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What is Discrete Morse Theory?
▶ Robin Forman discovered a discrete analogue of Morse theory

in 1995.
▶ The notion of discrete Morse function on a regular cell

complex was introduced.
▶ critical cells
▶ gradient vector fields

...

▶ Given a discrete Morse function f on a finite regular cell
complex K, we can deform it to a cell complex K(f) whose
cells are in one-to-one correspondence with critical cells of f.

▶ We can also deform the cellular chain complex C∗(X) to a
chain complex C(f)∗ generated by critical cells whose
boundary operators are described by gradient flows.

▶ Discrete Morse theory is useful for reducing the number of
cells or generators.
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This Talk

Theorem
For a “good” discrete Morse function f on a finite regular cell
complex K, there exists a small 2-category C(f) whose set of
objects is Crit(f) and whose classifying space is homotopy
equivalent to K.

Motivations?
▶ Explicit functorial construction of a cell complex K(f) obtained

from a discrete Morse function f.
▶ A discrete analogue of Cohen-Jones-Segal Morse theory.
▶ Correct notion of discrete gradient flows.
▶ Ghrist’s question: discrete Morse theory for non-acyclic partial

matchings?
▶ Appearance of higher categories in topological combinatorics.
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Outline

Forman’s Discrete Morse Theory

Flows

The 2-Category of Flows

Sketch of Proof
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Forman’s Discrete Morse
Theory

5 / 36



Discrete Morse Function
Let K be a regular cell complex.

▶ The face poset of K is denoted by F(K) with partial order
e ≤ e′ ⇔ e ⊂ e′.

▶ When e < e′ and dim e′ = dim e + 1, we denote e <1 e′.

▶ A function f : F(K) → R is called a discrete Morse function if
there exists a decomposition

F(K) = D(f)⨿ Crit(f)⨿ U(f)

such that,
1. for any e ∈ D(f), there exists a unique e′ ∈ U(f) such that

e <1 e′ and f(e) ≥ f(e′),
2. for any e ∈ U(f), there exists a unique e′ ∈ D(f) such that

e′ <1 e and f(e′) ≥ f(e),
3. for any c ∈ Crit(f) and e′ <1 e, we have f(e′) < f(e), and
4. for any c ∈ Crit(f) and e <1 e′, we have f(e) < f(e′).

▶ Cells in Crit(f) are called critical.
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Discrete Morse Function

▶ The pairs of codimension 1 cells on which f is not order
preserving are matched.

Definition
The one-to-one correspondence between D(f) and U(f) in the
definition of discrete Morse function is denoted by

µf : D(f) −→ U(f).

This is called the (partial) matching induced by f.
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Discrete Morse Function: Examples
Example
The dimension function dim : F(K) → Z ⊂ R is a discrete Morse
function with D(dim) = ∅, U(dim) = ∅, and Crit(dim) = F(K).

Example
Let K = ∂[v0, v1, v2]. Define

f([v0]) = 0

f([v0, v1]) = f([v0, v2]) = 1

f([v1]) = f([v2]) = 2

f([v1, v2]) = 3.

Then this is a discrete Morse function with

Crit(f) = {[v0], [v1, v2]}.
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Discrete Morse Function: Examples

Example
Let K = ∂[v0, v1, v2, v3]. Define

f([v0]) = 0

f([v0, v1]) = f([v0, v2]) = f([v0, v3]) = 1

f([v1]) = f([v2]) = f([v3]) = 2

f([v0, v1, v2]) = f([v0, v2, v3]) = f([v0, v1, v3]) = 3

f([v1, v2]) = f([v2, v3]) = f([v1, v3]) = 4

f([v1, v2, v3]) = 5.

Then this is a discrete Morse function with

Crit(f) = {[v0], [v1, v2, v3]}.
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Acyclic Partial Matching

▶ The induced matching µf : D(f) → U(f) indicates the
“direction” we can collapse cells without changing the
homotopy type.

