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Motivation

Recent proposals for restrictions of primitive recursive set functions to
feasible computation:

Safe Recursive Set Functions [B., Buss, Sy Friedman, accepted JSL 2015,
revision on webpages]

Predicatively Computable Set Functions [Arai, AML vol. 54 (2015), pp.
471–485]

Cobham Recursive Set Functions [B., Buss, Sy Friedman, Müller, Thapen,
work in progress]
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Theories for feasible computation

Kripke-Platek set theory KP consists of axioms Extensionality, Pair,
Union, Set Foundation, along with schemas of ∆0-Collection,
∆0-Separation, and Foundation for definable classes.

M.Rathjen: A Proof-Theoretic Characterization of the Primitive Recursive
Set Functions. JSL 57(3), 1992 asked and answered:

Is there, by analogy with PA, a neat subsystem of ZF which
characterises the primitive recursive set functions?

Theorem (Rathjen’92)

Let KP− be KP without Foundation for definable classes.
The Σ1-definable functions in KP− + Σ1-∈-Induction
are exactly the primitive recursive set functions.

Σ1-∈-Induction: ∀x(∀y∈x ϕ(y) → ϕ(x)) → ∀xϕ(x) for ϕ ∈ Σ1.
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Inspired by this we will consider the question:

Is there, by analogy with Bounded Arithmetic, a neat subsystem
of ZF which characterises feasible set functions?

Analogy to bounded arithmetic: In bounded arithmetic a la Buss:
bounded quantifiers: ∀x ≤ t, ∃x ≤ t

sharply bounded quantifiers: ∀x ≤ |t|, ∃x ≤ |t| (|t| ≈ log t)
In set theory:

bounded quantifiers: ∀x ∈ y , ∃x ∈ y

Hypothesis

Bounded set quantification corresponds to sharply bounded arithmetic
quantification.

Reason: For feasible set functions like SRSF, rank on sets plays role of
binary length in arithmetic.
For ordinals, bounded set quantification thus behaves like sharply bounded
quantification.
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New Bounded Set Quantification

Add a new relation to set theory, x � y , for rank comparison:
x � y iff rank(x) ≤ rank(y)

Define rank bounded quantification:

∀x � t ϕ(x) abbreviates ∀x(x � t → ϕ(x))
∃x � t ϕ(x) abbreviates ∃x(x � t ∧ ϕ(x))

Definition

Σb
1 set formulas are of the form ∃x � t ϕ(x) for ϕ ∈ ∆0.
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Bounded Set Theories

Expand language with some function symbols to support bootstrapping
(otherwise rank bounded quantification is too weak to define e.g.
polynomials).

Definition

Let LFST expand L∈ by 0,Succ,+,×, rank . . .

Let KP− be KP without Foundation.

Let KPb
1 be KP− plus Σb

1-∈-Induction.

Theorem

The Σ1 definable set functions of KPb
1 are exactly those in SRSF.

Arnold Beckmann (Swansea) Theories for Feasible Set Functions 6 / 27



Outline of talk

1 Safe Recursive Set Functions
Safe Recursive Set Functions SRSF
Definability Characterisations of SRSF

2 Set Theories for SRSF
Set Theories for SRSF

3 Characterizing SRSF
Defining SRSF in KPb

1

Applications

4 Conclusion

Arnold Beckmann (Swansea) Theories for Feasible Set Functions 7 / 27



Safe Set Functions

(Inspired by S.Bellantoni and S.A.Cook: A new recursion-theoretic
characterization of the polytime functions. Comput. Complexity,
2(2):97-110, 1992.)

Safe Set Functions:
f (x1, . . . , xk / a1, . . . , a`)

denotes a function on sets, whose arguments are typed into normal
positions x1, . . . , xk , and safe positions a1, . . . , a`.

Idea: The Safe Recursive Set Functions are obtained by imposing the
above typing scheme onto Primitive Recursive Set Functions.
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Safe Recursive Set Functions

The Safe Recursive Set Functions (SRSF) are the smallest class containing
i) – iii), and being closed under iv) – vi).

i) πn,mj (x1, . . . , xn / xn+1, . . . , xn+m) = xj , for 1 ≤ j ≤ n + m.

ii) diff(/ a, b) = a \ b
iii) pair(/ a, b) = {a, b}
iv) (Rudimentary Union Scheme)

f (~x / ~a, b) =
⋃

z∈b g(~x / ~a, z)

v) (Safe Composition Scheme)
f (~x / ~a) = h(~r(~x /) /~t(~x / ~a))

vi) (Safe Set Recursion Scheme)
f (x , ~y / ~a) = h(x , ~y / ~a, {f (z , ~y / ~a) : z ∈ x})
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Bounding Ranks

Examples

Successor, addition and multiplication on ordinals
Succ(/α) = α + 1, Add(β /α) = α + β, Mult(α, β /) = α · β

are in SRSF.

