Theories for Feasible Set Functions

Arnold Beckmann

joint work with Sam Buss, Sy-David Friedman, Moritz Müller and Neil Thapen (work in progress)

> Department of Computer Science College of Science, Swansea University Wales, UK

NUS, 16 April 2015

Recent proposals for restrictions of primitive recursive set functions to feasible computation:

Safe Recursive Set Functions [B., Buss, Sy Friedman, accepted JSL 2015, revision on webpages]

Predicatively Computable Set Functions [Arai, AML vol. 54 (2015), pp. 471–485]

Cobham Recursive Set Functions [B., Buss, Sy Friedman, Müller, Thapen, work in progress]

Kripke-Platek set theory KP consists of axioms Extensionality, Pair, Union, Set Foundation, along with schemas of Δ_0 -Collection, Δ_0 -Separation, and Foundation for definable classes.

M.Rathjen: A Proof-Theoretic Characterization of the Primitive Recursive Set Functions. JSL 57(3), 1992 asked and answered:

Is there, by analogy with PA, a neat subsystem of $\rm ZF$ which characterises the primitive recursive set functions?

Theorem (Rathjen'92)

Let KP^- be KP without Foundation for definable classes. The Σ_1 -definable functions in $\mathrm{KP}^- + \Sigma_1$ - \in -Induction are exactly the primitive recursive set functions.

 $\Sigma_1\text{-}\in\text{-Induction:}\quad \forall x(\forall y \in x \, \varphi(y) \ \rightarrow \ \varphi(x)) \ \rightarrow \ \forall x \varphi(x) \quad \text{ for } \varphi \in \Sigma_1.$

Inspired by this we will consider the question:

Is there, by analogy with Bounded Arithmetic, a neat subsystem of $\rm ZF$ which characterises feasible set functions?

Analogy to bounded arithmetic: In bounded arithmetic a la Buss: bounded quantifiers: $\forall x \leq t, \exists x \leq t$ sharply bounded quantifiers: $\forall x \leq |t|, \exists x \leq |t| \quad (|t| \approx \log t)$ In set theory:

bounded quantifiers: $\forall x \in y, \exists x \in y$

Hypothesis

Bounded set quantification corresponds to sharply bounded arithmetic quantification.

Reason: For feasible set functions like SRSF, rank on sets plays role of binary length in arithmetic. For ordinals, bounded set quantification thus behaves like sharply bounded

Add a new relation to set theory, $x \leq y$, for rank comparison: $x \leq y$ iff rank $(x) \leq \operatorname{rank}(y)$

Define rank bounded quantification:

$$\forall x \leq t \ \varphi(x) \text{ abbreviates } \forall x(x \leq t \rightarrow \varphi(x)) \\ \exists x \leq t \ \varphi(x) \text{ abbreviates } \exists x(x \leq t \land \varphi(x))$$

Definition

 Σ_1^b set formulas are of the form $\exists x \leq t \ \varphi(x)$ for $\varphi \in \Delta_0$.

Expand language with some function symbols to support bootstrapping (otherwise rank bounded quantification is too weak to define e.g. polynomials).

Definition

Let $\mathcal{L}_{\mathrm{FST}}$ expand L_{\in} by $0, \mathsf{Succ}, +, \times, \mathsf{rank} \dots$

Let KP^- be KP without Foundation.

Let KP_1^b be KP^- plus Σ_1^b - \in -Induction.

Theorem

The Σ_1 definable set functions of KP_1^b are exactly those in SRSF .

Safe Recursive Set Functions

- Safe Recursive Set Functions SRSF
- Definability Characterisations of SRSF

2 Set Theories for SRSF

Set Theories for SRSF

3 Characterizing SRSF

- Defining SRSF in KP₁^b
- Applications

4 Conclusion

(Inspired by S.Bellantoni and S.A.Cook: A new recursion-theoretic characterization of the polytime functions. Comput. Complexity, 2(2):97-110, 1992.)

Safe Set Functions:

$$f(x_1,\ldots,x_k \mid a_1,\ldots,a_\ell)$$

denotes a function on sets, whose arguments are typed into normal positions x_1, \ldots, x_k , and safe positions a_1, \ldots, a_ℓ .

Idea: The Safe Recursive Set Functions are obtained by imposing the above typing scheme onto Primitive Recursive Set Functions.

