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Abstract

The talk is based on joint work with Andrey Kustarev.

The central subject are theorems on equivariant embeddings
of quasitoric manifolds in terms of combinatorial data.

One of our tasks is to improve the classical theorems in the case

when combinatorial data defines the corresponding structure
on the underlying quasitoric manifold.
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Manifolds with an action of compact group

Theorem (Mostow-Palais, 1957)

Let M be a compact smooth manifold with a smooth action
of a compact Lie group G.

Then there exists a smooth embedding M — RN equivariant
with respect to a linear representation G — GL(N,R).

See:

Mostow, George D.,

Equivariant embeddings in Euclidean space,

Annals of Mathematics, Second Series 65: 432-446, 1957.

Palais, Richard S,
Imbedding of compact, differentiable transformation groups in
orthogonal representations, J. Math. Mech. 6: 673-678, 1957.
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Complex manifolds

Theorem (Kodaira, 1954)

Let M be a compact complex manifold with a positive
holomorphic linear bundle
(for example, M possesses a rational Kahler form).

Then there exists a complex-analytic embedding M — CPN.

See:

Kodaira, Kunihiko,

On Kahler varieties of restricted type

(an intrinsic characterization of algebraic varieties),
Annals of Mathematics. Second Series 60 (1): 28-48 (1954).
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Compact symplectic manifolds

Theorem (Gromov-Tishler, 1970 - 1977)

Let M be a compact symplectic manifold with
an integral symplectic form w.

Then there exists a symplectic embedding of M to CPN
with the standard symplectic form.

See:

M. Gromov,

A topological technique for the construction of solutions
of differential equations and inequalities,

Actes, Congres intern. Math., Tome 2, pages 221-225, 1970.

D. Tischler,

Closed 2-forms and an embedding theorem

for symplectic manifolds,

Journal of Differential Geometry, (12):229-235, 1977.
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C™ is the standard complex linear m-dimensional space endowed
with the canonical basis 1 = (1,0,...,0),...,em =(0,...,0,1);

R™ C C™ is the standard real linear space generated by ey, ..., €m;

RT C R™ is the positive cone i.e. the area formed by all points in R
with nonnegative coordinates;

7™ C R™ is the standard lattice generated by ey, ..., €m;
Set
D?={zeC;|z| <1},

S'={zeD?|z|=1}.
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T™ < C™ is the standard compact torus
{(t,....tm) € CT: [t =1, k€ [1,m]};

the map exp: R™ — T™ given by the formula

exp(Xy, ..., Xm) = (6™, ... &™) induces

the canonical isomorphism of T and R /Z™.

The standard k-dimensional compact torus is denoted by TX and

an abstract k-dimensional toric subgroup in the standard torus T' is
denoted by Tk;

T, C T™is a toric subgroup corresponding to an index set
wC [1,m];

the one point set w = {/} defines a coordinate torus T; C T™;
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p: C™ — RZT is the standard moment map given by the formula

p(Z1,...,Zm):(|Z1’2,...,|Zm’2); (1)

s: RT — C™ is the map given by the formula

S(X1,. ., Xm) = (VX155 VXm)s 2)

note that po § = id.
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Moment-angle complex

Consider a simple polytope P.

Denote by fx the number of k-dimensional faces of P. Set m = f,_1.
We have the face lattice L(P) of P.

Let {Fy,..., Fm} be the set of facets and {vy, ..., vg } — the set of
vertices. For any face F € L(P), F # o set

ZP,F: H D,2>< H S;CDzm.
i: FiDF j: FiBF

The moment-angle complex of a simple polytope P is

Zp = U ZpF
FeL(P)\{=}
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Vertex partition of a moment-angle complex

There is a homeomorphism:

fo

Zp=| ) 2p,
i=1

@ Let P=1/=[0;1].
Then Z; = 2, U Z;,, = (D? x S") U (S x D?)
@ P=A"< Zp= 821,
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The canonical torus action

The space Zp has the canonical structure of a multigraded
subcomplex in D27,

The embedding Zp C D?™ is T — equivariant.
Theorem

There is a homeomorphism P = Zp/T™ and
the following diagram commutes:

Zp — D2m

I

P —— Im
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Construction of a moment-angle manifold

Take a simple polytope
P={xeR"ax+b>0,i=1,... . m}
Using the embedding
jp: P—RT : jp(x) = (V1. Ym)

where y; = a;x + bj, we will consider P as the subset in RZ.
A moment-angle manifold Zp is the product
of C™ and P over R described by the pullback diagram:

ZAP L) cm
| |#
J
P —=— RT

where p(21,...,2zm) = (1212, ..., |zm|?).
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Moment-angle manifold

We have A
Zp={(x.2) € Px C": jp(x) = p(2)}

Here p(2) = (|z1]2, .. .,|2Zm|?) and jp(x) = Ax + b,
where Ais a (m x n)-matrix, rankA = nand b € R™.
Mapping jp is an embedding because rank of A is n.

