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uniformly computably categorical on a cone <= it has a [135' Scott Sentence.
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(B)Thm [Effros 65]

Let G be a Polish group acting continuously on a Polish space X', and let
x be a point in X.
The map g+— g x: G — X is open <= the orbit of x is G;.
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A generalization

What is the connection between the following two theorems?

(A) Thm [M. 14]
A structure is
uniformly computably categorical on a cone <= it has a [135' Scott Sentence.

v

(B)Thm [Effros 65]

Let G be a Polish group acting continuously on a Polish space X', and let
x be a point in X.

The map g+— g x: G — X is open <= the orbit of x is G;.

Answer: (A) is a particular case of (B).

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 2/22



The idea

Results from computable structure theory can be generalized to the setting
of Polish groups acting on Polish spaces. J

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 3/22



The idea

Results from computable structure theory can be generalized to the setting
of Polish groups acting on Polish spaces. J

The idea of looking at countable structures in the setting of Polish groups actions existed in

descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 3/22



The idea

Results from computable structure theory can be generalized to the setting
of Polish groups acting on Polish spaces. J

The idea of looking at countable structures in the setting of Polish groups actions existed in

descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 3/22



The idea

Results from computable structure theory can be generalized to the setting
of Polish groups acting on Polish spaces. J

The idea of looking at countable structures in the setting of Polish groups actions existed in

descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:

@ [M. 14] Characterization of uniform computable categoricity on a cone.
@ [M. 14] Characterization of computable categoricity on a cone.

© [McCoy 02] Proper finite dimension does not relativize.

@ [Knight et al. 90's] No degree spectrum is the union of two cones.

© [Goncharov 80's] AJ- but not A-isomorphic structures have oo dim.
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Part 1:

Background on Polish group actions.
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The space of structures

Fix a computable vocabulary L.

Definition
Let Mod(L) be the set of all L-structures with domain w.
We give Mod(L) the topology generated by the basic open sets

[p] = {A € Mod(L) : A=}

where ¢ is an atomic (LUConstantsy)-sentence and Constantsy = {0,1,2,...}.

Equivalentely:

Let D: Mod(L) — 2% map A € Mod(L) to its atomic diagram D(A) € 2.
The topology of Mod(L) is so that Mod(L) is homeomorphic to its image.J
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Mod(L) is an effective Polish space

Definition

A topological space X is Polish if
@ It has a countable dense subset {xg, x1, %2, ...}, and
o it admits a complete metric d: X x X — R2°,

X is effectively Polish if also d is computable on {xg, x3...},
i.e., the questions d(x;, x;) < g and d(x;, x;) < q are decidable.

w

Obs: For a computable vocabulary L, Mod(L) is a effectively Polish.

We represent points in X by fast Cauchy sequences from {xg, x1...}.
Def: A point is computable if the sequence is computable and fast approaching.

Fact: F: X — ) is continuous <= it is computable relative to some oracle.
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i.e., it's an effective Polish space where the group operations are computable.

Definition

S acts on Mod(L) in an obvious way.

For A € Mod(L), f € S, f - A is the structure B such that
(1, ..., ni) € R <= (f(m),..., f(nk)) € RE.

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 7/22



The permutation group of w

Definition
Let S, be the permutation group of w. (l.e., the group of all bijections w — w.)

V.

With the topology inherited from w*, S, is an effective Polish group,

i.e., it's an effective Polish space where the group operations are computable.

Definition

S acts on Mod(L) in an obvious way.

For A € Mod(L), f € S, f - A is the structure B such that
(1, ..., ni) € R <= (f(m),..., f(nk)) € RE.

Obs: This action, : Soo X Mod(L) — Mod(L), is computable. J

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 7/22



Effective Polish group actions

Throughout the rest of the talk

@ G is an effective Polish group,
@ X is an effective Polish space, and

@ G acts on X computably.
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Effective Polish group actions

Throughout the rest of the talk

@ G is an effective Polish group,
@ X is an effective Polish space, and

@ G acts on X computably.

Definition
Forx,ye X,weletx=y < (Jge€g)g-x=y.
We let the G-orbit of x be {y e X 1 y =x} =G - x.

