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Abstract

The talk is based on joint work with Andrey Kustarev.

The central subject are theorems on equivariant embeddings
of quasitoric manifolds in terms of combinatorial data.

One of our tasks is to improve the classical theorems in the case
when combinatorial data defines the corresponding structure
on the underlying quasitoric manifold.
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Manifolds with an action of compact group

Theorem (Mostow-Palais, 1957)
Let M be a compact smooth manifold with a smooth action
of a compact Lie group G.

Then there exists a smooth embedding M → RN equivariant
with respect to a linear representation G→ GL(N,R).

See:
Mostow, George D.,
Equivariant embeddings in Euclidean space,
Annals of Mathematics, Second Series 65: 432-446, 1957.

Palais, Richard S,
Imbedding of compact, differentiable transformation groups in
orthogonal representations, J. Math. Mech. 6: 673-678, 1957.
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Complex manifolds

Theorem (Kodaira, 1954)
Let M be a compact complex manifold with a positive
holomorphic linear bundle
(for example, M possesses a rational Kähler form).

Then there exists a complex-analytic embedding M → CPN .

See:
Kodaira, Kunihiko,
On Kahler varieties of restricted type
(an intrinsic characterization of algebraic varieties),
Annals of Mathematics. Second Series 60 (1): 28-48 (1954).
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Compact symplectic manifolds

Theorem (Gromov-Tishler, 1970 - 1977)
Let M be a compact symplectic manifold with
an integral symplectic form ω.

Then there exists a symplectic embedding of M to CPN

with the standard symplectic form.

See:
M. Gromov,
A topological technique for the construction of solutions
of differential equations and inequalities,
Actes, Congres intern. Math., Tome 2, pages 221-225, 1970.

D. Tischler,
Closed 2-forms and an embedding theorem
for symplectic manifolds,
Journal of Differential Geometry, (12):229-235, 1977.
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Notation

Cm is the standard complex linear m-dimensional space endowed
with the canonical basis e1 = (1,0, . . . ,0), . . .,em = (0, . . . ,0,1);

Rm ⊂ Cm is the standard real linear space generated by e1, . . . ,em;

Rm
> ⊂ Rm is the positive cone i.e. the area formed by all points in Rm

with nonnegative coordinates;

Zm ⊂ Rm is the standard lattice generated by e1, . . . ,em;
Set

D2 = {z ∈ C; |z| ≤ 1},

S1 = {z ∈ D2, |z| = 1}.
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Notation

Tm ⊂ Cm is the standard compact torus
{(t1, . . . , tm) ∈ Cm : |tk | = 1, k ∈ [1,m]};

the map exp : Rm → Tm given by the formula
exp(x1, . . . , xm) = (e2πix1 , . . . ,e2πixm ) induces
the canonical isomorphism of Tm and Rm/Zm.

The standard k -dimensional compact torus is denoted by Tk and
an abstract k -dimensional toric subgroup in the standard torus Tm is
denoted by T k ;

Tω ⊂ Tm is a toric subgroup corresponding to an index set
ω ⊂ [1,m];

the one point set ω = {i} defines a coordinate torus Ti ⊂ Tm;
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Notation

ρ : Cm → Rm
> is the standard moment map given by the formula

ρ(z1, . . . , zm) = (|z1|2, . . . , |zm|2); (1)

s : Rm
> → Cm is the map given by the formula

s(x1, . . . , xm) = (
√

x1, . . . ,
√

xm), (2)

note that ρ ◦ s = id .
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Moment-angle complex

Consider a simple polytope P.
Denote by fk the number of k -dimensional faces of P. Set m = fn−1.
We have the face lattice L(P) of P.
Let {F1, . . . ,Fm} be the set of facets and {v1, . . . , vf0} – the set of
vertices. For any face F ∈ L(P),F 6= ∅ set

ZP,F =
∏

i : Fi⊃F

D2
i ×

∏
j : Fj 6⊃F

S1
j ⊂ D2m.

