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In my talk I shall speak on some results which was found jointly with M. V. Meshchadim
and Yu. A. Mikhal’chishina.

We introduce some representation ψ of the virtual braid group V Bn into the automorphism
group Aut(Fn,2n+1) of a free product Fn,2n+1 = Fn ∗Z2n+1, where Fn is a free group and Z2n+1 is
a free abelian group. This representation generalizes some other representations. In particular,
the representation φ0 : V Bn −→ Aut(Fn) defined in [7]; the representation φ1 : V Bn −→
Aut(Fn+1) defined in [5], [1] (see also, [3]); the representation φ2 : V Bn −→ Aut(Fn,n+1) defined
in [6]; the representation φ3 : V Bn −→ Aut(Fn,2) defined in [4]. The question about faithfulness
of the representations φ1, φ2, φ3 was opened (the representation φ0 is in fact a representation
of the welded braid group and has non-trivial kernel for n ≥ 3). Recently O. Chterental [2]
proved that for n > 3 the representation φ1 has non-trivial kernel. Using the same approach
we prove

Proposition 1. The representations φ2 and φ3 have non-trivial kernel for n > 3.

Using any of the representation ψ, φ0, φ1, φ2, φ3 one can defines a group Gψ(L), Gφ0(L),
Gφ1(L), Gφ2(L), Gφ3(L) of a virtual link L. A connection between these groups gives

Theorem. The groups Gφ0(L), Gφ1(L), Gφ2(L), Gφ3(L) are homomorphic images of the
group Gψ(L). If L is a virtual knot, then we have isomorphisms Gψ(L) ∼= Gφ1(L)

∼= Gφ2(L)
∼=

Gφ3(L).

A connection between the group Gψ(L) and the group of classical link L gives

Proposition 2. If L is a classical link, then Gψ(L) ∼= π1(S
3 \ L) ∗ A for some free abelian

group A.
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