Computable structure theory and Polish group actions.

Antonio Montalbán

U.C. Berkeley

April 2015 Singapore

(Joint work with Alexander Melnikov)

Antonio Montalbán (U.C. Berkeley)

Polish group actions

April 2015 1 / 22

What is the connection between the following two theorems?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is the connection between the following two theorems?

(A) Thm [M. 14] A structure is uniformly computably categorical on a cone \iff it has a Π_2^{in} Scott Sentence.

What is the connection between the following two theorems?

(A) Thm [M. 14] A structure is uniformly computably categorical on a cone \iff it has a Π_2^{in} Scott Sentence.

(B)**Thm** [Effros 65]

Let \mathcal{G} be a Polish group acting continuously on a Polish space \mathcal{X} , and let x be a point in \mathcal{X} . The map $g \mapsto g \cdot x \colon \mathcal{G} \to \mathcal{X}$ is open \iff the orbit of x is G_{δ} .

What is the connection between the following two theorems?

(A) Thm [M. 14] A structure is uniformly computably categorical on a cone \iff it has a Π_2^{in} Scott Sentence.

(B)**Thm** [Effros 65]

Let \mathcal{G} be a Polish group acting continuously on a Polish space \mathcal{X} , and let x be a point in \mathcal{X} . The map $g \mapsto g \cdot x \colon \mathcal{G} \to \mathcal{X}$ is open \iff the orbit of x is G_{δ} .

Answer: (A) is a particular case of (B).

Antonio Montalbán (U.C. Berkeley)

< □ > < 同 >

∃ → < ∃ →</p>

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

< □ > < 同 >

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:

- **(**M. 14] Characterization of uniform computable categoricity on a cone.
- **2** [M. 14] Characterization of computable categoricity on a cone.
- (McCoy 02] Proper finite dimension does not relativize.
- (Inight et al. 90's) No degree spectrum is the union of two cones.
- **(**Goncharov 80's] Δ_2^0 but not Δ_1^0 -isomorphic structures have ∞ dim.

イロト 不得 とうせい かほとう ほ

Part 1:

Background on Polish group actions.

Antonio Montalbán (U.C. Berkeley)

Polish group actions

▲ 문 ► 문 • 의 ۹ (?)
April 2015 4 / 22

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<ロ> <同> <同> < 同> < 同>

Fix a computable vocabulary L.

<ロ> <同> <同> < 同> < 同>

Fix a computable vocabulary L.

Definition

Let Mod(L) be the set of all L-structures with domain ω .

< □ > < 同 >

< ≣ > <

Fix a computable vocabulary L.

Definition

Let Mod(L) be the set of all *L*-structures with domain ω . We give Mod(L) the topology generated by the basic open sets

$$[\varphi] = \{\mathcal{A} \in \mathsf{Mod}(\mathsf{L}) : \mathcal{A} \models \varphi\}$$

where φ is an atomic (*L* \cup Constants_N)-sentence and Constants_N = {0, 1, 2, ...}.

Fix a computable vocabulary L.

Definition

Let Mod(L) be the set of all *L*-structures with domain ω . We give Mod(L) the topology generated by the basic open sets

$$[\varphi] = \{\mathcal{A} \in \mathsf{Mod}(\mathsf{L}) : \mathcal{A} \models \varphi\}$$

where φ is an atomic (*L* \cup Constants_N)-sentence and Constants_N = {0, 1, 2, ...}.

Equivalentely:

Let $D: Mod(L) \to 2^{\omega} \text{ map } \mathcal{A} \in Mod(L)$ to its *atomic diagram* $D(\mathcal{A}) \in 2^{\omega}$.

Fix a computable vocabulary L.

Definition

Let Mod(L) be the set of all *L*-structures with domain ω . We give Mod(L) the topology generated by the basic open sets

$$[\varphi] = \{\mathcal{A} \in \mathsf{Mod}(\mathsf{L}) : \mathcal{A} \models \varphi\}$$

where φ is an atomic (*L* \cup Constants_N)-sentence and Constants_N = {0, 1, 2, ...}.