Thus mapping (X, z) — z gives the embedding Zp c C™.
Denote by C such ((m — n) x m)-matrix that CA = 0 and
rank of Cis m— n.

Consider the map

®:C" =R d(z) = C(p(z) - b).

It is a T™-equivariant quadratic map with respect
to the trivial action of T on R™~",
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Smooth structures on a moment-angle manifold

Set &(2) = (¢1(2),. .., Pm_n(2)).

Theorem (Buchstaber-Panov-Ray, 2007)

For any simple polytope P there is a homeomorph/sm
Zp = Zp, using it in what follows we identify Zp and Zp.

@ Zp is a complete intersection of
inR2mM = CM,

Frk={zeC":d(2) =0}, k=1,....,m—n.

@ There is a trivialisation of the normal bundle
of the T™-equivariant embedding Zp ¢ C™
that is

@ Zp has the structures of a framed manifold.
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Freely acting subgroups

Let H C T™ be a subgroup of dimension r < m — n.
Choosing a basis, we can write it in the form

F{::{(eZWK$1¢rP“+Sw¢J7._.’ezﬂKSmw%4ﬂ“+&m¢ﬂ) e’Em},

where p; € R, i=1,...,rand S = (sj) is an integral
(m x r)-matrix which defines a monomorphism Z" — Z".
For any subset w = {i1, ..., In} C [M] denote by S

the ((m —n) x r)- submatrlx of S obtained

by deleting the rows iy, . . ., in.
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Freely acting subgroups

Write each vertex v € PMas v, ifv=F, N...NF;
h

In
Lemma
The subgroup H acts freely on Zp if and only if for

every vertex v,, the (m — n) x r submatrix S, defines
a monomorphism Z" — Z™~" onto a direct summand.

Corollary

| \

The subgroup H of rank r = m — n acts freely on Zp
if and only if for any vertex v, = F, n...N F;, of P",

detS; = +1.
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Characteristic map

An (n x m)-matrix A gives a characteristic map

g{F‘],,Fm}—>Zn

for a given simple polytope P" with facets {F1, ..., Fn}
if the column-vectors A, ..., \;, of A corresponding to any
vertex v, form a basis for Z".

1 01 0 1
. p2 _
Example: P:, A = (0 10 1 1>
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The problem

By permuting the facets of P if necessary, we may assume that
the intersection F1 N --- N Fp is the vertex V.
Associate to a simple n-dim polytope P an integral (n x m)-matrix

10 ... 0 Map1 - AMim
p O 1 O >\27f,+1 )\2',,,, 7
00 ... 1 dopst - A
in which the column \; = (Ayj, ..., Apj) corresponds
to the facet F;, j = 1,..., m, and the columns \j, ..., A,

corresponding to any vertex V,, = Fj, N ---N F; are required
to form a basis for Z".

18/49



Combinatorial data

Definition
The combinatorial quasitoric data (P, A) consists
of an oriented combinatorial polytope P and

an integral (n x m)-matrix A which gives a characteristic map.

The matrix A defines an epimorphism
0: T — 1",

The kernel of ¢ (which we denote K(A)) is isomorphic to T™~".
The action of K(A) on Zp is free due to the condition
on the minors of A.
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Quasitoric manifold with structure

Construction

The quotient M = Zp/K(A) is a 2n-dimensional smooth
manifold with an action of the n-dimensional torus T/ K(A).
We denote this action by «.

It satisfies the Davis—Januszkiewicz’ conditions:

@ «is locally isomorphic to the standard coordinatewise
representation of T” in C”,

@ there is a projection 7: M — P whose fibres are orbits of a.

We refer to M = M(P, A) as the quasitoric manifold associated
with the combinatorial data (P, A).

Let
P:{XGR”:AX+b>O}.