The Safe Recursive Set Functions (SRSF) are the smallest class containing i) – iii), and being closed under iv) – vi).

i)
$$\pi_j^{n,m}(x_1, ..., x_n / x_{n+1}, ..., x_{n+m}) = x_j$$
, for $1 \le j \le n + m$.
ii) diff $(/a, b) = a \setminus b$

iii) pair(
$$(a, b) = \{a, b\}$$

- iv) (Rudimentary Union Scheme) $f(\vec{x} / \vec{a}, b) = \bigcup_{z \in b} g(\vec{x} / \vec{a}, z)$
- v) (Safe Composition Scheme) $f(\vec{x} / \vec{a}) = h(\vec{r}(\vec{x} /) / \vec{t}(\vec{x} / \vec{a}))$
- vi) (Safe Set Recursion Scheme) $f(x, \vec{y} / \vec{a}) = h(x, \vec{y} / \vec{a}, \{f(z, \vec{y} / \vec{a}) : z \in x\})$

Examples

Successor, addition and multiplication on ordinals Succ(/ α) = α + 1, Add(β / α) = α + β , Mult(α , β /) = $\alpha \cdot \beta$ are in SRSF.

But ordinal exponentiation is *not* safe recursive:

Theorem

Let f be a safe recursive set function. There is a polynomial q_f such that

$$\mathsf{rank}(f(ec{x}\,/\,ec{a})) \quad \leq \quad \mathsf{max}(\mathsf{rank}(ec{a})) + q_f(\mathsf{rank}(ec{x}))$$

for all sets \vec{x} , \vec{a} .

 \vec{x} tuples of sets encoded as set sequences, \star sequence concatenation

Let Succ $(T) = T \cup \{T\}$; G_1, \ldots, G_{10} functions used by Gödel to define L.

Definition

$$\begin{split} & M_0^T = T \\ & M_{\alpha+1}^T = \operatorname{Succ}(M_{\alpha}^T) \cup \bigcup_{1 \leq i \leq 10} \operatorname{range}(G_i(\operatorname{Succ}(M_{\alpha}^T)) \times G_i(\operatorname{Succ}(M_{\alpha}^T))) \\ & M_{\lambda}^T = \bigcup_{\alpha < \lambda} M_{\alpha}^T \quad \text{for limit } \lambda \end{split}$$

Definition

For sets
$$ec{x},ec{y}$$
 and $0 < n < \omega$ define $\mathsf{SR}^*_n(ec{x}/ec{y}) := M^{\mathsf{tc}(ec{x}\starec{y})}_{n+\mathsf{rank}(ec{x})^n}$

Theorem (Sy Friedman, '11)

SRSF functions are exactly the $f(\vec{x} / \vec{y})$ which are uniformly definable in $SR_n^*(\vec{x} / \vec{y})$ for some finite n.

Corollary

The SR functions on ω -strings coincide with those computable by an infinite-time Turing machine in time ω^n for some finite n, and were considered by Deolaliker, Hamkins, Schindler, Welch and others.

Bounded Set Theories

rank comparison: $x \leq y$ iffrank(x) \leq rank(y)Rank bounded quantification: $\forall x \leq t \ \varphi(x)$ and $\exists x \leq t \ \varphi(x)$ Σ_1^b formulas of form $\exists x \leq t \ \varphi(x)$ for $\varphi \in \Delta_0$.

Definition

Let $\mathcal{L}_{\mathrm{FST}}$ expand L_{\in} by $0, \mathsf{Succ}, +, \times, \mathsf{rank} \dots$

Let KP^- be KP without Foundation, and define KP_1^b to be KP^- plus Σ_1^b - \in -Induction.

Let KP^{--} be KP without Δ_0 -Collection and Foundation, and define T_1 to be KP^{--} plus Δ_0 -b-Collection plus Σ_1^b - \in -Induction. Δ_0 -b-Collection is $\forall x \in a \exists y \leq t(x) \varphi(x, y) \rightarrow \exists z \forall x \in a \exists y \in z \varphi(x, y)$ with $\varphi(x, y) \in \Delta_0$. The first chapters of Barwise Admissible Sets and Structures can be adapted to T_1 for Σ_1^b and Π_1^b instead of Σ_1 and Π_1 :

Definition

 Σ^b smallest class containing Δ_0 and closed under conjunction, disjunction, bounded quantification and existential rank bounded quantification. Π^b dually defined.