The moment-angle complex of a simple polytope P is

ZP =
⋃

F∈L(P)\{∅}

ZP,F
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Vertex partition of a moment-angle complex

Lemma
There is a homeomorphism:

ZP =

f0⋃
i=1

ZP,vi

Let P = I = [0; 1].
Then ZI = ZI,v0 ∪ ZI,v1 = (D2 × S1) ∪ (S1 × D2)

P = ∆n ⇐⇒ZP = S2n+1.
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The canonical torus action

The space ZP has the canonical structure of a multigraded
subcomplex in D2m.
The embedding ZP ⊂ D2m is Tm – equivariant.

Theorem
There is a homeomorphism P ∼= ZP/Tm and
the following diagram commutes:

ZP −−−−→ D2my y
P −−−−→ Im
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Construction of a moment-angle manifold

Take a simple polytope

P = {x ∈ Rn : aix + bi > 0, i = 1, . . . ,m}

Using the embedding

jP : P −→ Rm
≥ : jP(x) = (y1, . . . , ym)

where yi = aix + bi , we will consider P as the subset in Rm
> .

A moment-angle manifold ẐP is the product
of Cm and P over Rm

> described by the pullback diagram:

ẐP
jZ−−−−→ Cm

ρP

y yρ
P

jP−−−−→ Rm
>

where ρ(z1, . . . , zm) =
(
|z1|2, . . . , |zm|2

)
.
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Moment-angle manifold

We have
ẐP = {(x , z) ∈ P × Cm : jP(x) = ρ(z)}

Here ρ(z) = (|z1|2, . . . , |zm|2) and jP(x) = Ax + b,
where A is a (m × n)-matrix, rankA = n and b ∈ Rm.
Mapping jP is an embedding because rank of A is n.
Thus mapping (x , z)→ z gives the embedding ẐP ⊂ Cm.
Denote by C such ((m − n)×m)-matrix that CA = 0 and
rank of C is m − n.
Consider the map

Φ : Cm → Rm−n : Φ(z) = C(ρ(z)− b).

It is a Tm-equivariant quadratic map with respect
to the trivial action of Tm on Rm−n.
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Smooth structures on a moment-angle manifold

Set Φ(z) = (Φ1(z), . . . ,Φm−n(z)).

Theorem (Buchstaber-Panov-Ray, 2007)
For any simple polytope P there is a homeomorphism
ẐP → ZP , using it in what follows we identify ẐP and ZP .

ZP is a complete intersection of real quadratic
hypersurfaces in R2m ∼= Cm.

Fk = {z ∈ Cm : Φk (z) = 0}, k = 1, . . . ,m − n.

There is a trivialisation of the normal bundle
of the Tm-equivariant embedding ZP ⊂ Cm

that is
ZP has the structures of a framed manifold.
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Freely acting subgroups

Let H ⊂ Tm be a subgroup of dimension r 6 m − n.
Choosing a basis, we can write it in the form

H =
{

(e2πi(s11ϕ1+···+s1rϕr ), . . . ,e2πi(sm1ϕ1+···+smrϕr )) ∈ Tm},
where ϕi ∈ R, i = 1, . . . , r and S = (sij) is an integral
(m × r)-matrix which defines a monomorphism Zr → Zm.
For any subset ω = {i1, . . . , in} ⊂ [m] denote by Sω̂
the ((m − n)× r )-submatrix of S obtained
by deleting the rows i1, . . . , in.
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Freely acting subgroups

Write each vertex v ∈ Pn as vω if v = Fi1 ∩ . . . ∩ Fin

Lemma
The subgroup H acts freely on ZP if and only if for
every vertex vω the (m − n)× r submatrix Sω̂ defines
a monomorphism Zr ↪→ Zm−n onto a direct summand.

Corollary

The subgroup H of rank r = m − n acts freely on ZP
if and only if for any vertex vω = Fi1 ∩ . . . ∩ Fin of Pn,

det Sω̂ = ±1.
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Characteristic map

Definition
An (n ×m)-matrix Λ gives a characteristic map

` : {F1, . . . ,Fm} −→ Zn

for a given simple polytope Pn with facets {F1, . . . ,Fm}
if the column-vectors λj1 , . . . , λjn of Λ corresponding to any
vertex vω form a basis for Zn.