Theorem
The matching µf induced by a discrete Morse matching is acyclic,
i.e. there is no sequence of the form

e1 <1 µf(e1) >1 e2 <1 µf(e2) >1 · · · >1 en <1 µf(en) >1 e1

with n ≥ 2 and all ei’s distinct.

▶ In other words, there is no oriented cycle in the Hasse diagram
of the face poset F(K) with arrows corresponding to matchted
pairs inverted.

10 / 36



Acyclic Partial Matching

Theorem
For a partial matching µ : D → U on F(K),
µ = µf for a discrete Morse function f ⇐⇒ µ is acyclic.

▶ Forman regarded the acyclic partial matching µf as an
analogue of gradient vector field.

▶ He introduced the notion of gradient flows to describe
homology.
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Flows
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Forman Flows

▶ A sequence of cells

c >1 e1 <1 µf(e1) >1 · · · <1 en >1 µf(en) >1 c′

gives rise to a decreasing sequence of real numbers

f(c) > f(e1) ≥ f(µf(e1)) > f(e2) ≥ f(µf(e2)) >
· · · > f(en) ≥ f(µf(en)) > f(c′).

▶ This kind of sequence of cells can be regarded as a gradient
flow.

▶ The set of gradient flows from a critical cell c to another c′ is
denoted by Γ(c, c′).
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Algebraic Morse Theory

The notion of gradient flows plays an essential role in “algebraic
Morse theory”.

Theorem
For a discrete Morse function f on a finite regular cell complex K,
let Cn(f) be the free Abelian group generated by the critical cells of
dimension n. Then there exist homomorphisms

∂n : Cn(f) −→ Cn−1(f)

such that
▶ C∗(f) = {Cn(f), ∂n} is a chain complex.
▶ C∗(f) is chain homotopy equivalent to C∗(K).
▶ ∂n(c) =

∑
c′∈Critn−1(f)

∑
γ∈Γ(c,c′) m(γ)c′.
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Flow Paths
▶ In order to obtain homotopy type instead of homology, we

need relations among all cells.

Definition
A flow path γ with respect to a partial matching µ ending at a
critical cell c is a sequence

γ = (e1, u1, . . . , en, un; c = en+1)

of distinct cells satisfying the following conditions:
1. ui ∈ U(µ) for 1 ≤ i ≤ n.
2. Either ei = ui or ei = µ−1(ui).
3. ui > ei+1 for 1 ≤ i ≤ n.

We denote ℓ(γ) = n.
The set of all flow paths is denoted by FP(µ).
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Flow Paths

A flow path γ = (e1, u1, . . . , en, un; c) can be regarded as a
sequence

u1 > · · · > ui1−1

> µ−1(ui1) < ui1 > · · · > ui2−1

> µ−1(ui2) < ui2 > · · · > un > c

or

µ−1(u1) < u1 > · · · > ui1−1

> µ−1(ui1) < ui1 > · · · > ui2−1

> µ−1(ui2) < ui2 > · · · > un > c.
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Faithful Morse Function

Definition
A discrete Morse function f : F(K) → R is said to be faithful if

1. f is injective.
2. If e < e′ and e′ ̸= µf(e), then f(e) < f(e′).

Proposiiton
For any discrete Morse function f : F(K) → R, there exists a
faithful discrete Morse function g : F(K) → R with
Crit(f) = Crit(g), D(f) = D(g), U(f) = U(g) and µf = µg.
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Gradient Flows

If µ = µf for a faithful discrete Morse function f, for a flow path
γ = (e; e1, u1, . . . , en, un; e′), the sequence

u1 > · · · > ui1−1

> µ−1(ui1) < ui1 > · · · > ui2−1

> µ−1(ui2) < ui2 > · · · > un > c

implies

f(u1) > · · · > f(ui1−1)

> f(µ−1(ui1)) ≥ f(ui1) > · · · > f(ui2−1)

> f(µ−1(ui2)) ≥ f(ui2) > · · · > f(un) > f(c)

and a similar sequence for the other case.
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The Category of Flows
Definition
For a flow path γ = (e1, u1, . . . , en, un; c), we denote

ι(γ) = e1
τ(γ) = c.