Definition

Given formula φ and variable *a* not occurring in φ , write $\varphi^{(a)}$ for result of replacing each *unbounded* quantifier (this includes rank bounded quantifiers) by *bounded* quantifier; that is replace $\exists x \text{ by } \exists x \in a$, and $\forall x \text{ by } \forall x \in a$.

We observe that $\varphi^{(a)}$ is a Δ_0 -formula. If φ is Δ_0 then $\varphi^{(a)} = \varphi$.

The following statements are already logically valid for Σ^b -formulas φ .

1
$$\varphi^{(a)} \wedge a \subseteq b \rightarrow \varphi^{(b)}$$

2 $\varphi^{(a)} \rightarrow \varphi$

where $a \subseteq b$ abbreviates the formula $\forall x \in a \ (x \in b)$.

Theorem (The Σ^b Reflection Principle)

For every Σ^{b} formula φ there exists an \mathcal{L}_{FST} -term t whose variables are amongst the free variables of φ such that:

$$T_1 \vdash \varphi \iff \exists x \preceq t \ \varphi^{(x)}$$

In particular, any Σ^{b} formula is equivalent to some Σ_{1}^{b} formula in T_{1} .

Theorem (The Σ^{b} Bounded Collection Principle)

For any Σ^b formula φ the following is a theorem of T_1 : If $\forall x \in a \exists y \leq b \varphi(x, y)$, then there is a set c such that $c \leq \operatorname{rank}(b) + 1$, $\forall x \in a \exists y \in c \varphi(x, y)$ and $\forall y \in c \exists x \in a \varphi(x, y)$.

Theorem (Δ^b Separation)

For any Σ^{b} formula $\varphi(x)$ and Π^{b} formula $\psi(x)$, the following is a theorem of T_{1} :

If for all $x \in a$, $\varphi(x) \leftrightarrow \psi(x)$, then there is a set $b = \{x \in a \colon \varphi(x)\}$.

Theorem (Σ^b Replacement)

For each Σ^{b} formula $\varphi(x, y)$ the following is a theorem of T_{1} : If $\forall x \in a \exists ! y \leq b \varphi(x, y)$, then there is a function f, with dom(f) = a, such that $\forall x \in a \varphi(x, f(x))$.

Theorem (Strong Σ^b Replacement)

For each Σ^{b} formula $\varphi(x, y)$ the following is a theorem of T_{1} : If $\forall x \in a \exists ! y \leq b \varphi(x, y)$, then there is a function f, with dom(f) = a, such that

$$\forall x \in a \ \forall y \in f(x) \ \varphi(x,y) \ .$$

Definition

Let $\varphi(x_1, \ldots, x_n)$ be a Σ^b formula of \mathcal{L}_{FST} and $\psi(x_1, \ldots, x_n)$ be a Π^b formula of \mathcal{L}_{FST} such that $\mathcal{T}_1 \vdash \varphi \leftrightarrow \psi$. Let R be a new *n*-ary relation symbol and define R by

$$\forall x_1 \dots \forall x_n [\mathbf{R}(x_1, \dots, x_n) \leftrightarrow \varphi(x_1, \dots, x_n)]$$
 (R)

R is then called a Δ^b relation symbol of T_1 .

Lemma

Let T_1 be formulated in \mathcal{L}_{FST} and let R be a Δ^b relation symbol of T_1 . Let T'_1 be T_1 as formulated in $\mathcal{L}_{FST}(R)$, plus the defining axiom (R) above.

• For every formula $\theta(\vec{x}, R)$ of $\mathcal{L}_{FST}(R)$, there is a formula $\theta_0(\vec{x})$ of \mathcal{L}_{FST} such that

 $T_1 + (\mathsf{R}) \vdash \theta(\vec{x}, \mathsf{R}) \leftrightarrow \theta_0(\vec{x})$

Moreover, if θ is a Σ^{b} formula of $\mathcal{L}_{FST}(R)$ then θ_{0} is a Σ^{b} -formula of \mathcal{L}_{FST} .

2 For every Δ_0 formula $\theta(\vec{x}, \mathbf{R})$ of $\mathcal{L}_{FST}(\mathbf{R})$, there are Σ^b and Π^b formulas $\theta_0(\vec{x})$, $\theta_1(\vec{x})$ of \mathcal{L}_{FST} such that

 $T_1 + (\mathsf{R}) \vdash \theta(\vec{x}, \mathsf{R}) \leftrightarrow \theta_0(\vec{x}) \text{ and } T_1 + (\mathsf{R}) \vdash \theta(\vec{x}, \mathsf{R}) \leftrightarrow \theta_1(\vec{x})$

3
$$T'_1$$
 is a conservative extension of T_1 .