Example: P2
5 , Λ =

(
1 0 1 0 1
0 1 0 1 1

)
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The problem

By permuting the facets of P if necessary, we may assume that
the intersection F1 ∩ · · · ∩ Fn is the vertex v∗.
Associate to a simple n-dim polytope P an integral (n ×m)-matrix

Λ =


1 0 . . . 0 λ1,n+1 . . . λ1,m
0 1 . . . 0 λ2,n+1 . . . λ2,m
...

...
. . .

...
...

. . .
...

0 0 . . . 1 λn,n+1 . . . λn,m

 ,

in which the column λj = (λ1j , . . . , λnj) corresponds
to the facet Fj , j = 1, . . . ,m, and the columns λj1 , . . . , λjn
corresponding to any vertex vω = Fj1 ∩ · · · ∩ Fjn are required
to form a basis for Zn.
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Combinatorial data

Definition
The combinatorial quasitoric data (P, Λ) consists
of an oriented combinatorial simple polytope P and
an integral (n ×m)-matrix Λ which gives a characteristic map.

The matrix Λ defines an epimorphism

` : Tm → Tn.

The kernel of ` (which we denote K (Λ)) is isomorphic to Tm−n.
The action of K (Λ) on ZP is free due to the condition
on the minors of Λ.
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Quasitoric manifold with structure
Construction
The quotient M = ZP/K (Λ) is a 2n-dimensional smooth
manifold with an action of the n-dimensional torus Tm/K (Λ).
We denote this action by α.
It satisfies the Davis–Januszkiewicz’ conditions:

1 α is locally isomorphic to the standard coordinatewise
representation of Tn in Cn,

2 there is a projection π : M → P whose fibres are orbits of α.
We refer to M = M(P, Λ) as the quasitoric manifold associated
with the combinatorial data (P, Λ).

Let
P = {x ∈ Rn : Ax + b > 0}.

Definition
The manifold M = M(P, Λ) is called the quasitoric manifold
with (A, Λ)-structure.
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Equivariant embeddings of complex projective spaces

Consider the standard complex projective space

CPn = {(z1 : · · · : zn+1), z ∈ Cn+1, |z| = 1}

with the standard action of torus Tn+1. Let M(n + 1,C) be the space
of (n + 1)× (n + 1)-matrices with the following action of Tn+1

t ◦M = t>Mt .

The mapping CPn → M(n + 1,C)

(z1 : · · · : zn+1)→ zz>,

where z is a column vector, gives the Tn+1-equivariant
embedding CPn → Rn+1

> × CN , N = n(n+1)
2 .

Example

CP1 → R2
> × C,

(z1 : z2)→ (|z1|2, |z2|2, z1z2).
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Monomial functions

Every vector a = (a1, . . . ,am) ∈ Zm determines
a real-algebraic monomial function:

ϕa : Cm → C,
ϕa(z1, . . . , zm) = ẑa1

1 · . . . · ẑ
am
m ,

where
ẑai

i = 1 if ai = 0,

ẑai
i = zai

i if ai > 0,

ẑai
i = z−ai

i if ai < 0.

Example

The vector a = (1,0,−1) ∈ Z3 gives a function

ϕa : C3 → C,

ϕa(z1, z2, z3) = z1z3
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Equivariance of monomial functions

Let t = (t1, . . . , tr ) ∈ Tr , a = (a1, . . . ,ar ) ∈ Zr and
A be an integer (s × r)-matrix and Ak be the k -th row
of the matrix A.

Notation:

ta = ta1
1 · . . . · t

ar
r ∈ T1 and tA = (tA1 , . . . , tAs ) ∈ Ts.

Any a ∈ Zm gives the character χa : Tm → T1 : t → ta.