Equivalentely:

Let $D: Mod(L) \to 2^{\omega} \text{ map } \mathcal{A} \in Mod(L)$ to its *atomic diagram* $D(\mathcal{A}) \in 2^{\omega}$. The topology of Mod(L) is so that Mod(L) is homeomorphic to its image.

Antonio Montalbán (U.C. Berkeley)

< 日 > < 同 > < 三 > < 三 >

Definition

A topological space \mathcal{X} is *Polish* if

< A >

∃ ▶ ∢

Definition

A topological space \mathcal{X} is *Polish* if

• It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$,

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$, i.e., the questions $d(x_i, x_i) < q$ and $d(x_i, x_i) \leq q$ are decidable.

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

We represent *points* in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1...\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

We represent *points* in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1...\}$. **Def:** A *point is computable* if the sequence is computable and fast approaching.

◆□▶ ◆帰▶ ◆三▶ ◆三▶ 三 ののべ

Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, ...\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}^{\geq 0}$.

 \mathcal{X} is *effectively Polish* if also *d* is computable on $\{x_0, x_1...\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

We represent *points* in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1...\}$. **Def:** A *point is computable* if the sequence is computable and fast approaching.

Fact: $F: \mathcal{X} \to \mathcal{Y}$ is continuous \iff it is *computable* relative to some oracle.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

< □ > < 同 >

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *effective Polish group*,

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *effective Polish group*, i.e., it's an effective Polish space where the group operations are computable.

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *effective Polish group*, i.e., it's an effective Polish space where the group operations are computable.

Definition

 \mathcal{S}_{∞} acts on Mod(L) in an obvious way.

The permutation group of ω

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *effective Polish group*, i.e., it's an effective Polish space where the group operations are computable.

Definition

 S_{∞} acts on Mod(L) in an obvious way. For $A \in Mod(L)$, $f \in S_{\infty}$, $f \cdot A$ is the structure B such that $(n_1, ..., n_k) \in R^A \iff (f(n_1), ..., f(n_k)) \in R^B$.

Definition

Let S_{∞} be the permutation group of ω . (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^{ω} , S_{∞} is an *effective Polish group*, i.e., it's an effective Polish space where the group operations are computable.

Definition

 S_{∞} acts on Mod(L) in an obvious way. For $A \in Mod(L)$, $f \in S_{\infty}$, $f \cdot A$ is the structure \mathcal{B} such that $(n_1, ..., n_k) \in R^{\mathcal{A}} \iff (f(n_1), ..., f(n_k)) \in R^{\mathcal{B}}.$

Obs: This action, : $S_{\infty} \times Mod(L) \rightarrow Mod(L)$, is computable.

Antonio Montalbán (U.C. Berkeley)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- $\mathcal X$ is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- \mathcal{X} is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Definition

For $x, y \in \mathcal{X}$, we let $x \equiv y \iff (\exists g \in \mathcal{G}) g \cdot x = y$.

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- \mathcal{X} is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Definition

For $x, y \in \mathcal{X}$, we let $x \equiv y \iff (\exists g \in \mathcal{G}) g \cdot x = y$. We let the *G*-orbit of x be $\{y \in \mathcal{X} : y \equiv x\}$

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- \mathcal{X} is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Definition

For $x, y \in \mathcal{X}$, we let $x \equiv y \iff (\exists g \in \mathcal{G}) g \cdot x = y$. We let the *G*-orbit of x be $\{y \in \mathcal{X} : y \equiv x\} = \mathcal{G} \cdot x$.

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- \mathcal{X} is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Definition

For $x, y \in \mathcal{X}$, we let $x \equiv y \iff (\exists g \in \mathcal{G}) g \cdot x = y$. We let the *G*-orbit of x be $\{y \in \mathcal{X} : y \equiv x\} = \mathcal{G} \cdot x$.

Note: In the case of S_{∞} acting on Mod(L), $\mathcal{A} \equiv \mathcal{B} \iff \mathcal{A} \cong \mathcal{B}$.