Definition

Let $\varphi(x_1, \ldots, x_n, y)$ be a Σ^b formula of \mathcal{L}_{FST} and $t(x_1, \ldots, x_n)$ a term of \mathcal{L}_{FST} such that

$$T_1 \vdash \forall x_1, \ldots, x_n \exists ! y \preceq t(x_1, \ldots, x_n) \varphi(x_1, \ldots, x_n, y)$$

Let F be a new *n*-ary function symbol and define F by

$$\forall x_1 \dots x_n, y \big[F(x_1, \dots, x_n) = y \iff \varphi(x_1, \dots, x_n, y) \big]$$
(F)

F is then called a Σ^{b} function symbol of T_{1} .

Lemma

Let T_1 be formulated in $\mathcal{L}_{\rm FST}$ and let F be a Σ^b function symbol of T_1 . Let T'_1 be T_1 as formulated in $\mathcal{L}_{\rm FST}(F)$, plus the defining axiom (F) above.

• For every formula $\theta(\vec{x}, F)$ of $\mathcal{L}_{FST}(F)$, there is a formula $\theta_0(\vec{x})$ of \mathcal{L}_{FST} such that

 $T_1 + (\mathsf{F}) \vdash \ \theta(\vec{x}, \mathrm{F}) \ \leftrightarrow \ \theta_0(\vec{x})$

Moreover, if θ is a Σ^{b} formula of $\mathcal{L}_{FST}(F)$ then θ_{0} is a Σ^{b} -formula of \mathcal{L}_{FST} .

2 For every Δ₀ formula θ(x, F) of L_{FST}(F), there are Σ^b and Π^b formulas θ₀(x), θ₁(x) of L_{FST} such that

 $T_1 + (F) \vdash \theta(\vec{x}, F) \leftrightarrow \theta_0(\vec{x}) \text{ and } T_1 + (F) \vdash \theta(\vec{x}, F) \leftrightarrow \theta_1(\vec{x})$

3
$$T'_1$$
 is a conservative extension of T_1 .

Definition

 $T_1 \Sigma_1$ -defines a set function f if there is a Σ_1 formula φ such that $V \vDash \forall x \varphi(x, f(x))$ and $T_1 \vdash \forall x \exists ! y \varphi(x, y)$.

 $T_1 \Sigma_1^b$ -defines a set function f if $\varphi \in \Sigma_1^b$.

Theorem (B.14)

The Σ_1 -definable functions of T_1 are exactly the safe recursive set functions.

Proof utilises characterisation of ${\rm SRSF}$ as those functions uniformly definable in ${\rm SR}^*$ using the M-hierarchy.

Corollary

The Δ_1 definable predicates of T_1 are exctly the predicates in SRSF.

Defining SRSF in T_1

We show that all SRSF functions are Σ_1^b -definable in T_1 Let ψ_n be Σ_1^b -definition of $x \mapsto SR_n^*(x/)$ in T_1 . $f(x /) \in SRSF \implies$ (uniformly definable in SR*) f(x/) = z iff $SR_n^*(x/) \models \varphi(x,z)$ by some φ Hence $f(x/) = \bigcup \{z \in SR_n^*(x/) : \varphi(x,z)^{SR_n^*(x/)} \}$ Let $\chi(x, u, v)$ be the Δ_0 -formula $\psi_n(x, u) \land \forall y \in v \ (y \in u \land \varphi^u(x, y))$ $\land \forall v \in u (\varphi^u(x, v) \rightarrow v \in v)$ and let $\chi(x, z)$ be $\exists u, v \ (\chi(x, u, v) \land z = \bigcup v)$. Then $V \models \forall x \ \chi(x, f(x/)) \text{ and } V \models \forall x \exists ! z \ \chi(x, z)$ $T_1 \vdash \forall x, u, u', v, v' (\chi(x, u, v) \land \chi(x, u', v') \rightarrow u = u' \land v = v')$ using Σ_1 -definability of SR^{*}_n and Extensionality, and $T_1 \vdash \forall x \exists u, v \ \chi(x, u, v)$ using Σ_1 -definability of SR^{*}_n and Δ_0 -Separation.

