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A generalization

What is the connection between the following two theorems?

(A) Thm [M. 14]

A structure is
uniformly computably categorical on a cone ⇐⇒ it has a Πin

2 Scott Sentence.

(B)Thm [Effros 65]

Let G be a Polish group acting continuously on a Polish space X , and let
x be a point in X .
The map g 7→ g · x : G → X is open ⇐⇒ the orbit of x is Gδ.

Answer: (A) is a particular case of (B).
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The idea

Results from computable structure theory can be generalized to the setting
of Polish groups acting on Polish spaces.

The idea of looking at countable structures in the setting of Polish groups actions existed in

descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:

1 [M. 14] Characterization of uniform computable categoricity on a cone.

2 [M. 14] Characterization of computable categoricity on a cone.

3 [McCoy 02] Proper finite dimension does not relativize.

4 [Knight et al. 90’s] No degree spectrum is the union of two cones.

5 [Goncharov 80’s] ∆0
2- but not ∆0

1-isomorphic structures have ∞ dim.
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Part 1:

Background on Polish group actions.
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The space of structures

Fix a computable vocabulary L.

Definition

Let Mod(L) be the set of all L-structures with domain ω.
We give Mod(L) the topology generated by the basic open sets

[ϕ] = {A ∈ Mod(L) : A |= ϕ}

where ϕ is an atomic (L∪ConstantsN)-sentence and ConstantsN = {0, 1, 2, ...}.

Equivalentely:

Let D : Mod(L)→ 2ω map A ∈ Mod(L) to its atomic diagram D(A) ∈ 2ω.
The topology of Mod(L) is so that Mod(L) is homeomorphic to its image.
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Mod(L) is an effective Polish space

Definition

A topological space X is Polish if

It has a countable dense subset {x0, x1, x2, ...}, and

it admits a complete metric d : X × X → R≥0.

X is effectively Polish if also d is computable on {x0, x1...},
i.e., the questions d(xi , xj) < q and d(xi , xj) ≤ q are decidable.

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

We represent points in X by fast Cauchy sequences from {x0, x1...}.
Def: A point is computable if the sequence is computable and fast approaching.

Fact: F : X → Y is continuous ⇐⇒ it is computable relative to some oracle.
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The permutation group of ω

Definition

Let S∞ be the permutation group of ω. (I.e., the group of all bijections ω → ω.)

With the topology inherited from ωω, S∞ is an effective Polish group,
i.e., it’s an effective Polish space where the group operations are computable.

Definition

S∞ acts on Mod(L) in an obvious way.
For A ∈ Mod(L), f ∈ S∞, f · A is the structure B such that

(n1, ..., nk) ∈ RA ⇐⇒ (f (n1), ..., f (nk)) ∈ RB.

Obs: This action, : S∞ ×Mod(L)→ Mod(L), is computable.
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Effective Polish group actions

Throughout the rest of the talk

G is an effective Polish group,

X is an effective Polish space, and

G acts on X computably.

Definition

For x , y ∈ X , we let x ≡ y ⇐⇒ (∃g ∈ G) g · x = y .
We let the G-orbit of x be {y ∈ X : y ≡ x} = G · x .

Note: In the case of S∞ acting on Mod(L), A ≡ B ⇐⇒ A ∼= B.
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Other examples of computable Polish group actions

The following are examples of computable Polish group actions:

GLn acting on Rn.

Any computable Polish group acting on itself by congugation.

Hom+[0, 1] acting on C [0, 1] by right composition (using sup norm).
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Part 2:

Theorems from computable structure
theory.
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Computable categoricity

Theorem ((2) [Scott 65; Lopez-Escobar 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1 The set {B ∈ Mod(L) : B ∼= A} is Σ0
3.

2 A is computably categorical on a cone.

3 A has a Scott family of ∃-formulas with parameters.

4 A has a Σin
3 Scott sentence.
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Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.

The set of indices of computably categorical structures is Π1
1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) if

,
there is a C ∈ 2ω such that for very Z ≥T C ,

every computable B isomorphic to A is computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Computable categoricity

Definition A structure A is computably categorical (c.c.) on a cone if,
there is a C ∈ 2ω such that for very Z ≥T C ,
every Z -computable B isomorphic to A is Z -computably isomorphic to A.

• A linear ordering is c.c. ⇐⇒ it has finitely many adjacencies [Dzgoev, Goncharov 80].

• A Boolean algebras is c.c. ⇐⇒ it has finitely many atoms [Goncharov][La Roche 78].

• A ordered abelian group is c.c. ⇐⇒ it has finite rank [Goncharov, Lempp, and Solomon 03].

• A tree of finite height is c.c. ⇐⇒ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

• A torsion-free abelian group is c.c. ⇐⇒ it has finite rank [Nurtazin 74].

• A computable p-group is c.c. ⇐⇒ it can be written in one of the following forms: (i) (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite, or (ii)

(Z(p∞))n ⊕ (Z
pk

)∞ ⊕ G where G is finite, and n, k ∈ ω [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
The set of indices of computably categorical structures is Π1

1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 12 / 22



Categoricity on group actions

Recall: A computable structure A ∈ Mod(L) is computably categorical if
for every computable B ∼= A, there is a computable g ∈ S∞ with g ·A = B.

Recall that we have an computable Polish group action of G on X .

Definition: A point x ∈ X is computably categorical if
for every computable y ≡ x , there is a computable g ∈ G with g ·x = y .

Example: Work out Hom+[0, 1] acting on C [0, 1] by right composition.
- x2 and sin(4πx) are computably categorical.
- One can build computable functions that are not.