Antonio Montalbán (U.C. Berkeley)

(*) *) *) *)
Other examples of computable Polish group actions

The following are examples of computable Polish group actions:

- GL_n acting on \mathbb{R}^n .
- Any computable Polish group acting on itself by congugation.
- $Hom^+[0,1]$ acting on C[0,1] by right composition (using sup norm).

イロト イポト イヨト ・ヨ

Part 2:

Theorems from computable structure theory.

Antonio Montalbán (U.C. Berkeley)

Polish group actions

April 2015 10 / 22

< □ > < 同 >

Theorem ((2) [Scott 65; Lopez-Escobar 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .
- A is computably categorical on a cone.
- **③** A has a Scott family of \exists -formulas with parameters.
- \mathcal{A} has a Σ_3^{in} Scott sentence.

Definition A structure A is computably categorical (c.c.) if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A} .

Definition A structure A is computably categorical (c.c.) if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A} .

• A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].

Definition A structure A is computably categorical (c.c.) if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A} .

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].

Definition A structure A is computably categorical (c.c.) if

every computable $\mathcal B$ isomorphic to $\mathcal A$ is computably isomorphic to $\mathcal A$.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].

Definition A structure A is computably categorical (c.c.) if

every computable $\mathcal B$ isomorphic to $\mathcal A$ is computably isomorphic to $\mathcal A$.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

Definition A structure A is computably categorical (c.c.) if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A} .

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

Definition A structure A is computably categorical (c.c.) if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A} .

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(z(p^{\infty}))^{\ell} \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(z(p^{\infty}))^n \oplus (z_{nk})^{\infty} \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

イロト 不得 とうせい かほとう ほ

Definition A structure A is computably categorical (c.c.) if

every computable $\mathcal B$ isomorphic to $\mathcal A$ is computably isomorphic to $\mathcal A$.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^{\infty}))^{\ell} \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^{\infty}))^n \oplus (\mathbb{Z}_{p^k})^{\infty} \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures.

Antonio Montalbán (U.C. Berkeley)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition A structure A is computably categorical (c.c.) if

every computable $\mathcal B$ isomorphic to $\mathcal A$ is computably isomorphic to $\mathcal A$.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^{\infty}))^{\ell} \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^{\infty}))^n \oplus (\mathbb{Z}_{p^k})^{\infty} \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π_1^1 -complete.

Antonio Montalbán (U.C. Berkeley)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition A structure A is computably categorical (c.c.) if

every computable $\mathcal B$ isomorphic to $\mathcal A$ is computably isomorphic to $\mathcal A$.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. ⇔ it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^{\infty}))^{\ell} \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^{\infty}))^n \oplus (\mathbb{Z}_{p^k})^{\infty} \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π_1^1 -complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley)

Polish group actions

Definition A structure \mathcal{A} is computably categorical (c.c.) on a cone if, there is a $C \in 2^{\omega}$ such that for very $Z \ge_T C$, every Z-computable \mathcal{B} isomorphic to \mathcal{A} is Z-computably isomorphic to \mathcal{A} .

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c.
 it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^{\infty}))^{\ell} \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^{\infty}))^n \oplus (\mathbb{Z}_{p^k})^{\infty} \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π_1^1 -complete.

Nice characterizations exist if we relativize to all oracles on a cone.

Antonio Montalbán (U.C. Berkeley)

Polish group actions

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X} .

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $Hom^+[0,1]$ acting on C[0,1] by right composition.

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $Hom^+[0,1]$ acting on C[0,1] by right composition.

- x^2 and sin($4\pi x$) are computably categorical.

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $Hom^+[0,1]$ acting on C[0,1] by right composition.

- x^2 and sin($4\pi x$) are computably categorical.
- One can build computable functions that are not.

Recall: A computable structure $\mathcal{A} \in Mod(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_{\infty}$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X} .

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $Hom^+[0, 1]$ acting on C[0, 1] by right composition.