Definition
Given a partial matching µ, define a category C(µ) as follows.

▶ Objects are critical cells: C(µ)0 = Crit(µ).
▶ For c, c′ ∈ C(µ)0,

C(µ)(c, c′) =
{
γ ∈ FP(µ)

∣∣ c′ > ι(γ), c = τ(γ)
}
.

▶ Compositions are given by concatenations.
▶ Identity morphisms are given by 1c = (c; c).
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Example
Let f be the discrete Morse function on K = ∂[v0, v1, v2] discussed
previously. We have

Crit(f) = {[v0], [v1, v2]}.

There are two flow paths from [v1, v2] to [v0]:

γ1 = ([v1], [v0, v1]; [v0])
γ2 = ([v2], [v0, v2]; [v0]).

And

C(µf)([v1, v2], [v1, v2]) = {([v1, v2]; [v1, v2])} = {γ12}
C(µf)([v0], [v0]) = {([v0]; [v0])} = {γ0}.

Thus
BC(µf) ∼= S1 ∼= ∂[v0, v1, v2].
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Example
There are two more flow paths

γ01 = ([v0, v1], [v0, v1]; [v0])
γ02 = ([v0, v2], [v0, v2]; [v0])

and
FP(µf) = {γ0, γ1, γ2, γ01, γ02, γ12}.

Define a partial order by

γ1, γ2 < γ12

γ0, γ1 < γ01

γ0, γ2 < γ02.

Then
BFP(µf) ∼= Sd(∂[v0, v1, v2]).
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Example

The target map τ : FP(µf) → Crit(µf) can be regarded as a
functor

τ : FP(µf) −→ C(µf).

which induces a homotopy equivalence

Bτ : BFP(µf)
≃−→ BC(µf).

▶ In general, each morphism set C(µ)(c, c′) should be regarded
as a poset or a small category.

▶ Thus C(µ) should be defined as a 2-category.
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The 2-Category of Flows
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Morphisms between Flows
Definition
For flow paths

γ = (e1, u1, . . . , en, un; c)
γ′ = (e′1, u′1, . . . , e′n′ , u′n′ ; c′),

a morphism from γ to γ′ is a strictly increasing function

φ : {1, . . . , k} −→ {1, . . . , ℓ(γ′) + 1}

satisfying the following conditions
1. ui = u′φ(i) for 1 ≤ i < k.
2. φ(k) = ℓ(γ′) + 1.
3. For each 1 ≤ j ≤ k, ej ≤ e′p for all φ(j − 1) < p ≤ φ(j), where

φ(0) = 0.
We denote |φ| = k.
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Morphisms between Flows
For flow paths γ, γ′, γ′′ and morphisms φ : γ → γ′ and
φ′ : γ′ → γ′′, the composition
φ′ • φ : {1, . . . , r} → {1, . . . , ℓ(γ′′) + 1} is defined by

(φ′ • φ)(i) =
{
φ′(φ(i)), i < r
φ′(|φ|), i = r,

where r is the unique number with φ(r − 1) < |φ′| < φ(r).

Proposiiton
For any partial matching µ, we obtain a category of flow paths
FP(µ).

Proposiiton
If µ = µf for a faithful discrete Morse function f, then FP(µ) is a
poset.

25 / 36



The Flow Category

For c, c′ ∈ Crit(f), regard C(f)(c, c′) as a full subcategory of
FP(µ). Then the concatenation of flow paths induces a functor

◦ : C(µ)(c′, c′′)× C(µ)(c, c′) −→ C(µ)(c, c′′)

and we obtain a 2-category C(µ)

Definition
This 2-category C(µ) is called the flow category of µ.
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The classifying space of C(µ)

Definition
Define a topological category BC(µ) by

▶ BC(µ)0 = C(µ)0 = Crit(µ)
▶ BC(µ)(c, c′) = B(C(µ)(c, c′)).