Definition

The manifold M = M(P, A) is called the quasitoric manifold
with (A, A)-structure.
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Equivariant embeddings of complex projective spaces

Consider the standard complex projective space
CP"={(zy:-:2Znp1),z€ C™ |z| =1}

with the standard action of torus "', Let M(n + 1, C) be the space
of (n+ 1) x (n+ 1)-matrices with the following action of T+

toM=t"Mt.
The mapping CP" — M(n+1,C)

(210 Zns1) = 22,

where Z is vector, gives the T -equivariant
embedding CP" — R;H x CN, N = w

CP' - RE x C,

(21: 22) = (1212, |22, 21Z2).
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Monomial functions

Every vector @ = (ay,...,am) € Z™ determines
a real-algebraic monomial function:

pa: C™ — C,
A4 ~ra
va(z1,...,2Zm) =2{" ... - Zg",
where
° zf =1ifg =0,
o 2l =2z"ifa; >0,
° ZV =7 %ifa <O0.

1

The vector a = (1,0, —1) € Z2 gives a function

©Va: C® >,

va(z1,22,23) = 2123
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Equivariance of monomial functions

Lett=(4,...,t) e T, a =(ay,...,a) € Z" and
Abe an integer (S x r)-matrix and Ak be the k-th row
of the matrix A.

Notation:
B=t". .t eT and A= (t",... t%) e TS
Any a € Z™ gives the character x5 : T — T' : t — t2.

Any monomial function ¢, is equivariant.
Thatisifac Z™and t € T™, then

pa(lz) = tpa(2)

forall z € C™.
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Example of an equivariant map

Leta=(1,0,-1)cZ3and t = (t, by, t3) € TS,
Set
tz = (t1zy, bZo, t323).
We have:
2=t
and
Ya: C® = C,

pa(tz) = hz1(t3z3) = (hitg ')21Z5 = Ppa(2)
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Characteristic map and free action

Lemma

Suppose (n x m)-matrix A = (I, A.) gives a characteristic map
E: {F‘],,Fm} _)Zn

Then the matrix S = (— A, Im—n) gives the (m — n)-dimensional
subgroup

K(A) = {(&#™,...,e®™Wm) e T}, i = VT,

which acts freely on (m + n)-dimensional manifold Zp.
Here for & = (&1, ,&m—n) € Z™ " we take

m—n
wk:—Z)\k_i_anj, k:1,7n, ’l/}n+k:§k7 k:177m_n
j=1
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The commutative diagram of a characteristic map

_ S A

0O —— zmn Zm s 72N 0
| | |

0 — 5 RM—N RM s RN 0
| | |

0 —— mn S, pm AT, o 0

We have a real algebraic map
011 C" = C":pa(2) = (94,(2), -+ s p10(2)),

where Ay is a k-th row of A.

@ ¢,(tz) = (Art)pa(z) forany t € T™.
@ ¢,(tz) = pa(z) & t = Sprforany T € T ",
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Local embedding

Let 4 : Zp — C" be the restriction of the map @, : C" — C"
to the moment-angle manifold Zp C C™.

The map ¢4 induces the smooth map ¢4 : M(P, A) — C"
equivariant with respect to the representation T /T™~" — T".
Let V. = F; N--- N Fp. Then Zp,, = (D?)" x (S")™=" c C™.

There is the T"-equivariant embedding:

Ba: Zpy,/K(4) ~ (D?)" x (1)™" C C" x (1)™",

85/1(217"'7Zn717"'71):(217”'7Zn717'”71)'
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Complex projective plane

Let P = A2, Then

Zpe = 8% =(D? xD? x S U(D? x S' x D?)U(S! x D? x D?),

1
10 —1
A:<o 1 —1>’ S(])

S

0 A 73
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Complex projective plane

YA - (C3 — (Cz : (pA(Z) = (2123722?3)
DA ZAz — (Cz
G1:CP? 5 C?: (21 : 20 : 23) = (2423, 2023)

Restrictions of the map ¢4 on the parts give:

(z1:22:1) = (21, 20)
(z1:1:23) = (2123, 23)
(1:22: 23) = (23, 2223)
Thus we describe the embedding @4 v, for the Z52 , /T.
Using the similar maps ¢ ,y, and (¢ 4,,, wWe obtain:

CP? C2xC2%x(?

o~

Rgx(CS
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Embedding theorem

Let P be a simple n-dimensional polytope.

For any vertex v € P we have the T"-equivariant map
Pay, 1 M(P, A) — C", such that the restriction

Pay - 2Py /K(A) — C"is a T"-equivariant embedding.

