcal M)=\mathbb Z[\pi_0\mathcal M]$, hence $\pi_0\mathcal M$ can be regarded as a multiplicative subset of the Pontrjagin ring $H_*(\mathcal M)$.

The group-completion theorem

Theorem 20 ([16])

Suppose

(1). $H_*(\mathcal{M})[\pi_0\mathcal{M}^{-1}]$, the localization of $H_*(\mathcal{M})$ with respect to $\pi_0\mathcal{M}$, admits calculation by right fractions;

(2). $\pi_0 \mathcal{M}$ is finitely generated.

Then the canonical map $\psi: \mathcal{M} \to \Omega B \mathcal{M}$ induces an isomorphism of Pontrjagin rings

where $\gamma: H_*(\mathcal{M}) \to H_*(\mathcal{M})[\pi_0 \mathcal{M}^{-1}]$ is the canonical ring homomorphism of the localization of the ring $H_*(\mathcal{M})$ with respect to $\pi_0 \mathcal{M}$.

The group-completion theorem

Proposition 21

 $C(M \times \mathbb{R}; X)$ is a monoid up to homotopy.

Problem 22

The canonical map $\psi: C(M \times \mathbb{R}; X) \to \Omega BC(M \times \mathbb{R}; X)$ induces a ring isomorphism on homology

$$H_*(C(M \times \mathbb{R}; X))[\pi_0 C(M \times \mathbb{R}; X)^{-1}] \xrightarrow{\cong} H_*(\Omega BC(M \times \mathbb{R}; X))$$

$$\uparrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where $\gamma: H_*(C(M \times \mathbb{R}; X)) \to H_*(C(M \times \mathbb{R}; X))[\pi_0 C(M \times \mathbb{R}; X)^{-1}]$ is the canonical ring homomorphism of the localization of the ring $H_*(C(M \times \mathbb{R}; X))$ with respect to $\pi_0 C(M \times \mathbb{R}; X)$.

Section spaces

Let W be a manifold of dimension m without boundary which contains M, for example, W=M if M is closed, or $W=M\cup\partial M\times [0,1)$ if M has boundary. Let ξ be the principal $O(\mathbb{R}^m)$ -bundle of the tangent bundle of W. Let $\xi[S^m\wedge X]$ be the associated bundle and $O(\mathbb{R}^m)$ acts diagonally on $S^m\wedge X$, trivially on X and canonically on $S^m\cong\mathbb{R}^m\cup\{\infty\}$. For each subspace pair (B,B_0) in W, let $\Gamma_{\xi[S^m\wedge X]}(B,B_0)$ be the space of cross sections of $\xi[S^m\wedge X]$ which are defined on B and take values at $\infty\wedge X$ on B_0 . We will consider the section space $\Gamma_{\xi[S^m\wedge X]}(W,W-M)$ (cf. [3, 21]). For the manifold $M\times[0,1]$, the manifold W is chosen as

$$W=M\times [0,1]\cup \partial (M\times [0,1])\times [0,1)\cong M\times [0,1]\cup (M\times (-1,0]\cup M\times [1,2))=M\times (-1,2).$$

Problem 23

As Hopf algebras,

$$H_*(\Omega BC(M \times \mathbb{R}; X); \mathbb{Z}_2) \cong H_*(\Gamma_{\mathcal{E}[\Sigma^{m+1}X]}(M \times (-1,2), M \times (-1,0) \cup M \times (1,2)); \mathbb{Z}_2).$$

References I

- [1] P. Blagojevič, W. Lück, G. Ziegler: On highly regular embeddings. Preprint. arXiv. abs/1305.7483v2 (2014).
- [2] P. Blagojevič, F. Cohen, W. Lück, G. Ziegler: On highly regular embeddings, II. Preprint. arXiv. abs/1410.6052 (2014).
- [3] C.F. Bodigheimer, F. Cohen, L. Taylor: On the homology of configuration spaces. Topology **28**, 111-123 (1989).
- [4] K. Borsuk: On the *k*-independent subsets of the Euclidean space and of the Hilbert space. Bull. Acad. Polon. Sci. Cl. III. **5**, 351-356 (1957).
- [5] M.E. Chisholm: k-regular mappings of 2ⁿ-dimensional euclidean space. Proc. Amer. Math. Soc. 74, 187-190 (1979).
- [6] F. Cohen: The homology of C_{n+1} -spaces, $n \ge 0$, The Homology of Iterated Loop Spaces, SLNM 533, Springer, Berlin, 207-351 (1976).
- [7] F. Cohen, D. Handel: *k*-regular embeddings of the plane. Proc. Amer. Math. Soc. **72**, 201-204 (1978).
- [8] D. Handel: An embedding theorem for real projective spaces. Topology. 7, 125-130 (1968).

References II

- [9] D. Handel: Approximation theory in the space of sections of a vector bundle. Trans. Amer. Math. Soc. 256, 383-394 (1979).
- [10] D. Handel: Obstructions to 3-regular embeddings. Hoston J. Math. 5, 339-343 (1979).
- [11] D. Handel: Some existence and nonexistence theorems for k-regular maps. Fund. Math. 109, 229-233 (1980).
- [12] D. Handel: 2*k*-regular maps on smooth manifolds. Proc. Amer. Math. Soc. **124**, 1609-1613 (1996).
- [13] D. Handel, J. Segal: On k-regular embeddings of spaces in Euclidean space. Fund. Math. 106, 231-237 (1980).
- [14] R.N. Karasev: Regular embeddings of manifolds and topology of configuration spaces. Preprint. arXiv. abs/1006.0613v3 (2011).
- [15] M. Mahowald: On extending cross sections in orientable $V_{k+m,m}$ bundles. Bull. Amer. Math. Soc. **68**, 596-602 (1962).
- [16] D. McDuff, G. Segal: Homology fibrations and the group-completion theorem. Invent. Math. **31**, 279-284 (1976).

References III

- [17] J. Milnor, J.D. Stasheff: Characteristic classes. Ann. Math. Stud. 76, Princeton University Press, Princeton N.J. (1974).
- [18] E. Rees: Embeddings of real projective spaces. Topology. 10, 309-312 (1971).
- [19] I. Singer: Best approximation in normed linear spaces by elements of linear subspaces. Springer-Verlag, Berlin and New York. (1970).
- [20] V. Vassiliev: Spaces of functions that interpolate at any k-points. Funct. Anal. Appl. 26, 209-210 (1992).
- [21] J. Wu: On the homology of configuration spaces $C((M, M_0) \times \mathbb{R}^n; X)$, Math. Z. 22, 235-248 (1998).
- [22] T. Yasui: The reduced symmetric product of a complex projective space and the embedding problem. Hiroshima Math. J. 1, 26-40 (1971).

Thank You

Thank Professor Wu Jie for his instruction and guidance!