Any monomial function ϕa is equivariant.
That is if a ∈ Zm and t ∈ Tm, then

ϕa(tz) = taϕa(z)

for all z ∈ Cm.
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Example of an equivariant map

Example

Let a = (1,0,−1) ∈ Z3 and t = (t1, t2, t3) ∈ T3.
Set

tz = (t1z1, t2z2, t3z3).

We have:
ta = t1t−1

3

and
ϕa : C3 → C,

ϕa(tz) = t1z1(t3z3) = (t1t−1
3 )z1z3 = taϕa(z)
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Characteristic map and free action

Lemma
Suppose (n×m)-matrix Λ = (In, Λ∗) gives a characteristic map

` : {F1, . . . ,Fm} −→ Zn

Then the matrix S = (−Λ∗, Im−n) gives the (m − n)-dimensional
subgroup

K (Λ) =
{

(e2πiψ1 , . . . ,e2πiψm ) ∈ Tm}, i =
√
−1,

which acts freely on (m + n)-dimensional manifold ZP .
Here for ξ = (ξ1, · · · , ξm−n) ∈ Zm−n we take

ψk = −
m−n∑
j=1

λk+n,jξj , k = 1, . . . ,n; ψn+k = ξk , k = 1, . . . ,m − n.
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The commutative diagram of a characteristic map

0 −−−−→ Zm−n S−−−−→ Zm Λ−−−−→ Zn −−−−→ 0y y y
0 −−−−→ Rm−n −−−−→ Rm −−−−→ Rn −−−−→ 0y y y
0 −−−−→ Tm−n ST−−−−→ Tm ΛT−−−−→ Tn −−−−→ 0

We have a real algebraic map

ϕΛ : Cm → Cn : ϕΛ(z) = (ϕΛ1(z), · · · , ϕΛn (z)),

where Λk is a k -th row of Λ.

ϕΛ(tz) = (ΛTt)ϕΛ(z) for any t ∈ Tm.

ϕΛ(tz) = ϕΛ(z)⇔ t = STτ for any τ ∈ Tm−n.
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Local embedding

Let ϕ̂Λ : ZP → Cn be the restriction of the map ϕΛ : Cm → Cn

to the moment-angle manifold ZP ⊂ Cm.
The map ϕ̂Λ induces the smooth map ϕ̃Λ : M(P, Λ)→ Cn

equivariant with respect to the representation Tm/Tm−n → Tn.
Let v∗ = F1 ∩ · · · ∩ Fn. Then ZP,v∗ = (D2)n × (S1)m−n ⊂ Cm.

Lemma
There is the Tn-equivariant embedding:

ϕ̃Λ : ZP,v∗/K (Λ) ' (D2)n × (1)m−n ⊂ Cn × (1)m−n,

ϕ̃Λ(z1, · · · , zn,1, · · · ,1) = (z1, · · · , zn,1, · · · ,1).

27 / 49



Complex projective plane

Let P = ∆2. Then

Z∆2 = S5 = (D2 ×D2 × S1) ∪ (D2 × S1 ×D2) ∪ (S1 ×D2 ×D2),

Λ =

(
1 0 −1
0 1 −1

)
, S =

1
1
1


0 −−−−→ Z S−−−−→ Z3 Λ−−−−→ Z2 −−−−→ 0
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Complex projective plane

ϕΛ : C3 → C2 : ϕΛ(z) = (z1z3, z2z3)

ϕ̂Λ : Z∆2 → C2

ϕ̃Λ : CP2 → C2 : (z1 : z2 : z3)→ (z1z3, z2z3)

Restrictions of the map ϕ̃Λ on the parts give:

(z1 : z2 : 1)→ (z1, z2)

(z1 : 1 : z3)→ (z1z3, z3)

(1 : z2 : z3)→ (z3, z2z3)

Thus we describe the embedding ϕ̃Λ,v1 for the Z∆2,v1
/T.