- x^2 and sin($4\pi x$) are computably categorical.
- One can build computable functions that are not.

Definition: A point $x \in \mathcal{X}$ is computably categorical on a cone if there is a $C \in 2^{\omega}$ such that for very $Z \ge_{\mathcal{T}} C$, for every Z-computable $y \equiv x$, there is a Z-computable $g \in \mathcal{G}$ with $g \cdot x = y$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- **1** \mathcal{A} is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- **1** \mathcal{A} is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).

(2) \implies (3) is due to [Scott 65]

イロト イポト イヨト ・ヨ

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .
- (2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].
- (3) A Scott sentence one that determines A up to isomorphism, within Mod(L).
- (2) \implies (3) is due to [Scott 65]
- (2) \Leftarrow (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.

イロト イポト イヨト イヨト 三日

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).

- (2) \implies (3) is due to [Scott 65]
- (2) \Leftarrow (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.
- (3) \iff (4) is due to [Lopez-Escobar 65].

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14]) For a structure A, the following are equivalent:

- A is computably categorical on a cone.
- **2** A has a Scott family of \exists -formulas with parameters.
- **3** \mathcal{A} has a Σ_3^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ_3^0 .

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples. (1) \iff (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).

(2) \implies (3) is due to [Scott 65]

(2) \Leftarrow (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.

(3) \iff (4) is due to [Lopez-Escobar 65].

Question: If we have a computable Polish action of \mathcal{G} on \mathcal{X} , do we have that $x \in \mathcal{X}$ is computably categorical on a cone \iff its orbit is Σ_0^0 .

Antonio Montalbán (U.C. Berkeley)

A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14]) For a structure A, the following are equivalent:

- **2** A has a Scott family without parameters.
- **3** \mathcal{A} has a Π_2^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Π_2^0 .

A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14]) For a structure A, the following are equivalent:

- A is uniformly computably categorical on a cone.
- 2 A has a Scott family without parameters.
- **3** \mathcal{A} has a Π_2^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Π_2^0 .

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Antonio Montalbán	(U.C. Berkeley)
-------------------	----------------	---

A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14]) For a structure A, the following are equivalent:

- A is uniformly computably categorical on a cone.
- 2 A has a Scott family without parameters.
- **3** \mathcal{A} has a Π_2^{in} Scott sentence.
- The set $\{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is Π_2^0 .

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Question: If we have a computable Polish action of \mathcal{G} on \mathcal{X} , do we have that $x \in \mathcal{X}$ is uniformly computably categorical on a cone \iff its orbit is G_{δ} .

< □ > < 同 >

Antonio Montalbán (U.C. Berkeley)

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Definition: A point $x \in \mathcal{X}$ is uniformly computably categorical if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

 $\begin{array}{ll} \mathsf{Lemma} \ x \in \mathcal{X} \ \text{is uniformly computably categorical} & \Longleftrightarrow \\ & \mathsf{the map} \ g \mapsto g \cdot x \colon \mathcal{G} \to \mathcal{X} \ \text{is effectively open.} \end{array}$

Definition: A point $x \in \mathcal{X}$ is uniformly computably categorical if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Theorem [Effross 65] For a point $x \in \mathcal{X}$, TFAE:

① The
$$\mathcal{G}$$
-orbit of x is G_{δ} .

2) the map
$$f \mapsto f \cdot x \colon G \to \mathcal{X}$$
 is open.
Uniformly computable categoricity

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Theorem [Effross 65] For a point $x \in \mathcal{X}$, TFAE:

1 The
$$\mathcal{G}$$
-orbit of x is G_{δ} .

2 the map $f \mapsto f \cdot x \colon G \to \mathcal{X}$ is open.

Corollary (1) For a structure A, TFAE:

• \mathcal{A} has a Π_2^{in} Scott sentence.

2 \mathcal{A} is uniformly computably categorical on a cone.

