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Braids and Thompson groups

7. Geometrical definition of braids

Braids naturally arise as objects in 3-space. Let us consider two
parallel planes Q0 and Q1 in R3, which contain two ordered sets of
points A1, ..., An ∈ Q0 and B1, ..., Bn ∈ Q1. These points are lying
on parallel lines LA and LB respectively. The space between the
planes Q0 and Q1 we denote by Π.
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Suppose that the point Bi is lying under the point Ai , as a result of
the orthogonal projection of the plane Q0 onto the plane Q1. Let
us connect the set of points A1, ..., An with the set of points B1,
..., Bn by simple non-intersecting curves C1, ..., Cn lying in the
space Π and such that each curve meets only once each parallel
plane Qt lying in the space Π (see Figure 1).
This object is called a geometric braid and the curves are called the
strings or strands of a geometric braid.
Two geometric braids β and β′ on n strings are isotopic if β can be
continuously deformed into β′ in the class of braids (with the ends
fixed).
The relation of isotopy is an equivalence relation on the class of
geometric braids on n strings. The corresponding equivalence
classes are called braids on n strings.
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On the set Brn of braids the structure of a group introduces as
follows.

Π

Π′

Figure: 2
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We put a copy Π′ of the domain Π under the Π in such a way that
Q ′

0 coincides with Q1 and each Ai coincides with Bi and it is
possible to glue braids β and β′. After rescaling the height of
domain Π ∪Π′ to the height of Π this gluing gives a composition of
braids ββ′ (Fig. 2).
Unit element is the equivalence class containing a braid of n parallel
intervals, the braid β−1 inverse to β is defined by reflection of β
with respect to the plane Q1/2. A string Ci of a braid β connects

the point Ai with the pont Bki
defining the permutation Sβ . If this

permutation is identical then the braid β is called pure.
The map β → Sβ defines an epimorphism τn of the braid group Brn
on the permutation group Σn with the kernel consisting of all pure
braids:

1 → Pn → Brn
τn−→ Σn → 1. (1)
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Braids and Thompson groups

8. Configuration spaces

If we look at the Figure 1, then this picture can be interpreted as a
graph of a loop in the configuration space of n points on a plane,
that is the space of unordered sets of n points on a plane, see
Figure 3. So, it is possible to interpret the braid group as the
fundamental group of the configuration space.

Figure: 3
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Formally it is done as follows. The symmetric group Σm acts
naturally on the Cartesian power (R2)m of the space R2:

w(y1, ..., ym) = (yw−1(1), ..., yw−1(m)), w ∈ Σm. (2)

Denote by F (R2,m) the space of m-tuples of pairwise different
points in R2:

F (R2,m) = {(p1, ..., pm) ∈ (R2)m : pi 6= pj for i 6= j}.

This is the space of regular points of this action. We call the orbit
space of this action B(R2,m) = F (R2,m)/Σm the configuration
space of n points on a plane. The braid group Brm is the
fundamental group of configuration space

Brm = π1(B(R2,m)).
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The pure braid group Pm is the is the fundamental group of the
space F (R2,m). The covering

p : F (R2,m) → B(R2,m)

defines the exact sequence:

1 → π1(F (R
2,m))

p∗
→ π1(B(R2,m)) → Σn → 1.

which is equivalent to sequence (1).
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Braids and Thompson groups

9. Artin presentation for braid group

Usually braids are depicted by projections on the plane passing
through the lines LA and LB . It is supposed to be in general
position so that there is only finite number of double points of
intersection which are lying on pairwise different levels and
intersections are transversal. The simplest braid σi corresponds to
the transposition (i , i + 1).
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Artin presentation of the braid group Brn has generators σi ,
i = 1, ..., n − 1 and relations:

{

σiσj = σj σi , if |i − j | > 1,

σiσi+1σi = σi+1σiσi+1

It is the algebraic expression of the fact that any isotopy of braids
can be broken down into “elemntary moves” of two types that
correspond to two types of relations.
If we add a vertical interval to the system of curves on we can get a
canonical inclusion jn of the group Brn into the group Brn+1

jn : Brn → Brn+1.
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The canonical presentation the symmetric group Σn has the
generators si , i = 1, ..., n − 1 and relations:







sisj = sj si , if |i − j | > 1,

sisi+1si = si+1sisi+1

s2
i = 1,

The homomorphism τn is given by the formula

τn(σi ) = si , i = 1, . . . , n − 1.