Theorem

For any combinatorial data (P, A) there is an equivariant
real-algebraic embedding

Ga:M(P,A) - C'x ... xC"=CN,

where N = fon and ¢4 = G X -+ X $ay, -
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Monomial maps in the general case

Suppose that vectors ay,...,a8q € 7™ define the characters
Xays aXaq)
such that
Xay (f) = -+ = Xag(1),

if t = Sy7 for any 7 € T™". Thus we have the induced character
LT T X(7) = xa(8a7) = - -+ = Xxa,(SaT).

Let ¢: Zp — CY be a restriction of the monomial maps
©(2) = (va,(2), .- -, Pa,(2)) to the moment-angle manifold
ZpC CM
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Monomial maps of the quasitoric manifold

@ If the character ¥ is trivial, then ¢ is constant on orbits
of the action of K(A) on Zp.
The map ¢ induces a smooth map @: M(P, A) — C9
equivariant with respect to some representation T” — T9, where
action of T9 on CY is supposed to be standard.

q
@ Let ) |<,oaj(z)|2 #0,if z € Zp C C™ then the map ¢ induces a
=

smooth map @p : M — CP9~" equivariant with respect to some
representation T" — T9, where the action of T on CP9~ 1 is
supposed to be standard.

Maps of the form ¢: M — C9 and @p: M — CPI~" constructed by
a family of vectors ay,...,8q4 are called monomial maps
of the quasitoric manifold M.
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Complex projective plane

P= A2
’
S=1{1].
1

Letax = e, € Z3, k = 1,2,3. Then

’ g
S'g=1|g|.
g

where g = €2™¢ and x4, (S1g) = g. Thus
@ :C3—C3
is the identify map. If Z € Z42, then Z # 0 and we obtain the map
VA, CP? - CP?,

which is the identify map.
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Edge-characters

Let r C P be an edge of the polytope P. Since the action
of T” on M is locally standard, the isotropy subgroup G(r)
of the submanifold 7—'(r) is an (n — 1)-dimensional

toric subgroup in T".

Denote by x; the character T” — T' = T/G(r).

Definition
The edge-character u, of edge r is the composition

s TM Ay 0 X
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Vertex-characters

Let y: K — T be a character of the group K = K(A)
and v, = Fj, N---N F; be a vertex of P. The composition
p,: K— T™ — Tg is an isomorphism. Here & = [1, m] \ w.

Definition
The x-vertex-character y,, of v, is the character

=1
xv,: T™ = Ty 22 K X5 T,
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Vertex-edge-characters

Let x: K — T be a character of the group K,
r C Panedge of Pand v € ra vertex lying on the edge r.

Definition

The vertex-edge-character of the pair (v, r) is a character
xv,r: T™ — T defined as the sum of the characters
xv: T™ — T and p,: T™ — T'.
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Characters of T associated with characters of K

Let ch(T™) be the group of all characters of T"".
The set of pairs

{ character x: K — T, vertex v € P}

determines the set of characters {x,|v € P} C ch(T™).
The set of triples

{ character y: K — T, edge r C P, vertex v € r}

determines the set {x (|v € r C P} C ch(T™),
Therefore,

Every character y: K — T gives the set of characters

X = ({xv} U {xv.r}) € ch(T™).
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The properties of constructed characters

@ There are at most fy(P) characters {,} and at most
nfy(P) = 2f;(P) characters of the form {y }. The number of
different characters in X, does not exceed fy(P)(n+ 1).

The cardinality | X, | is often much less than this upper bound,
since characters x and X r may be equal for different vertices
v € P and pairs (v, r).

@ The restriction of any of characters x, and xy , to the subgroup
K C T™isequal to x: K — T,

@ For any vertex v € P the character Y is trivial if and only if
the character  is trivial.

@ The character u, does not depend on y and is nontrivial
for every r C P. The restriction of i, to the subgroup K
is trivial.
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The properties of constructed characters

@ Every character y, V € P, is well-defined, but characters
®,: T" — T' and p,: T™ — T are defined only up to
multiplication by £1, so the definition of X [ is still ambiguous.
If vp, vq are vertices lying on an edge r C P, then, the character
Xv; — Xy, 18 @a multiple of fir.
We set xv,,r = Xv, + ttr, Wwhere pi, has the same direction as
Xvi — Xv- If Xvy = Xy, then we assume that the first nonzero
coordinate of m-vector defining yi,: T™ — T is positive.

