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Introduction

Let X be a topological space and k > 2. Let K denote the real numbers R or the complex
numbers C. Let S™ denote the m-sphere and RP™, CP™ denote the real and complex projective

spaces respectively.

Definition 1

A map f: X — KV is called (real or complex) k-regular if for any distinct k points
X1, Xk € X, f(x1), -+, f(xx) are linearly independent over K. For simplicity, a real k-regular

map is also called a k-regular map.
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Introduction

Let a(k) denote the number of ones in the dyadic expansion of k. Some lower bounds of N for

k-regular maps of R? into RV were given in the following theorem.
Theorem 2 ([7], Example 1.2, Theorem 1.4)

If there exists a k-regular map of R? into RN, then N > 2k — (k). Moreover, when k is a power
of 2, there exists a k-regular map of R? into RN for N = 2k — a(k).

The following theorem partially generalized Theorem 2, giving a lower bound of N for k-regular
maps of R? into RN for all d > 1.

Theorem 3 ([1], Theorem 2.1)

Let d > 1. If there exists a k-regular map of R? into RN, then N > d(k — a(k)) + a(k).
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Introduction

The lower bounds of N for complex k-regular maps of Euclidean spaces into CV were studied in
the following two theorems.

Theorem 4 ([2], Theorem 5.2)

Let p be an odd prime and d > 1. If there exists a complex p-regular map of RY into CN, then
N>[(d+1)/2](p—1)+1.

Theorem 5 ([2], Theorem 5.3)

Let p be an odd prime, ap(k) the sum of coefficients in the p-adic expansion of k and d = p* for
some t > 1. If there exists a complex k-regular map of C? into CN, then
N > d(k — ap(k)) + ap(k).
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Introduction

Motivated by Theorem 2 - Theorem 5, lower bounds of N for k-regular maps of non-Euclidean
spaces into RV are of interest. For example, some 3-regular maps of S™ into R™*2 can be

constructed.

Example 6 ([1], Lemma 2.5, Example 2.6-(2))

Let m> 1. Let i: S™ — R™1 be the standard embedding and 1 : S™ — R the constant map

with image 1. There is a 3-regular map

sm (1_”2 (R, Rm+1) o~ Rm+2_
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Introduction

From Example 6 and [8, Theorem 4.1], [15, Theorem 5.2, Theorem 5.7] and [18, Theorem 5]
(resp. [22, Theorem 5.4]), we have the following corollary.

Corollary 7

There exist 3-regular maps of RP™ into RN (resp. 3-regular maps of CP™ into RV) in the cases
listed in the following Table.

RP™ | m=8qg+30r8g+5 g>0 N >2m— min{5,a(q)}
m=8g+1,4¢g>0 N >2m — min{7,a(q)} + 2
m=32qg+7,g>0 N>2m—6
m=8g+7,qg>1 N>2m-—5
m =3 (mod 8), m>19 N>2m—4
m=1(mod 4), m#2 +1 N>2m-2
m:4q+i,i:00r2,q7é2jor0 N>2m-1
m=224+1j>2 N>2m—1
m=242j>3 N >2m

CP™ | m>5 m#2 N >4m
m=2,j>2 N>4m+1
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Introduction

Main results

Our results are supplementary to [1, 2, 5, 7].
Theorem 8

Let m > 2. The following are equivalent

(a). there exists a 3-regular map of S™ into RV,
(b). there exists a 2-regular map of S™ into RV,
(c). N>m+2.

Theorem 9

Let m > 2. If there exists a complex 2-regular map of S™ into CN, then N > m/2+2ifmis
even and N > (m—1)/2+ 2 if m is odd.
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Introduction

Main results

Theorem 10

Let 21 < m < 21 [ > 2. If there exists a 2-regular map of RP™ into RN, then N > 21t1 4 1.

Corollary 11

Let m=2"+1,i>2. Then the following are equivalent
(a). there exists a 3-regular map of RP™ into RV,

(b). there exists a 2-regular map of RP™ into RV,

(c). N>2m—1.
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Introduction

Main results

Theorem 12

Theorem 13

Let 21 < m < 211 [ > 2. If there exists a 2-regular map of CP™ into RN, then N > 2/+2

Let m > 4. If there exists a complex 2-regular map of CP™ into CV, then N > 2m.
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Preliminaries

Cohomology of Grassmannians

For positive integers M > k, let Gx(KM) be the (real or complex) Grassmannian and Gy (K>) the
direct limit of G, (KM). Consider the inclusion KV — K> on the first N coordinates of K.
Then there is an induced map i : G (KN) — G, (K™).

o Case 1: K=R. Itis known that
H* (G (R™>®); Z) = Za[wa, wa, - - -, wi]
where w; is the i-th universal Stiefel-Whitney class with |w;| = i. And
H*(Gk(RM); Zo) = Zo[wr, wa, -+, wil] /(W1 — k15 W —ki2s -+ W)

where w; is defined as the j-th degree term in the expansion of (1 4+ wy +--- + wi) ! and
(V_VM—k+1a WM —k+2," " " ,VTlm) is the ideal generated by wp_ k41, Wpm—k42, -+ -, Wn. The
canonical inclusion i : Gx(RM) — G,(R>) induces an epimorphism on mod 2 cohomology.
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Preliminaries