Using the similar maps ϕ̃Λ,v2 and ϕ̃Λ,v3 , we obtain:

CP2 //

$$

C2 × C2 × C2

ww
R3
> × C3
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Embedding theorem

Let P be a simple n-dimensional polytope.
For any vertex v ∈ P we have the Tn-equivariant map
ϕ̃Λ,vk : M(P, Λ)→ Cn, such that the restriction
ϕ̃Λ,vk : ZP,vk/K (Λ)→ Cn is a Tn-equivariant embedding.

Theorem
For any combinatorial data (P, Λ) there is an equivariant
real-algebraic embedding

ϕ̃Λ : M(P, Λ)→ Cn × · · · × Cn ∼= CN ,

where N = f0n and ϕ̃Λ = ϕ̃Λ,v1 × · · · × ϕ̃Λ,vf0
.
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Monomial maps in the general case

Suppose that vectors a1, . . . ,aq ∈ Zm define the characters

χa1 , · · · , χaq ,

such that
χa1(t) = · · · = χaq (t),

if t = STτ for any τ ∈ Tm−n. Thus we have the induced character

χ̂ : Tm−n → T1 : χ̂(τ) = χa1(SΛτ) = · · · = χaq (SΛτ).

Let ϕ : ZP → Cq be a restriction of the monomial maps
ϕ(z) = (ϕa1(z), . . . , ϕaq (z)) to the moment-angle manifold
ZP ⊂ Cm.
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Monomial maps of the quasitoric manifold

If the character χ̂ is trivial, then ϕ is constant on orbits
of the action of K (Λ) on ZP .
The map ϕ induces a smooth map ϕ̃ : M(P, Λ)→ Cq

equivariant with respect to some representation Tn → Tq , where
action of Tq on Cq is supposed to be standard.

Let
q∑

j=1
|ϕaj (z)|2 6= 0, if z ∈ ZP ⊂ Cm then the map ϕ induces a

smooth map ϕ̃P : M → CPq−1 equivariant with respect to some
representation Tn → Tq , where the action of Tq on CPq−1 is
supposed to be standard.

Maps of the form ϕ̃ : M → Cq and ϕ̃P : M → CPq−1 constructed by
a family of vectors a1, . . . ,aq are called monomial maps
of the quasitoric manifold M .
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Complex projective plane

P = ∆2,

S =

1
1
1

 .

Let ak = ek ∈ Z3, k = 1,2,3. Then

SΛg =

g
g
g

 ,

where g = e2πiξ and χak (SΛg) = g. Thus

ϕ : C3 → C3

is the identify map. If z ∈ Z∆2 , then z 6= 0 and we obtain the map

˜ϕ∆2 : CP2 → CP2,

which is the identify map.
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Edge-characters

Let r ⊂ P be an edge of the polytope P. Since the action
of Tn on M is locally standard, the isotropy subgroup G(r)
of the submanifold π−1(r) is an (n − 1)-dimensional
toric subgroup in Tn.

Denote by χr the character Tn → T1 = T/G(r).

Definition
The edge-character µr of edge r is the composition

µr : Tm Λ−→ Tn χr−→ T1.
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Vertex-characters

Let χ : K → T1 be a character of the group K = K (Λ)
and vω = Fi1 ∩ · · · ∩ Fin be a vertex of P. The composition
pω : K ↪→ Tm → Tω̂ is an isomorphism. Here ω̂ = [1,m] \ ω.

Definition
The χ-vertex-character χvω of vω is the character

χvω : Tm → Tω̂
p−1
ω−→ K

χ−→ T1.
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Vertex-edge-characters

Let χ : K → T1 be a character of the group K ,
r ⊂ P an edge of P and v ∈ r a vertex lying on the edge r .