@ If the character x is trivial, the cardinality of X\, does not exceed
fi(P) + 1, because x, = 1 forall v € P and if vy, v4 are
vertices of an edge r C P, then xv,,r = Xv,,r = fir-
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Equivariant embeddings in linear spaces

Vectors W, that define characters x,, r C P, form an integral
(n x q)-matrix W. Consider the corresponding linear representation
W of the torus T" in CY.

The moment map w: M — P C R" is equivariant with respect to
the trivial torus action on R”.

Theorem

The moment map =: M — P can be extended to
a real-algebraic embedding

7x @ M—=R"xCY

equivariant with respect to the representation W: T" — T9.

Here the number g does not exceed the number of edges of P, as
follows from the construction of the representation W.
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Equivariant embeddings

Letx: K — T' is an arbitrary character. The set of characters
X, determines a monomial map ¢p,.: M — CPI-1, which can
be extended to an embedding = x @p,: M — P x CPI~1.

The induced cohomology pullback
Bp\: HA(CPIZ) — H* (M, Z)
coincides with the classifying map
H2(CP>,7) = H?(CPI~',Z) — H*(M,Z)
of the bundle &, = Zp xx C = M = Zp x i (pt)
If the character x is trivial, then the image of the map ¢p , lies

entirely in some affine chart C9~1 ¢ CPI~1,
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Equivariant embeddings in projective spaces

Let
P={xeR": Ax+b>0}.
Suppose that (A, A)-structure of a quasitoric manifold M satisfies
2 the following conditions:
@ beZ™,
@ AT = BAD, where Biis an integral (n x n)-matrix with |B| # 0

and D is a diagonal (m x m)-matrix with all nonzero elements
equal to +1.

Consider the character yg: T™ — T determined by vector b € Z"
and denote by xp the character K ¢ T™ — T'.

The projective map @p.,: M — CPI~" constructed using
the set X, is a smooth equivariant embedding.
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Combinatorial data

Let us consider an example of toric variety of complex dimension
three over Stasheff polytope Ks.

The matrix A = A; has the form

i1oo0 -1 0 O 0 1 -1
A=1]10 1 0 O
001 O

and the vector bp is equal to (0,0,0,3,3,3,5,—-1,2)".

44/ 49



Moment-angle manifold of Stasheff polytope

The manifold Zp C C? is given by the following equations:
|21 + |24 = 3,
|22|? + |25 = 3,
|23]% + |26 = 3,
|21 + |z3? + |27 + |20* = 7,
|27[% + | 28|? + |20/ = 6,
|20 + |z3]? + |z7* = 5.

The moment-angle manifold Zp C C® has a real dimension 12.
It is endowed with the action of the compact torus T®,
with 6-dimensional subgroup K C T9 acting freely on Zp.
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Embedding of quasitoric manifold of Stasheff polytope

In the case of Stasheff polytope we have g = 6 and f;(P) = 21.
These monomial functions embed the quasitoric manifold
corresponding to Stasheff polytope to Euclidean space R3 x C8.

46/49



Projective embedding of smooth toric variety

The following monomial functions define a projective embedding of
the manifold corresponding to Stasheff polytope Ks:

23,35

b, = 2124252323 29,

3,232 4

Pby = 212224262729
2, 3,35

Obs = 2524252823 Zg,

3 3.2 5

3,23 5
3,23 5
Py = 22232428282,

_ 3,3,3,2,2.2
bz = 2324252728297

Yb, = 2323282573 25,
b, = 252375287723,
by = 2320282373 28,
by = 252324282523,
Pbyo = 22223222525237
Py = 232525262323,

3,3,3,2,2 2
Pbyy = 21222272829
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Projective embedding of smooth toric variety

Va, = 212022282573 25, Vay = 212522252573 23,
Pay = 2228242872 2473 Va, = 2325252873 28 79,
Vas = 2023728287323, Vas = 2523232525752,
Vay = 232323282723 78, Vay = 2320232287323
ag = 222324282873 28, Vay, = 21252522 252523,
Payy = 2122223?24262328’ Pap = 2%3222:’?25%262%237
oy = BRRNAD, oy = BB
Pas = HZ323737123%0,  ay = 22 BZ1Z 7,
Pay, = 212525222523 23, Vay = 252523242524 28.

We see that the dimension of the projective embedding is much more
than the dimension of the affine embedding.
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