Theorem (2) [L-E 65; G. 75; M. 14] For a structure \mathcal{A} , TFAE:

- **(**) \mathcal{A} is computably categorical on a cone.
- **2** \mathcal{A} has a Σ_3^{in} Scott sentence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:

- **(**) \mathcal{A} is computably categorical on a cone.
- **2** \mathcal{A} has a Σ_3^{in} Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$.

< 日 > < 同 > < 三 > < 三 >

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:

() \mathcal{A} is computably categorical on a cone.

2 \mathcal{A} has a Σ_3^{in} Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$. Recall: [Lopez-Escobar 65]: \mathcal{A} has a Σ_3^{in} Scott sentence $\iff \{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is $F_{\sigma\delta}$.

イロト イポト イヨト ・ヨ

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:

- **(**) \mathcal{A} is computably categorical on a cone.
- **2** \mathcal{A} has a Σ_3^{in} Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$. Recall: [Lopez-Escobar 65]: \mathcal{A} has a Σ_3^{in} Scott sentence $\iff \{\mathcal{B} \in Mod(L) : \mathcal{B} \cong \mathcal{A}\}$ is $F_{\sigma\delta}$.

Theorem [Melnikov, M.] For a point $x \in \mathcal{X}$, TFAE:

- \bullet x is computably categorical on a cone.
- **2** The \mathcal{G} -orbit of x is $G_{\delta\sigma}$.

イロト イポト イヨト イヨト 二日

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A}\}.$

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure: • upper cones: $\{Z \in 2^{\omega} : Z \ge_{T} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{T} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z
 ot \equiv_{\mathcal{T}} \emptyset\}$ [Slaman 98; Wehner 98]

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{\mathcal{T}} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z \not\equiv_{\mathcal{T}} \emptyset\}$ [Slaman 98; Wehner 98]
- non- Δ_2^0 degrees: $\{Z \in 2^\omega : Z \not\leq_T 0'\}$ [Kalimullin 08]

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{\mathcal{T}} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z \not\equiv_{\mathcal{T}} \emptyset\}$ [Slaman 98; Wehner 98]
- non- Δ_2^0 degrees: $\{Z \in 2^\omega : Z \not\leq_T 0'\}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{\mathcal{T}} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z \not\equiv_{\mathcal{T}} \emptyset\}$ [Slaman 98; Wehner 98]
- non- Δ_2^0 degrees: $\{Z \in 2^\omega : Z \not\leq_T 0'\}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{Z \in 2^{\omega} : Z
 ot\in hyp\}$ [Greenberg, Montalbán, Slaman 12]

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{\mathcal{T}} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z \not\equiv_{T} \emptyset\}$ [Slaman 98; Wehner 98]
- non- Δ_2^0 degrees: $\{Z \in 2^\omega : Z \not\leq_T 0'\}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{Z \in 2^{\omega} : Z
 ot\in hyp\}$ [Greenberg, Montalbán, Slaman 12]

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of }\mathcal{A}\}.$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{Z \in 2^{\omega} : Z \geq_{\mathcal{T}} C\}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{Z \in 2^{\omega} : Z \not\equiv_{\mathcal{T}} \emptyset\}$ [Slaman 98; Wehner 98]
- non- Δ_2^0 degrees: $\{Z \in 2^\omega : Z \not\leq_T 0'\}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{Z \in 2^{\omega} : Z \not\in hyp\}$ [Greenberg, Montalbán, Slaman 12]

· ...

Theorem [Knight et al. 90's] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.

Antonio Montalbán (U.C. Berkeley)

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A}\}.$

Theorem [Knight et al. 90's] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.

イロト イポト イヨト イヨト 三日

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A}\}.$

Theorem [Knight et al. 90's] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X} .

Definition For $x \in \mathcal{X}$ we define the *degree spectrum of* X be $DgSp_{\mathcal{G}}(x) = \{Z \in 2^{\omega} : Z \text{ computes a point } y \equiv x\}.$

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Recall: Given a structure \mathcal{A} : $DgSp(\mathcal{A}) = \{Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A}\}.$

Theorem [Knight et al. 90's] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition For $x \in \mathcal{X}$ we define the *degree spectrum of X* be $DgSp_{\mathcal{G}}(x) = \{Z \in 2^{\omega} : Z \text{ computes a point } y \equiv x\}.$

In the general setting of Polish group actions:

Theorem [Melnikov, M.] The degree spectrum of a point is never a non-trivial union of two upper cones.