Note: In the case of Sy acting on Mod(L), A=B <— A=EB.
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Other examples of computable Polish group actions

The following are examples of computable Polish group actions:

e GL, acting on R".
@ Any computable Polish group acting on itself by congugation.

e Hom™[0, 1] acting on CJ[0, 1] by right composition (using sup norm).
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Part 2:

Theorems from computable structure
theory.
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Computable categoricity

Theorem ((2) [Scott 65; Lopez-Escobar 65; Goncharov 75; M. 14])
For a structure A, the following are equivalent:
Q The set {B € Mod(L) : B A} is Y.
@ A is computably categorical on a cone.
© A has a Scott family of 3-formulas with parameters.
@ A has a TI" Scott sentence.
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Computable categoricity

Definition A structure A is computably categorical (c.c.) if

every computable B isomorphic to A is computably isomorphic to .A.
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Computable categoricity

Definition A structure A is computably categorical (c.c.) on a cone if,
there is a C € 2% such that for very Z >1 C,
every Z-computable B isomorphic to A is Z-computably isomorphic to A.
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Categoricity on group actions

Recall: A computable structure A € Mod(L) is computably categorical if
for every computable B =2 A, there is a computable g € 5., with g-A = B.
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Categoricity on group actions

Recall: A computable structure A € Mod(L) is computably categorical if
for every computable B =2 A, there is a computable g € 5., with g-A = B.
Recall that we have an computable Polish group action of G on X.

Definition: A point x € X’ is computably categorical if
for every computable y = x, there is a computable g € G with g-x = y. J

Example: Work out Hom™*[0, 1] acting on CJ0, 1] by right composition.
- x2 and sin(4mx) are computably categorical.
- One can build computable functions that are not.

Definition: A point x € X' is computably categorical on a cone if
there is a C € 2% such that for very Z >1 C,
for every Z-computable y = x, there is a Z-computable g € G with g-x = y.
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Back to Theorem 2

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:
@ A is computably categorical on a cone.
@ A has a Scott family of 3-formulas with parameters.
© A has a ¥ Scott sentence.
Q The set {B € Mod(L) : B= A} is 9.
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For a structure A, the following are equivalent:
@ A is computably categorical on a cone.
@ A has a Scott family of 3-formulas with parameters.
© A has a ¥ Scott sentence.
Q The set {B € Mod(L) : B= A} is 9.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
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Back to Theorem 2

Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:
@ A is computably categorical on a cone.
@ A has a Scott family of 3-formulas with parameters.
© A has a ¥ Scott sentence.
Q The set {B € Mod(L) : B= A} is 9.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) < (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines A up to isomorphism, within Mod(L).

(2) = (3) is due to [Scott 65]

(2) <= (3) [M. 14] uses sharp version of the type-omitting theorem for Lu; .

(3) < (4) is due to [Lopez-Escobar 65].

Question: If we have a computable Polish action of G on X, do we have that
x € X is computably categorical on a cone <= its orbit is ):g.

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 14 / 22



A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14])
For a structure A, the following are equivalent:

@ A is uniformly computably categorical on a cone.

@ A has a Scott family without parameters.

© A has a Mi" Scott sentence.

Q The set {B € Mod(L): B= A} is NY.
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For a structure A, the following are equivalent:

@ A is uniformly computably categorical on a cone.

@ A has a Scott family without parameters.

© A has a Mi" Scott sentence.

Q The set {B € Mod(L): B= A} is NY.

Definition: A point x € X is uniformly computably categorical if
there is a computable operator ® that,
given a fast Cauchy sequence for y = x, outputs g € G with g-x = y.
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Uniformly computable categoricity

Definition: A point x € X is uniformly computably categorical if
there is a computable operator ¢ that,
given a fast Cauchy sequence for y = x, outputs g € G with g-x = y.
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Uniformly computable categoricity

Definition: A point x € X is uniformly computably categorical if
there is a computable operator ¢ that,

given a fast Cauchy sequence for y = x, outputs g € G with g-x = y.
v

Lemma x € X is uniformly computably categorical —

the map g — g - x: G — X is effectively open.
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Definition: A point x € X is uniformly computably categorical if
there is a computable operator ¢ that,

given a fast Cauchy sequence for y = x, outputs g € G with g-x = y.
v

Lemma x € X is uniformly computably categorical on a cone <=
themapg—g-x:G—Xis open.

Theorem [Effross 65] For a point x € X', TFAE:
@ The G-orbit of x is Gy.
Q themap f—f-x: G — X is open.
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Uniformly computable categoricity

Definition: A point x € X is uniformly computably categorical if
there is a computable operator ¢ that,

given a fast Cauchy sequence for y = x, outputs g € G with g-x = y.
v

Lemma x € X is uniformly computably categorical on a cone <=
themapg—g-x:G—Xis open.

Theorem [Effross 65] For a point x € X', TFAE:
@ The G-orbit of x is Gy.
Q themap f—f-x: G — X is open.

Corollary (1) For a structure A, TFAE:
© A has a N Scott sentence.

@ A is uniformly computably categorical on a cone.
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Back to Theorem 2

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:
@ A is computably categorical on a cone.
@ A has a I Scott sentence.
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Back to Theorem 2

Theorem (2) [L-E 65; G. 75; M. 14] For a structure A, TFAE:
@ A is computably categorical on a cone.

Q@ Ahasa Zg" Scott sentence.