Cohomology of Grassmannians

o CaseE 2: K=C. Itis known that
H*(G(C*);Z) = Z[c1, c2, -+ - , ]
where ¢; is the i-th universal Chern class with |¢;| = 2i. And
H*(G(CM); Z) = Zler, 2, -, ekl /(Em—kr1s EM—kt2s* » EMm)

where & is defined as the 2j-th degree term in the expansion of (1 + c; + -+ ¢) ! and
(EM—k+1s CM—k+2, "+ ,Cm) is the ideal generated by Ey_ k11, CM—kt2: "+, CM- The
canonical inclusion i : Gx(CM) — G,(C>) induces an epimorphism on integral cohomology.
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Preliminaries

Cohomology of unordered configuration spaces

Let X4 be the permutation group of order k and the k-th configuration space of X be
F(X, k) ={(x1, - ,xxk) € X x--- x X |for any i # j,x; # x;j}.
For any o € X4, let o act on F(M, k) by
o(xt, k) = (Xo(1)s s Xo(k))
and act on KX by
(i ndo = (ro-11), 5 fo—1())-

Then we have a space F(X, k)/Xy, called the k-th unordered configuration space of X, and an
O(KK)-bundle

Ex it KK = F(X k) x5, KK = F(X, k) /.

Let h: F(X,k)/Zkx — G((K*) be the classifying map of £, .
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Preliminaries

Cohomology of unordered configuration spaces

For any m > 1, F(§™,2)/%, ~ RP™. Consequently,

H*(F(S™.2)/%2i%2) = Zo[ul/(u™), |ul =1, 1
N m ] B Z[x]/(2x,me+2), |x| =2, if mis even,
HIFS™. /22 = { ZIx]/(2x, x5, |x| = 2, if mis odd. @
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Preliminaries

Cohomology of unordered configuration spaces

Theorem 14 ([8], Theorem 3.7)

As Zy-algebras, H*(F(RP™,2)/X2; Zy) is isomorphic to

Zou, x1, x2] /(U? — ux1, Fm(x1, X2), Fme1(x1,Xx2)). Here u = w1(§ﬁ1§P,,,Y2) and |x;| =i, i=1,2.

Theorem 15 ([22], Theorem 4.9)

As a H*(Gy(C™*1); Zy)-module, the cohomology H*(F(CP™,2)/X2; Zy) has {1, v, v?} as a
basis. Moreover, the ring structure of H*(F(CP™,2)/%;Z) is given by v3 = eyv. Here

v = w1(§%Pm’2).

Theorem 16 ([22], Theorem 4.10)

As a H*(Gy(C™+1); Z)-module, the cohomology H*(F(CP™,2)/%5;Z) has {1, u} as generators
with |u| = 2. Moreover, the ring structure of H*(F(CP™,2)/X5;Z) satisfies 2u = 0 and

u2

= ciu. Here ¢ = C1(§gpm72)-
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k-regular maps on topological spaces

Suppose f : X - KN is a (real or complex) k-regular map. We have a well-defined map

g F(X,K)/Zy —  Ge(KN).

Proposition 17

The following diagram commutes

F(X, k) /) —— Gr(KN)

G

G (K*°).
v
Let R be a ring. From Proposition 17, there is an induced commutative diagram on cohomology
H*(F(X, k)/Zi; R) «—— H* (G (KN); R) (3)
g

T

H*(Gk(K*°); R).

Ren Shiquan (Prof. Wu's student, NUS) 16 / 33



k-regular maps on topological spaces

CASE 1: K=R.

Lemma 18 ([7])

Lex X be a topological space and f : X — RN a k-regular map. If Wt(§§ «) #0, then N > t 4 k.

CASE 2: K=C.

Lemma 19 ([2])

Let X be a topological space and f : X — CN be a complex k-regular map. If Et(§§ «) # 0, then
N> t+ k.
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Sketch proofs of main results
Proof of Theorem 8

Let m > 2. We first prove

We(Eom 5) #0 for t < m.