Antonio Montalbán (U.C. Berkeley)

イロト イポト イヨト ・ヨ

Definition A structure A has computable dimension n if

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition A structure \mathcal{A} has *computable dimension* n if the set $\{\mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable}\}$ splits into $n \cong^c$ -equivalence classes, where $\mathcal{B} \cong^c \mathcal{C}$ if there is a computable isomorphism between them.

< 日 > < 同 > < 三 > < 三 >

Definition A structure \mathcal{A} has computable dimension n if the set $\{\mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable}\}$ splits into $n \cong^c$ -equivalence classes, where $\mathcal{B} \cong^c \mathcal{C}$ if there is a computable isomorphism between them.

Theorem [Goncharov 80] For every $n \in \{1, 2, 3, ..., \infty\}$,

there is a computable structure with computable dimension n.

Definition A structure \mathcal{A} has computable dimension n if the set $\{\mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable}\}$ splits into $n \cong^c$ -equivalence classes, where $\mathcal{B} \cong^c \mathcal{C}$ if there is a computable isomorphism between them.

Theorem [Goncharov 80] For every $n \in \{1, 2, 3, ..., \infty\}$,

there is a computable structure with computable dimension n.

Theorem Any structure in the following classes has computable dimension either 1 or ω :

- Boolean Algebras [Goncharov 73]
- Linear Ordering [Remmel 81][Goncharov and Dzgoev 80]
- Real algebraically closed fields [Nurtazin [1974]]
- Archimedean ordered group [Goncharov, Lempp and Solomon 2000]

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X} .

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition A computable point x has *computable dimension* n if

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition A computable point x has computable dimension n if the set $\{y \equiv x : y \text{ computable}\}$ splits into $n \equiv^c$ -orbits, where $z \equiv^c w$ if there is a computable $g \in G$ with $g \cdot z = w$.

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition A computable point x has computable dimension n if the set $\{y \equiv x : y \text{ computable}\}$ splits into $n \equiv^c$ -orbits, where $z \equiv^c w$ if there is a computable $g \in G$ with $g \cdot z = w$.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point $x \in \mathcal{X}$ has finite dimension on a cone it is computably categorical on a cone.

Antonio Montalbán (U.C. Berkeley)

イロト イポト イヨト イヨト 二日

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Definition A computable point x has computable dimension n if the set $\{y \equiv x : y \text{ computable}\}$ splits into $n \equiv^c$ -orbits, where $z \equiv^c w$ if there is a computable $g \in G$ with $g \cdot z = w$.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point $x \in \mathcal{X}$ has finite dimension on a cone it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ_3^0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem ([Goncharov 80's])

If a computable structure has two computable copies which are Δ_2^0 -isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Theorem ([Goncharov 80's])

If a computable structure has two computable copies which are Δ_2^0 -isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X} .

Theorem ([Goncharov 80's])

If a computable structure has two computable copies which are Δ_2^0 -isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Def: y and z are NH-equivalent if there is *non-high*, *c.e.* $g \in \mathcal{G}$ with $g \cdot y = z$.

Theorem ([Goncharov 80's])

If a computable structure has two computable copies which are Δ_2^0 -isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of ${\mathcal G}$ on ${\mathcal X}.$

Def: *y* and *z* are NH-equivalent if there is *non-high*, *c.e.* $g \in \mathcal{G}$ with $g \cdot y = z$.

Theorem ([Melnikov, M.])

If in the orbit of a point there are two computable points which are NH-equivalent but not computably equivalent, then the point has infinite computable dimension.

Antonio Montalbán (U.C. Berkeley)

Polish group actions

April 2015 22 / 22

< 日 > < 同 > < 三 > < 三 >