V. Vershinin Braids and some other groups



It is possible to consider braids as classes of equivalence of braid
diagrams which are generic projections of three dimensional braids
on a plane. The classes of equivalence are defined by the
Reidemeister moves depicted at Figure 5.
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Braids and Thompson groups

10. Mapping class groups of a punctured disc

Another important approach to the braid group bases on the
following fact.

Theorem
The braid group Brn is the mapping class group of a punctured disc
Dn with its boundary fixed.
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Braids and Thompson groups

11. Braid groups as automorphism groups of free groups

Braid group may be also considered as a subgroup of the
automorphism group of a free group.
Let Fn be the free group of rank n with the set of generators
{x1, . . . , xn}. Denote by Aut Fn the automorphism group of Fn.
We define a map from the braid group Brn into Aut Fn as follows.
Let σi ∈ Aut Fn, i = 1, 2, . . . , n − 1, be given by the formula which
describes its action on generators:







xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj , j 6= i , i + 1.

(3)
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Let us define a map ν of the generators σi , i = 1, . . . , n − 1 of the
braid group Brn to these automorphisms:

ν(σi) = σi . (4)

Theorem
Formulas (4) define correctly a homomorphism

ν : Brn → Aut Fn.

which is a monomorphism.

This theorem gives a solution of the word problem for the braid
groups.
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The free group Fn is a fundamental group of a disc Dn without n
points and the generator xi corresponds to a loop going around the
i-th point. The braid group Brn as the mapping class group of a
disc Dn with its boundary fixed acts on the fundamental group of
Dn. This action is described by the formulas (3) where xi

correspond to the canonical loops on Dn which form the generators
of the fundamental group. Geometrically this action is depicted in
the Figure 6.
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Figure: 6
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Braids and Thompson groups

12. Configuration spaces of manifolds

The notion of configuration space of Section 3 can be naturally
generalized for a manifold as follows.
Let Y be a connected topological manifold and let W be a finite
group acting on Y . A point y ∈ Y is called regular if its stabilizer
{w ∈ W : wy = y} is trivial, i.e., consists only of the unit of the
group W . The set Ỹ of all regular points is open. Suppose that it
is connected and nonempty. The subspace B(Y ,W ) of the space
of all orbits Orb(Y ,W ) consisting of the orbits of all regular points
is called the space of regular orbits. There is a free action of W on
Ỹ and the projection p : Ỹ → Ỹ /W = B(Y ,W ) defines a
covering. Let us consider the initial segment of the long exact
sequence of this covering:

1 → π1(Ỹ , y0)
p∗
→ π1(B(Y ,W ), p(y0)) → W → 1. (5)
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The fundamental group π1(B(Y ,W ), p(y0)) of the space of regular
orbits is called the braid group of the action of W on Y and is
denoted by Br(Y ,W ). The fundamental group π1(Ỹ , y0) is called
the pure braid group of the action of W on Y and is denoted by
P(Y ,W ). The spaces Ỹ and B(Y ,W ) are path connected, so the
pair of these groups is defined uniquely up to isomorphism and we
may omit mentioning the base point y0 in the notations.
For any space Y the symmetric group Σm acts on the Cartesian
power Y m of the space Y by the formulas (2). We denote by
F (Y ,m) the space of m-tuples of pairwise different points in Y :

F (Y ,m) = {(p1, ..., pm) ∈ Y m : pi 6= pj for i 6= j}.
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This is the space of regular points of this action. In the case when
Y is a connected topological manifold M without boundary and
dim M ≥ 2, the space of regular orbits B(Mm,Σm) is open,
connected and nonempty. We call B(Mm,Σm) the configuration
space of the manifold M and denote by B(M,m). The braid group
Br(Mm,Σm) is called the braid group on m strings of the manifold
M and is denoted by Br(m,M). Analogously, we call the group
P(Mm,Σm) the pure braid group on m strings of the manifold M
and denote it by P(m,M). These definitions of braid groups were
given by R. Fox and L. Neuwirth.
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Let (qi )i∈N be a fixed sequence of distinct points in the manifold M
and put Qm = {q1, ..., qm}. We use

Qm,l = (ql+1, ..., ql+m) ∈ F (M \ Ql ,m)

as the standard base point of the space F (M \ Ql ,m). If k < m we
define the projection

proj : F (M \ Ql ,m) → F (M \ Ql , k)

by the formula: proj(p1, ..., pm) = (p1, ..., pk ). The following
statements were proved by E. Fadell and L. Neuwirth.