Definition: A point x ∈ X is computably categorical on a cone if
there is a C ∈ 2ω such that for very Z ≥T C ,
for every Z -computable y ≡ x , there is a Z -computable g ∈ G with g ·x = y .
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Back to Theorem 2

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1 A is computably categorical on a cone.

2 A has a Scott family of ∃-formulas with parameters.

3 A has a Σin
3 Scott sentence.

4 The set {B ∈ Mod(L) : B ∼= A} is Σ0
3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) ⇐⇒ (2) is due to [Goncharov 75].
(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).
(2) =⇒ (3) is due to [Scott 65]
(2) ⇐= (3) [M. 14] uses sharp version of the type-omitting theorem for Lω1,ω .
(3) ⇐⇒ (4) is due to [Lopez-Escobar 65].

Question: If we have a computable Polish action of G on X , do we have that

x ∈ X is computably categorical on a cone ⇐⇒ its orbit is Σ0
3.
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A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14])

For a structure A, the following are equivalent:

1 A is uniformly computably categorical on a cone.

2 A has a Scott family without parameters.

3 A has a Πin
2 Scott sentence.

4 The set {B ∈ Mod(L) : B ∼= A} is Π0
2.

Definition: A point x ∈ X is uniformly computably categorical if
there is a computable operator Φ that,

given a fast Cauchy sequence for y ≡ x , outputs g ∈ G with g ·x = y .

Question: If we have a computable Polish action of G on X , do we have that

x ∈ X is uniformly computably categorical on a cone ⇐⇒ its orbit is Gδ.
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Uniformly computable categoricity

Definition: A point x ∈ X is uniformly computably categorical if
there is a computable operator Φ that,

given a fast Cauchy sequence for y ≡ x , outputs g ∈ G with g ·x = y .

Lemma x ∈ X is uniformly computably categorical

on a cone

⇐⇒
the map g 7→ g · x : G → X is effectively open.

Theorem [Effross 65] For a point x ∈ X , TFAE:

1 The G-orbit of x is Gδ.

2 the map f 7→ f · x : G → X is open.

Corollary (1) For a structure A, TFAE:

1 A has a Πin
2 Scott sentence.

2 A is uniformly computably categorical on a cone.
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Back to Theorem 2

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:

1 A is computably categorical on a cone.

2 A has a Σin
3 Scott sentence.

Recall: x ∈ X is computably categorical ⇐⇒
for computable y ≡ x there is computable g ∈ G with g · x = y .

Recall: [Lopez-Escobar 65]: A has a Σin
3 Scott sentence ⇐⇒ {B ∈ Mod(L) : B ∼= A} is Fσδ.

Theorem [Melnikov, M.] For a point x ∈ X , TFAE:

1 x is computably categorical on a cone.

2 The G-orbit of x is Gδσ.
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Theorem 3 – Knight’s group 90’s

Recall: Given a structure A:
DgSp(A) = {Z ∈ 2ω : Z computes a copy ofA}.

Theorem Each of the following is a degree spectra of some structure:
• upper cones: {Z ∈ 2ω : Z ≥T C} for some C ∈ 2ω [Van der Waerden 30]

• non-zero degrees: {Z ∈ 2ω : Z 6≡T ∅} [Slaman 98; Wehner 98]

• non-∆0
2 degrees: {Z ∈ 2ω : Z 6≤T 0′} [Kalimullin 08]

• the hyperimmune degrees [Csima, Kalimullin 10]

• non-hyp-degrees: {Z ∈ 2ω : Z 6∈ hyp} [Greenberg, Montalbán, Slaman 12]

• ...

Theorem [Knight et al. 90’s] The degree spectrum of a structure
is never a non-trivial union of countably many upper cones.
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Theorem 3 – Knight’s group 90’s

Recall: Given a structure A:
DgSp(A) = {Z ∈ 2ω : Z computes a copy ofA}.

Theorem [Knight et al. 90’s] The degree spectrum of a structure
is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of G on X .

Definition For x ∈ X we define the degree spectrum of X be
DgSpG(x) = {Z ∈ 2ω : Z computes a point y ≡ x}.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] The degree spectrum of a point
is never a non-trivial union of two upper cones.
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Theorem 4 – Computable dimension.

Definition A structure A has computable dimension n if

the set {B ∼= A : B computable} splits into n ∼=c -equivalence classes,

where B ∼=c C if there is a computable isomorphism between them.

Theorem [Goncharov 80] For every n ∈ {1, 2, 3, ...,∞},
there is a computable structure with computable dimension n.

Theorem Any structure in the following classes has computable dimension
either 1 or ω:

Boolean Algebras [Goncharov 73]

Linear Ordering [Remmel 81][Goncharov and Dzgoev 80]

Real algebraically closed fields [Nurtazin [1974]]

Archimedean ordered group [Goncharov, Lempp and Solomon 2000]
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Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if
the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if
the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if

the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if
the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if
the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X .

Definition A computable point x has computable dimension n if
the set {y ≡ x : y computable} splits into n ≡c -orbits,

where z ≡c w if there is a computable g ∈ G with g · z = w .

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x ∈ X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ0
3.

Antonio Montalbán (U.C. Berkeley) Polish group actions April 2015 21 / 22



Theorem 5 – Goncharov

Theorem ([Goncharov 80’s])

If a computable structure has two computable copies
which are ∆0

2-isomorphic but not computably isomorphic,
then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of G on X .

Def: y and z are NH-equivalent if there is non-high, c.e. g ∈ G with g ·y = z .

Theorem ([Melnikov, M.])

If in the orbit of a point there are two computable points
which are NH-equivalent but not computably equivalent,

then the point has infinite computable dimension.
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