But ordinal exponentiation is not safe recursive:

Theorem

Let f be a safe recursive set function. There is a polynomial qf such that

rank(f (~x / ~a)) ≤ max(rank(~a)) + qf (rank(~x))

for all sets ~x , ~a.
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SRSF and the M-Hierarchy

~x tuples of sets encoded as set sequences, ? sequence concatenation

Let Succ(T ) = T ∪ {T};
G1, . . . , G10 functions used by Gödel to define L.

Definition

MT
0 = T

MT
α+1 = Succ(MT

α ) ∪
⋃

1≤i≤10 range(Gi (Succ(MT
α ))× Gi (Succ(MT

α )))

MT
λ =

⋃
α<λM

T
α for limit λ

Definition

For sets ~x , ~y and 0 < n < ω define SR∗n(~x / ~y) := M
tc(~x?~y)
n+rank(~x)n
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Theorem (Sy Friedman, ’11)

SRSF functions are exactly the f (~x / ~y) which are uniformly definable in
SR∗n(~x / ~y) for some finite n.

Corollary

The SR functions on ω-strings coincide with those computable by an
infinite-time Turing machine in time ωn for some finite n, and were
considered by Deolaliker, Hamkins, Schindler, Welch and others.
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Bounded Set Theories

rank comparison: x � y iff rank(x) ≤ rank(y)

Rank bounded quantification: ∀x � t ϕ(x) and ∃x � t ϕ(x)

Σb
1 formulas of form ∃x � t ϕ(x) for ϕ ∈ ∆0.

Definition

Let LFST expand L∈ by 0,Succ,+,×, rank . . .

Let KP− be KP without Foundation, and define

KPb
1 to be KP− plus Σb

1-∈-Induction.

Let KP−− be KP without ∆0-Collection and Foundation, and define

T1 to be KP−− plus ∆0-b-Collection plus Σb
1-∈-Induction.

∆0-b-Collection is
∀x ∈ a ∃y � t(x) ϕ(x , y) → ∃z ∀x ∈ a ∃y ∈ z ϕ(x , y)

with ϕ(x , y) ∈ ∆0.
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Adapt Barwise

The first chapters of Barwise Admissible Sets and Structures can be
adapted to T1 for Σb

1 and Πb
1 instead of Σ1 and Π1:

Definition

Σb smallest class containing ∆0 and closed under conjunction, disjunction,
bounded quantification and existential rank bounded quantification.
Πb dually defined.

Definition

Given formula ϕ and variable a not occurring in ϕ, write ϕ(a) for result of
replacing each unbounded quantifier (this includes rank bounded
quantifiers) by bounded quantifier; that is
replace ∃x by ∃x ∈ a , and ∀x by ∀x ∈ a .

Arnold Beckmann (Swansea) Theories for Feasible Set Functions 14 / 27



We observe that ϕ(a) is a ∆0-formula. If ϕ is ∆0 then ϕ(a) = ϕ.
The following statements are already logically valid for Σb-formulas ϕ.

1 ϕ(a) ∧ a ⊆ b → ϕ(b)

2 ϕ(a) → ϕ

where a ⊆ b abbreviates the formula ∀x ∈ a (x ∈ b).

Theorem (The Σb Reflection Principle)

For every Σb formula ϕ there exists an LFST-term t whose variables are
amongst the free variables of ϕ such that:

T1 ` ϕ ↔ ∃x � t ϕ(x) .

In particular, any Σb formula is equivalent to some Σb
1 formula in T1.

Theorem (The Σb Bounded Collection Principle)

For any Σb formula ϕ the following is a theorem of T1:
If ∀x ∈ a ∃y � b ϕ(x , y), then there is a set c such that c � rank(b) + 1,
∀x ∈ a ∃y ∈ c ϕ(x , y) and ∀y ∈ c ∃x ∈ a ϕ(x , y).
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Theorem (∆b Separation)

For any Σb formula ϕ(x) and Πb formula ψ(x), the following is a theorem
of T1:
If for all x ∈ a, ϕ(x) ↔ ψ(x), then there is a set b = {x ∈ a : ϕ(x)}.