The composition of morphisms

◦ : BC(µ)(c′, c′′)× BC(µ)(c, c′) −→ BC(µ)(c, c′′)

induced by

◦ : C(µ)(c′, c′′)× C(µ)(c, c′) −→ C(µ)(c, c′′).

The classifying space of this topological category is denoted by
B2C(µ).
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Cohen-Jones-Segal Morse Theory

▶ Ralph Cohen, John Jones, and Graeme Segal wrote a paper
“Morse theory and classifying spaces” in early 90s.

▶ Given a Morse function f : M → R on a closed manifold M,
they constructed a topological category C(f) whose objects
are Crit(f). A morphism from c to c′ is a gradient flow from
c′ to c.

▶ They claimed that, if f is Morse-Smale, BC(f) is
homeomorphic to M.

▶ But the paper has not been published yet.
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Sketch of Proof
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Outline of Proof
Theorem
For a faithful discrete Morse function f on a finite regular cell
complex K, we have B2C(f) ≃ K.

1. Define a normal colax functor

τ : FP(f) −→ C(f)

by (e1, u1, . . . , en, un; c) 7→ c.
2. Show that the “homotopy fibers” c ↓ τ of τ are contractible.
3. Use Quillen’s theorem A for colax functors between

2-categories to obtain a homotopy equivalence

Bτ : BnclFP(f) = BFP(f) ≃−→ BnclC(f).

4. In general, BnclC(f) ≃ B2C(f).
5. Show that

BFP(f) ≃ K.
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Theorem A for Colax Functors
Theorem (Bullejos-Cegarra 2003, del Hoyo 2012)
Let f : C → D be a normal colax functor between 2-categories.
Suppose that f is prefibered in the sense that the canonical functor
iy : f−1(y) → y ↓ f has a right adjoint for each y ∈ D0. Suppose
further that Bf−1(f) is contractible for all y ∈ D0. Then

Bnclf : BnclC −→ BnclD

is a homotopy equivalence.

Theorem
The collapsing functor τ : FP(f) → C(f) is a prefibered normal
colax functor with Bτ−1(c) contractible for all c ∈ Crit(f). Thus it
induces a homotopy equivalence

Bnclτ : BnclFP(f) ≃−→ BnclC(f).
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Classifying Spaces of 2-Categories

▶ There are many ways to take a classifying space of a
2-category.

▶ Carrasco, Cegarra, and Garzó́n [Algebr. Geom. Topol. 2010]
compared 10 definitions of classifying spaces of 2-categories
and showed that they are all homotopy equivalent.

▶ In particular,
BnclC(f) ≃ B2C(f).
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Proof of Step 5

1. Define a flow path (e1, u1, . . . , en, un; c) to be reduced iff
ei+1 ̸< µ−1(ui).
The subposet of reduced flow paths is denoted by FP(f).

2. There is a reduction map

r : FP(f) −→ FP(f),

whose composition with the inclusion

FP(f) −→ FP(f) −→ FP(f)

is a descending closure operator. In particular

BFP(f) ≃ BFP(f).
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Proof of Step 5

3. We also have a subcategory C(f) of C(f) consisting of reduced
flow paths with the reduction functor

r : C(f) −→ C(f).

4. For each pair c, c′ Crit(f),

Br : BC(f)(c, c′) −→ BC(f)(c, c′)

is a deformation retraction. Thus it induces a homotopy
equivalence

B2r : B2C(f) ≃−→ B2C(f).
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Proof of Step 5

5. Construct a subdivision Sdf K of K whose face poset F(Sdf K)
is isomorphic to FP(f). Then

BFP(f) ≃ BF(Sdf K) = Sd(Sdf(K)) ∼= K.

.
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Work in Progress

▶ Cell decomposition?
1. In Forman’s discrete Morse theory, a cell complex K(f) whose

cells are in one-to-one correspondence to critical cells of f was
constructed.

2. We do have a decomposition of BnclC(f) into contractible
spaces indexed by Crit(f).

▶ Hidetaka Tokuno is trying to remove the acyclicity condition.
▶ Vidit Nanda is trying to find a more abstract proof by using

localizations of 2-categories.
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