Recall: x € X is computably categorical <=
for computable y = x there is computable g € G with g-x = y.
Recall: [Lopez-Escobar 65]: A has a £ Scott sentence <= {B € Mod(L) : B~ A} is Fs.

Theorem [Melnikov, M.] For a point x € X', TFAE:
@ x is computably categorical on a cone.
@ The G-orbit of x is Gy,
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Theorem 3 — Knight's group 90's

Recall: Given a structure A:
DgSp(A) = {Z € 2* : Z computes a copy of A}.
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Recall: Given a structure A:
DgSp(A) = {Z € 2* : Z computes a copy of A}.

Theorem Each of the following is a degree spectra of some structure:
e upper cones: {Z € 2¥ : Z > C} for some C € 2 [Van der Waerden 30]
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Theorem 3 — Knight's group 90's

Recall: Given a structure A:

DgSp(A) = {Z € 2* : Z computes a copy of A}.

Theorem Each of the following is a degree spectra of some structure:

upper cones: {Z € 2% : Z > C} for some C € 2 [Van der Waerden 30]
non-zero degrees: {Z € 2¥ : Z Z ()} [Slaman 98; Wehner 98]

non-A§ degrees: {Z € 2% : Z £10'} [Kalimullin 0]

the hyperimmune degrees [Csima, Kalimullin 10]

non-hyp-degrees: {Z € 2% : Z & hyp} [Greenberg, Montalban, Slaman 12]

Theorem [Knight et al. 90's] The degree spectrum of a structure

is never a non-trivial union of countably many upper cones.
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Theorem 3 — Knight's group 90's

Recall: Given a structure A:
DgSp(A) = {Z € 2* : Z computes a copy ofA}.

Theorem [Knight et al. 90's| The degree spectrum of a structure
is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of G on X.

Definition For x € X we define the degree spectrum of X be
DgSpg(x) = {Z € 2% : Z computes a point y = x}. J
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Theorem 3 — Knight's group 90's

Recall: Given a structure A:
DgSp(A) = {Z € 2* : Z computes a copy ofA}.

Theorem [Knight et al. 90's| The degree spectrum of a structure
is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of G on X.

Definition For x € X we define the degree spectrum of X be
DgSpg(x) = {Z € 2% : Z computes a point y = x}. J

In the general setting of Polish group actions:

Theorem [Melnikov, M.] The degree spectrum of a point
is never a non-trivial union of two upper cones.
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Theorem 4 — Computable dimension.

Definition A structure A has computable dimension n if
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Theorem 4 — Computable dimension.

Definition A structure A has computable dimension n if
the set {B = A : B computable} splits into n =°-equivalence classes,

where B 22¢ C if there is a computable isomorphism between them.
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Theorem 4 — Computable dimension.

Definition A structure A has computable dimension n if
the set {B = A : B computable} splits into n =°-equivalence classes,

where B 22¢ C if there is a computable isomorphism between them.

v

Theorem [Goncharov 80] For every n € {1,2,3,...,00},
there is a computable structure with computable dimension n.

v
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Theorem 4 — Computable dimension.

Definition A structure A has computable dimension n if
the set {B = A : B computable} splits into n =°-equivalence classes,

where B 22¢ C if there is a computable isomorphism between them.

v

Theorem [Goncharov 80] For every n € {1,2,3,...,00},
there is a computable structure with computable dimension n.

v

Theorem Any structure in the following classes has computable dimension
either 1 or w:

@ Boolean Algebras [Goncharov 73]

@ Linear Ordering [Remmel 81][Goncharov and Dzgoev 80]
@ Real algebraically closed fields [Nurtazin [1974]]
°

Archimedean ordered group [Goncharov, Lempp and Solomon 2000]

v

Antonio Montalban (U.C. Berkeley) Polish group actions April 2015 20/ 22



Proper finite computable dimension doesn't relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.
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Proper finite computable dimension doesn't relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone
it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X.

Definition A computable point x has computable dimension n if
the set {y = x : y computable} splits into n =C-orbits,
where z = w if there is a computable g € G with g -z = w.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point x € X has finite dimension on a cone
it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Zg.
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Theorem 5 — Goncharov

Theorem ([Goncharov 80's])

If a computable structure has two computable copies
which are Ag—isomorphic but not computably isomorphic,
then the structure has infinite computable dimension.
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Theorem 5 — Goncharov

Theorem ([Goncharov 80's])

If a computable structure has two computable copies
which are Ag—isomorphic but not computably isomorphic,
then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of G on X.

Def: y and z are NH-equivalent if there is non-high, c.e. g € G with g-y = z.

Theorem ([Melnikov, M.])

If in the orbit of a point there are two computable points
which are NH-equivalent but not computably equivalent,
then the point has infinite computable dimension.
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