Theorem (Σb Replacement)

For each Σb formula ϕ(x , y) the following is a theorem of T1:
If ∀x ∈ a ∃!y � b ϕ(x , y), then there is a function f , with dom(f ) = a,
such that ∀x ∈ a ϕ(x , f (x)).

Theorem (Strong Σb Replacement)

For each Σb formula ϕ(x , y) the following is a theorem of T1:
If ∀x ∈ a ∃!y � b ϕ(x , y), then there is a function f , with dom(f ) = a,
such that

1 ∀x ∈ a f (x) 6= ∅ ;

2 ∀x ∈ a ∀y ∈ f (x) ϕ(x , y) .
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Defined relations

Definition

Let ϕ(x1, . . . , xn) be a Σb formula of LFST and ψ(x1, . . . , xn) be a Πb

formula of LFST such that T1 ` ϕ ↔ ψ. Let R be a new n-ary relation
symbol and define R by

∀x1 . . . ∀xn
[
R(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

]
(R)

R is then called a ∆b relation symbol of T1.
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Lemma

Let T1 be formulated in LFST and let R be a ∆b relation symbol of T1.
Let T ′1 be T1 as formulated in LFST(R), plus the defining axiom (R)
above.

1 For every formula θ(~x ,R) of LFST(R), there is a formula θ0(~x) of
LFST such that

T1 + (R) ` θ(~x ,R) ↔ θ0(~x)

Moreover, if θ is a Σb formula of LFST(R) then θ0 is a Σb-formula of
LFST.

2 For every ∆0 formula θ(~x ,R) of LFST(R), there are Σb and Πb

formulas θ0(~x), θ1(~x) of LFST such that

T1 + (R) ` θ(~x ,R) ↔ θ0(~x) and T1 + (R) ` θ(~x ,R) ↔ θ1(~x)

3 T ′1 is a conservative extension of T1.
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Definition

Let ϕ(x1, . . . , xn, y) be a Σb formula of LFST and t(x1, . . . , xn) a term of
LFST such that

T1 ` ∀x1, . . . , xn∃!y � t(x1, . . . , xn)ϕ(x1, . . . , xn, y) .

Let F be a new n-ary function symbol and define F by

∀x1 . . . xn, y
[
F(x1, . . . , xn) = y ↔ ϕ(x1, . . . , xn, y)

]
(F)

F is then called a Σb function symbol of T1.
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Lemma

Let T1 be formulated in LFST and let F be a Σb function symbol of T1.
Let T ′1 be T1 as formulated in LFST(F), plus the defining axiom (F)
above.

1 For every formula θ(~x ,F) of LFST(F), there is a formula θ0(~x) of
LFST such that

T1 + (F) ` θ(~x ,F) ↔ θ0(~x)

Moreover, if θ is a Σb formula of LFST(F) then θ0 is a Σb-formula of
LFST.

2 For every ∆0 formula θ(~x ,F) of LFST(F), there are Σb and Πb

formulas θ0(~x), θ1(~x) of LFST such that

T1 + (F) ` θ(~x ,F) ↔ θ0(~x) and T1 + (F) ` θ(~x ,F) ↔ θ1(~x)

3 T ′1 is a conservative extension of T1.

Arnold Beckmann (Swansea) Theories for Feasible Set Functions 20 / 27



T1 characterises SRSF

Definition

T1 Σ1-defines a set function f if there is a Σ1 formula ϕ such that
V � ∀xϕ(x , f (x)) and T1 ` ∀x∃!yϕ(x , y).

T1 Σb
1-defines a set function f if ϕ ∈ Σb

1.

Theorem (B.14)

The Σ1-definable functions of T1 are exactly the safe recursive set
functions.

Proof utilises characterisation of SRSF as those functions uniformly
definable in SR∗ using the M-hierarchy.