4)

Then by applying (4) to Lemma 18 and with the help of Example 6, we obtain Theorem 8.
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Sketch proofs of main results
Proof of Theorem 9

We first prove

m
&(&§m,) # 0 fort< >

(5)
if mis even and
m—1
G(E5m,) # 0 fort< — (6)

if mis odd. Then by applying (5) and (6) to Lemma 19, we obtain Theorem 9.
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Sketch proofs of main results
Proofs of Theorem 10

We first prove that the smallest positive integer 7(m) such that for all t > 7(m), v‘vt(ﬁ]gp,,, ,)=0

7(m) = 271 (7

for 2/ < m < 2*1, i > 2. Then by applying (7) to Lemma 18, we obtain Theorem 10.
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Sketch proofs of main results
Proof of Theorem 12

We first prove that the smallest positive integer A(m) such that for all t > A(m), We(£8pm ,) =0

is
A(m) =212 —1for 2 < m < 2,i>2. )

Then by applying (8) to Lemma 18, we obtain Theorem 12.
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Sketch proofs of main results
Proof of Theorem 13

Let k(m) be the smallest positive integer such that for all t > x(m), Et(gfgp,,, 5) = 0. We first
prove that

Kk(m) >2m —1. (9)

Then by applying (9) to Lemma 19, we obtain Theorem 13.
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Plans

Configuration spaces

Let M be a manifold of dimension m and X be a topological space with non-degenerate

base-point. The configuration space C(M; X) is defined by
(oo}
C(M:; X) = | | F(M, k) x5, X¥/ =
k=0
where F(M,0) x5, X0 is defined to be the base-point * and = is generated by
(a1, yakixt, -, xi) ~ (a1, -, ak—1i X1, 5 Xk—1)

if xx = *. The length of a configuration induces a natural filtration of C(M; X) by the subspaces
k .
Ce(M; X) = | | F(M,j) xg, X/ / ~.
j=0

For k > 1, define the quotient spaces

D (M; X) = C(M; X)/Ck—1(M; X).
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Plans

Configuration spaces

o My aim is to obtain cup-lengths of elements in the cohomology ring
H*(Dy(M; S°); Z2)

and use this to study the lower bounds of N for k-regular maps of M into RV.

o | want to study the cohomology ring
H*(C(M; S%); Z,).
then find ways to derive the cohomology ring

H*(Dy(M; S°); Z5).
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Plans

Configuration spaces

o For primes p > 2, let Bq = dimg, Hq(M; Zp) and a tensor product of finite number of Hopf
algebras H,(QI=9%t=95+9;7,) (cf. [6]) as

t Bq
CH(Hx(M; Z); S") = Q) Q) H (17957 Z,).
q=0

For r > 2 and n > 2, we have that as a Zp-filtered algebra (cf. [21]),
Hi(C(M x R"; S"): Zp) =2 C™ " (Hy(M; Zp); S). (10)
| want to consider the case n =1 and r = 0 in (10) and study the algebra structure of

H.(C(M x R; S°); Zy).
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Plans

The group-completion theorem

Let M be a topological monoid up to homotopy. Let the homology be taken with integral
coefficients. Then the H-space structure on M implies that H.(M) is a Pontrjagin ring. It is
known that Hyo(M) = Z[moM], hence moM can be regarded as a multiplicative subset of the
Pontrjagin ring Hy(M).
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Plans

The group-completion theorem

Theorem 20 ([16])

Suppose

(1). Hy(M)[moM™1], the localization of Hy(M) with respect to mgM, admits calculation by
right fractions;

(2). moM is finitely generated.

Then the canonical map ¢ : M — QBM induces an isomorphism of Pontrjagin rings

Ho(M)[roM Y] —— 5 H.(QBM)
5 P
Ho (M)

where 7 : Hy(M) — H.(M)[moM 1] is the canonical ring homomorphism of the localization of
the ring Hyx (M) with respect to moM.
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Plans

The group-completion theorem

Proposition 21
C(M x R; X) is a monoid up to homotopy.

Problem 22
The canonical map ¢ : C(M X R; X) — QBC(M X R; X) induces a ring isomorphism on homology

H.(C(M x R; X))[moC(M x R; X)~1] — 5 H,(QBC(M x R; X))
-
H.(C(M x R; X))

where v : Hy(C(M x R; X)) — Hi(C(M x R; X))[moC(M x R; X)~1] is the canonical ring
homomorphism of the localization of the ring H.(C(M x R; X)) with respect to moC(M x R; X).

w

Ren Shiquan (Prof. Wu's student, NUS) 28 /33



Plans

Section spaces

Let W be a manifold of dimension m without boundary which contains M, for example, W = M
if M is closed, or W = MUOM x [0,1) if M has boundary. Let £ be the principal O(R™)-bundle
of the tangent bundle of W. Let £[S™ A X] be the associated bundle and O(R™) acts diagonally
on S™ A X, trivially on X and canonically on S™ = R™ U {co}. For each subspace pair (B, Bp) in
W, let T'¢ismax)(B, Bo) be the space of cross sections of {[S™ A X] which are defined on B and
take values at oo A X on By. We will consider the section space I'¢(smax) (W, W — M) (cf.

[3, 21]). For the manifold M x [0, 1], the manifold W is chosen as

W =Mx[0,1]Ud(M x[0,1]) x [0,1) = M x [0,1] U (M x (—=1,0] UM x [1,2)) = M x (—1,2).
Problem 23
As Hopf algebras,

H.(QBC(M x R; X); Z2) 22 Ha (Tgpzmiix)(M x (—1,2), M x (—1,0) U M x (1,2)); Z2).
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Thank You

Thank Professor Wu Jie for his instruction and guidance!
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