Adapt M.Rathjen's argument:

 $f(x) \Sigma_1$ -definable in T_1

- $\Rightarrow \text{ exists } \varphi(x, y, z) \in \Delta_0 \text{ such that } V \vDash \forall x \exists z \varphi(x, f(x), z) \text{ and } \\ T_1 \vdash \forall x \exists ! y \exists z \varphi(x, y, z)$
- $\Rightarrow T_1 \vdash \forall x \exists u \psi(x, u) \text{ for } \psi(x, u) \text{ denoting } \varphi(x, (u)_0, (u)_1).$

Interpretation Theorem (next slide) shows that there exists finite n such that

$$V \vDash \exists u \in M_{n+\operatorname{rank}(x)^n}^{\operatorname{tc}\{\{x\}\}} \psi(x, u) \text{ for any } x \in V$$

$$\Rightarrow \quad \operatorname{SR}_m^*(x/) \vDash \exists y \exists z \ \varphi(x, y, z) \text{ for some } m \ge n \text{ independent of } x$$

$$\Rightarrow \quad f(x) = y \quad \text{iff} \quad \operatorname{SR}_m^*(x/) \vDash \exists z \ \varphi(x, y, z)$$

 $\Rightarrow f \in SRSF$

For formula ψ (which may contain unbounded quantifiers) write $\psi_v^{\alpha,\beta}$ for replacing each *unbounded* quantifier (this includes range bounded quantifiers) $\forall x$ and $\exists x$ in ψ by $\forall x \in M_{\alpha}^{tc(\nu)}$ and $\exists x \in M_{\beta}^{tc(\nu)}$, respectively.

Theorem (Interpretation Theorem, B.14)

Let $\Gamma(\vec{a})$ be set of $\Delta_0(\Sigma_1)$ formulas with free variables amongst \vec{a} . If $T_1 \vdash \Gamma(\vec{a})$, then there exists polynomial p such that

 $V \vDash \bigvee \Gamma(\vec{u})_{v}^{\alpha,\alpha+p(\operatorname{rank}(\vec{u}))}$ for all α and \vec{u}, v such that $\vec{u} \in M_{\alpha}^{v}$.

Conclusion can be strengthend to be provable in T_0

Collection Rule

$\Delta_0 \text{ Collection Rule:} \quad \frac{\Gamma, \ b \notin t, \ \exists y \varphi(b, y)}{\Gamma, \ \exists z \ \forall x \in t \ \exists y \in z \ \varphi(x, y)}$

with *b* Eigenvariable, $\varphi \in \Delta_0$ and $\Gamma \subset \Sigma_1 \cup \Pi_1$

Theorem (B.'15)

 T_1 is closed under above Δ_0 Collection Rule.

Corollary

 $\operatorname{KP}_1^{\operatorname{b}}$ is $\forall \Sigma_1$ conservative over T_1 .

Corollary

The Σ_1 definable functions of KP_1^b are exactly $\mathrm{SRSF}.$

Corollary

The Δ_1 definable predicates of KP_1^b are exctly the predicates in SRSF .

- Can ${\rm KP}_1^b$ be interpreted in some fragement of Bounded Arithmetic (in analogy to fact that ${\rm KP}^-+\Sigma_1\text{-}{\in}\text{-Induction}$ can be interpreted in $I\Sigma_1$)
- What is the "right" definition for theory for CRSF? Perform bootstrapping.
- Once the right definitions have been settled, study bounded set theory hierarchy KP^b_i and characterise their Σ₁-definable functions. Links to "usual" complexity theory?

Summary

- Defined a restriction of Kripke-Platek set theory $\mathrm{KP}_1^{\mathrm{b}}$ by defining new "rank" bounded quantifier $\exists x \leq y$ to define Σ_1^{b} , and restricting class foundation to Σ_1^{b} - \in -induction.
- Showed that the Σ_1 definable functions in KP_1^b are exactly the SRSF functions.
- Main proof theoretic tool: the interpretation theorem, that showed that in proofs of Σ₁ ∪ Π₁ statements in (a fragment of) KP₁^b, witnesses for existential quantifiers can be found polynomially above given witnesses to universal quantifiers in the *M*-hierarchy.

Take Away Message:

Combining set theory and complexity theory is fruitful and fun!