Corollary

The ∆1 definable predicates of T1 are exctly the predicates in SRSF.
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Defining SRSF in T1

We show that all SRSF functions are Σb
1-definable in T1

Let ψn be Σb
1-definition of x 7→ SR∗n(x /) in T1.

f (x /) ∈ SRSF ⇒ (uniformly definable in SR∗)
f (x /) = z iff SR∗n(x /) � ϕ(x , z) by some ϕ

Hence f (x /) =
⋃{

z ∈ SR∗n(x /) : ϕ(x , z)SR
∗
n (x /)

}
Let χ(x , u, v) be the ∆0-formula

ψn(x , u) ∧ ∀y ∈ v (y ∈ u ∧ ϕu(x , y))
∧ ∀y ∈ u (ϕu(x , y) → y ∈ v)

and let χ(x , z) be ∃u, v (χ(x , u, v) ∧ z =
⋃
v). Then

V � ∀x χ(x , f (x /)) and V � ∀x ∃!z χ(x , z)
T1 ` ∀x , u, u′, v , v ′ (χ(x , u, v) ∧ χ(x , u′, v ′) → u = u′ ∧ v = v ′)

using Σ1-definability of SR∗n and Extensionality, and
T1 ` ∀x ∃u, v χ(x , u, v)

using Σ1-definability of SR∗n and ∆0-Separation.
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Proof theoretic analysis

Adapt M.Rathjen’s argument:

f (x) Σ1-definable in T1

⇒ exists ϕ(x , y , z) ∈ ∆0 such that V � ∀x∃zϕ(x , f (x), z) and
T1 ` ∀x∃!y∃zϕ(x , y , z)

⇒ T1 ` ∀x∃uψ(x , u) for ψ(x , u) denoting ϕ(x , (u)0, (u)1).

Interpretation Theorem (next slide) shows that there exists finite n such
that
V � ∃u ∈ M

tc({x})
n+rank(x)n ψ(x , u) for any x ∈ V

⇒ SR∗m(x /) � ∃y ∃z ϕ(x , y , z) for some m ≥ n independent of x

⇒ f (x) = y iff SR∗m(x /) � ∃z ϕ(x , y , z)

⇒ f ∈ SRSF
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Interpretation Theorem

For formula ψ (which may contain unbounded quantifiers) write ψα,βv for
replacing each unbounded quantifier (this includes range bounded

quantifiers) ∀x and ∃x in ψ by ∀x ∈ M
tc(v)
α and ∃x ∈ M

tc(v)
β , respectively.

Theorem (Interpretation Theorem, B.14)

Let Γ(~a) be set of ∆0(Σ1) formulas with free variables amongst ~a.
If T1 ` Γ(~a), then there exists polynomial p
such that

V �
∨

Γ(~u)
α,α+p(rank(~u))
v for all α and ~u, v such that ~u ∈ Mv

α.

Conclusion can be strengthend to be provable in T0
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Collection Rule

∆0 Collection Rule:
Γ, b/∈t, ∃yϕ(b, y)

Γ, ∃z ∀x∈t ∃y∈z ϕ(x , y)

with b Eigenvariable, ϕ ∈ ∆0 and Γ ⊂ Σ1 ∪ Π1

Theorem (B.’15)

T1 is closed under above ∆0 Collection Rule.

Corollary

KPb
1 is ∀Σ1 conservative over T1.

Corollary

The Σ1 definable functions of KPb
1 are exactly SRSF.

Corollary

The ∆1 definable predicates of KPb
1 are exctly the predicates in SRSF.
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Open Problems / Work in Progress

Can KPb
1 be interpreted in some fragement of Bounded Arithmetic

(in analogy to fact that KP− + Σ1-∈-Induction can be interpreted in
IΣ1 )

What is the “right” definition for theory for CRSF? Perform
bootstrapping.

Once the right definitions have been settled, study bounded set
theory hierarchy KPb

i and characterise their Σ1-definable functions.
Links to “usual” complexity theory?
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Summary

Defined a restriction of Kripke-Platek set theory KPb
1 by defining new

“rank” bounded quantifier ∃x � y to define Σb
1, and restricting class

foundation to Σb
1-∈-induction.

Showed that the Σ1 definable functions in KPb
1 are exactly the SRSF

functions.

Main proof theoretic tool: the interpretation theorem, that showed
that in proofs of Σ1 ∪ Π1 statements in (a fragment of) KPb

1 ,
witnesses for existential quantifiers can be found polynomially above
given witnesses to universal quantifiers in the M-hierarchy.

Take Away Message:

Combining set theory and complexity theory is fruitful and fun!
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