Theorem
The triple proj : F (M \ Ql ,m) → F (M \ Ql , k) is a locally trivial
fiber bundle with fiber proj−1 Qk,l homeomorphic to
F (M \ Qk+l ,m − k). If l ≥ 1, then proj admits a cross-section.
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Proof. Let us denote F (M \ Ql ,m) by Fl ,m. We give a proof for
the case k = 1. We first prove that proj is locally trivial. Let U be
a neighborhood of ql+1 (homeomorphic to Euclidean ball), which
avoids Ql . Furthermore let

θ : U × U → U

denote a map with the following properties. Setting
θx(y) = θ(x , y) we require

1. θx : U → U is a homeomorphism having ∂U fixed.

2. θx(x) = ql+1.

Map θ has the obvious extension

θ : U × M → M

by setting θ(x , y) = y for y 6∈ U.
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The required local product representation

U × Fl+1,m−1

φ
//

%%K
KK

KK
KK

KK
KK

proj−1(U)

proj
zzvv
vv
vv
vv
vv

U

is obtained by setting

φ(x , p2, . . . pm) = (x , θ−1
x (p2), . . . , θ

−1
x (pm)).
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Now we prove that proj admits a cross-section if l ≥ 1. We remark
that proj : F (M \ Ql ,m) → M \ Ql admits a cross-section if and
only if there exist m − 1 fixed point free maps

f2, . . . , fm : M \ Ql → M \ Ql

which are non-coincident, i.e.,

fi(x) 6= fj(x), i 6= j , x ∈ M \ Ql .

We construct such a family of maps. Let V be a neighborhood of
q1 (homeomorphic to Euclidean unit ball), whose closure avoids qi ,
i ≥ 2. Let W denote a ball inside V of radius 1

2
and y2, . . . , ym

mutually disjoint points ∂W . On V \ q1 define

fi (x) = ‖x‖ yi , 2 ≤ i ≤ m, x ∈ V \ q1,

and extend to F (M \ Ql by setting

fi(x) = yi , x 6∈ V . 2
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Remark.
There exist spaces without fixed point free maps, for example, real
projective plane RP2. This follows from Lefschetz fixed-point
theorem.
Let f : X → X be a continuous map from a compact triangulable
space X to itself. Define the Lefschetz number Λf of f by

Λf :=
∑

k≥0

(−1)kTr(f∗|Hk(X ,Q)),

the alternating (finite) sum of the matrix traces of the linear maps
induced by f on the Hk(X ,Q), the singular homology of X with
rational coefficients.

Theorem
If Λf 6= 0 then f has at least one fixed point, i.e. there exists at
least one x in X such that f (x) = x.
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Consideration of the sequence of fibrations

F (M \ Qm−1, 1) → F (M \ Qm−2, 2) → M \ Qm−2,

F (M \ Qm−2, 2) → F (M \ Qm−3, 3) → M \ Qm−3,

... ,

F (M \ Q1,m − 1) → F (M,m) → M

leads to the following statement.

Theorem
For any manifold M

πi(F (M \ Q1,m − 1)) = ⊕m−1
k=1

πi (M \ Qk)

for i ≥ 2. If proj : F (M,m) → M admits a section then

proji πi(F (M,m)) = ⊕m−1
k=0

πi (M \ Qk), i ≥ 2.
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Corollary

If M is the Euclidean r -space, then

πi(F (M,m)) = ⊕m−1
k=0

πi(S
r−1 ∨ ... ∨ S r−1

︸ ︷︷ ︸

k

), i ≥ 2.

Corollary

If M is the Euclidean 2-space, then F (R2,m) is the K(Pm, 1)-space
and B(R2,m) is the K(Brm, 1)-space.
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