Definition
The vertex-edge-character of the pair (v , r) is a character
χv ,r : Tm → T1 defined as the sum of the characters
χv : Tm → T1 and µr : Tm → T1.
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Characters of Tm associated with characters of K

Let ch(Tm) be the group of all characters of Tm.
The set of pairs

{ character χ : K → T1, vertex v ∈ P}

determines the set of characters {χv |v ∈ P} ⊂ ch(Tm).
The set of triples

{ character χ : K → T1, edge r ⊂ P, vertex v ∈ r}

determines the set {χv ,r |v ∈ r ⊂ P} ⊂ ch(Tm),
Therefore,

Every character χ : K → T1 gives the set of characters

Xχ = ({χv} ∪ {χv ,r}) ⊂ ch(Tm).
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The properties of constructed characters

There are at most f0(P) characters {χv} and at most
nf0(P) = 2f1(P) characters of the form {χv ,r}. The number of
different characters in Xχ does not exceed f0(P)(n + 1).

The cardinality |Xχ| is often much less than this upper bound,
since characters χv and χv ,r may be equal for different vertices
v ∈ P and pairs (v , r).

The restriction of any of characters χv and χv ,r to the subgroup
K ⊂ Tm is equal to χ : K → T1.

For any vertex v ∈ P the character χv is trivial if and only if
the character χ is trivial.

The character µr does not depend on χ and is nontrivial
for every r ⊂ P. The restriction of µr to the subgroup K
is trivial.
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The properties of constructed characters

Every character χv , v ∈ P, is well-defined, but characters
Φr : Tn → T1 and µr : Tm → T1 are defined only up to
multiplication by ±1, so the definition of χv ,r is still ambiguous.
If v0, v1 are vertices lying on an edge r ⊂ P, then, the character
χv1 − χv0 is a multiple of µr .
We set χv0,r = χv0 + µr , where µr has the same direction as
χv1 − χv0 . If χv1 = χv0 , then we assume that the first nonzero
coordinate of m-vector defining µr : Tm → T1 is positive.

If the character χ is trivial, the cardinality of Xχ does not exceed
f1(P) + 1, because χv ≡ 1 for all v ∈ P and if v0, v1 are
vertices of an edge r ⊂ P, then χv0,r = χv1,r = µr .
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Equivariant embeddings in linear spaces

Vectors wr that define characters χr , r ⊂ P, form an integral
(n × q)-matrix W . Consider the corresponding linear representation
W of the torus Tn in Cq .

The moment map π : M → P ⊂ Rn is equivariant with respect to
the trivial torus action on Rn.

Theorem
The moment map π : M → P can be extended to
a real-algebraic embedding

π × ϕ̃ : M → Rn × Cq

equivariant with respect to the representation W : Tn → Tq.

Here the number q does not exceed the number of edges of P, as
follows from the construction of the representation W .
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Equivariant embeddings

Theorem

Let χ : K → T1 is an arbitrary character. The set of characters
Xχ determines a monomial map ϕ̃P,χ : M → CPq−1, which can
be extended to an embedding π × ϕ̃P,χ : M → P × CPq−1.

The induced cohomology pullback

ϕ̃∗P,χ : H2(CPq−1,Z)→ H2(M,Z)

coincides with the classifying map

H2(CP∞,Z)
'−→ H2(CPq−1,Z)→ H2(M,Z)

of the bundle ξχ = ZP ×K C→ M = ZP ×K (pt)
If the character χ is trivial, then the image of the map ϕ̃P,χ lies
entirely in some affine chart Cq−1 ⊂ CPq−1.
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Equivariant embeddings in projective spaces

Let
P = {x ∈ Rn : Ax + b > 0}.

Suppose that (A,Λ)-structure of a quasitoric manifold M satisfies
2 the following conditions:

b ∈ Zm,

A> = BΛD, where B is an integral (n × n)-matrix with |B| 6= 0
and D is a diagonal (m ×m)-matrix with all nonzero elements
equal to ±1.

Consider the character χB : Tm → T1 determined by vector b ∈ Zm

and denote by χP the character K ⊂ Tm → T1.

Theorem

The projective map ϕ̃P,χP : M → CPq−1 constructed using
the set XχP is a smooth equivariant embedding.
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3-dimensional Stasheff polytope
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Combinatorial data

Let us consider an example of toric variety of complex dimension
three over Stasheff polytope K5.

The matrix Λ = A>P has the form

Λ =

1 0 0 −1 0 0 0 1 −1

0 1 0 0 −1 0 −1 0 1

0 0 1 0 0 −1 −1 1 0

 ,

and the vector bP is equal to (0,0,0,3,3,3,5,−1,2)T .
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Moment-angle manifold of Stasheff polytope

The manifold ZP ⊂ C9 is given by the following equations:

|z1|2 + |z4|2 = 3,

|z2|2 + |z5|2 = 3,

|z3|2 + |z6|2 = 3,

|z1|2 + |z3|2 + |z7|2 + |z9|2 = 7,

|z7|2 + |z8|2 + |z9|2 = 6,

|z2|2 + |z3|2 + |z7|2 = 5.

The moment-angle manifold ZP ⊂ C9 has a real dimension 12.
It is endowed with the action of the compact torus T9,
with 6-dimensional subgroup K ⊂ T 9 acting freely on ZP .
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Embedding of quasitoric manifold of Stasheff polytope

In the case of Stasheff polytope we have q = 6 and f1(P) = 21.
These monomial functions embed the quasitoric manifold
corresponding to Stasheff polytope to Euclidean space R3 × C6.
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Projective embedding of smooth toric variety

The following monomial functions define a projective embedding of
the manifold corresponding to Stasheff polytope K5:

ϕb1 = z1z2
4z3

5z3
6z5

7z9, ϕb2 = z3z3
4z3

5z2
6z4

7z2
9 ,

ϕb3 = z1z3
2z2

4z3
6z2

7z4
9 , ϕb4 = z3

2z3z3
4z2

6z7z5
9 ,

ϕb5 = z2
1z4z3

5z3
6z5

7z8, ϕb6 = z3
1z2z2

5z3
6z4

7z2
8 ,

ϕb7 = z3
1z2z3

3z2
5z7z5

8 , ϕb8 = z2
1z3

3z4z3
5z2

7z4
8 ,

ϕb9 = z3
1z2

2z3
3z5z5

8z9, ϕb10 = z2
2z3

3z3
4z5z2

8z4
9 ,

ϕb11 = z3
2z2

3z3
4z6z8z5

9 , ϕb12 = z3
1z3

2z2
3z6z4

8z2
9 ,

ϕb13 = z3
3z3

4z3
5z2

7z2
8z2

9 , ϕb14 = z3
1z3

2z3
6z2

7z2
8z2

9 .
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Projective embedding of smooth toric variety

ϕa1 = z1z2z2
4z2

5z3
6z4

7z2
9 , ϕa2 = z1z2

2z2
4z5z3

6z3
7z3

9 ,

ϕa3 = z2
1z3

2z4z3
6z2

7z8z3
9 , ϕa4 = z3

1z2
2z5z3

6z3
7z2

8z9,

ϕa5 = z2z3z3
4z2

5z2
6z3

7z3
9 , ϕa6 = z2

2z3z3
4z5z2

6z2
7z4

9 ,

ϕa7 = z3
1z3

2z1
3z2

6z7z3
8z2

9 , ϕa8 = z3
1z2z3z2

5z2
6z3

7z3
8 ,

ϕa9 = z2
1z3z4z3

5z2
6z4

7z2
8 , ϕa10 = z1z3

2z2
3z2

4z6z2
8z4

9 ,

ϕa11 = z2
1z3

2z2
3z4z6z3

8z3
9 , ϕa12 = z3

1z2z2
3z2

5z6z2
7z4

8 ,

ϕa13 = z2
1z2

3z4z3
5z6z3

7z3
8 , ϕa14 = z2

3z3
4z3

5z6z3
7z8z2

9 ,

ϕa15 = z1z3
3z2

4z3
5z2

7z3
8z9, ϕa16 = z2z3

3z3
4z2

5z7z2
8z3

9 ,

ϕa17 = z1z2
2z3

3z2
4z5z3

8z3
9 , ϕa18 = z2

1z2
2z3

3z4z5z4
8z2

9 .

We see that the dimension of the projective embedding is much more
than the dimension of the affine embedding.
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