Theories for Feasible Set Functions

Arnold Beckmann

joint work with Sam Buss, Sy-David Friedman, Moritz Müller and Neil Thapen
(work in progress)

Department of Computer Science
College of Science, Swansea University
Wales, UK

Motivation

Recent proposals for restrictions of primitive recursive set functions to feasible computation:

Safe Recursive Set Functions [B., Buss, Sy Friedman, accepted JSL 2015, revision on webpages]

Predicatively Computable Set Functions [Arai, AML vol. 54 (2015), pp. 471-485]

Cobham Recursive Set Functions [B., Buss, Sy Friedman, Müller, Thapen, work in progress]

Theories for feasible computation

Kripke-Platek set theory KP consists of axioms Extensionality, Pair, Union, Set Foundation, along with schemas of Δ_{0}-Collection, Δ_{0}-Separation, and Foundation for definable classes.
M.Rathjen: A Proof-Theoretic Characterization of the Primitive Recursive Set Functions. JSL 57(3), 1992 asked and answered:

Is there, by analogy with PA, a neat subsystem of ZF which characterises the primitive recursive set functions?

Theorem (Rathjen'92)

Let KP^{-}be KP without Foundation for definable classes.
The Σ_{1}-definable functions in $\mathrm{KP}^{-}+\Sigma_{1-\epsilon-I n d u c t i o n ~}$ are exactly the primitive recursive set functions.
$\Sigma_{1-\epsilon-I n d u c t i o n: ~} \quad \forall x(\forall y \in x \varphi(y) \rightarrow \varphi(x)) \rightarrow \forall x \varphi(x) \quad$ for $\varphi \in \Sigma_{1}$.

Inspired by this we will consider the question: Is there, by analogy with Bounded Arithmetic, a neat subsystem of ZF which characterises feasible set functions?

Analogy to bounded arithmetic: In bounded arithmetic a la Buss: bounded quantifiers: $\forall x \leq t, \exists x \leq t$
sharply bounded quantifiers: $\forall x \leq|t|, \exists x \leq|t| \quad(|t| \approx \log t)$ In set theory:
bounded quantifiers: $\forall x \in y, \exists x \in y$

Hypothesis

Bounded set quantification corresponds to sharply bounded arithmetic quantification.

Reason: For feasible set functions like SRSF, rank on sets plays role of binary length in arithmetic.
For ordinals, bounded set quantification thus behaves like sharply bounded quantification.

New Bounded Set Quantification

Add a new relation to set theory, $x \preceq y$, for rank comparison: $x \preceq y \quad$ iff $\quad \operatorname{rank}(x) \leq \operatorname{rank}(y)$

Define rank bounded quantification:
$\forall x \preceq t \varphi(x)$ abbreviates $\forall x(x \preceq t \rightarrow \varphi(x))$
$\exists x \preceq t \varphi(x)$ abbreviates $\exists x(x \preceq t \wedge \varphi(x))$

Definition

Σ_{1}^{b} set formulas are of the form $\exists x \preceq t \varphi(x)$ for $\varphi \in \Delta_{0}$.

Bounded Set Theories

Expand language with some function symbols to support bootstrapping (otherwise rank bounded quantification is too weak to define e.g. polynomials).

```
Definition
Let }\mp@subsup{\mathcal{L}}{\textrm{FST}}{}\mathrm{ expand }\mp@subsup{L}{\in}{}\mathrm{ by }0,\mathrm{ Succ, +, }\times,\mathrm{ rank ...
Let KP-}\mathrm{ be KP without Foundation.
Let KP
```


Theorem

The Σ_{1} definable set functions of $\mathrm{KP}_{1}^{\mathrm{b}}$ are exactly those in SRSF.

Outline of talk

(1) Safe Recursive Set Functions

- Safe Recursive Set Functions SRSF
- Definability Characterisations of SRSF
(2) Set Theories for SRSF
- Set Theories for SRSF
(3) Characterizing SRSF
- Defining SRSF in $\mathrm{KP}_{1}^{\mathrm{b}}$
- Applications
(4) Conclusion

Safe Set Functions

(Inspired by S.Bellantoni and S.A.Cook: A new recursion-theoretic characterization of the polytime functions. Comput. Complexity, 2(2):97-110, 1992.)

Safe Set Functions:

$$
f\left(x_{1}, \ldots, x_{k} / a_{1}, \ldots, a_{\ell}\right)
$$

denotes a function on sets, whose arguments are typed into normal positions x_{1}, \ldots, x_{k}, and safe positions a_{1}, \ldots, a_{ℓ}.

Idea: The Safe Recursive Set Functions are obtained by imposing the above typing scheme onto Primitive Recursive Set Functions.

Safe Recursive Set Functions

The Safe Recursive Set Functions (SRSF) are the smallest class containing i) - iii), and being closed under iv) - vi).
i) $\pi_{j}^{n, m}\left(x_{1}, \ldots, x_{n} / x_{n+1}, \ldots, x_{n+m}\right)=x_{j}$, for $1 \leq j \leq n+m$.
ii) $\operatorname{diff}(/ a, b)=a \backslash b$
iii) $\operatorname{pair}(/ a, b)=\{a, b\}$
iv) (Rudimentary Union Scheme)

$$
f(\vec{x} / \vec{a}, b)=\bigcup_{z \in b} g(\vec{x} / \vec{a}, z)
$$

v) (Safe Composition Scheme)

$$
f(\vec{x} / \vec{a})=h(\vec{r}(\vec{x} /) / \vec{t}(\vec{x} / \vec{a}))
$$

vi) (Safe Set Recursion Scheme)

$$
f(x, \vec{y} / \vec{a})=h(x, \vec{y} / \vec{a},\{f(z, \vec{y} / \vec{a}): z \in x\})
$$

Bounding Ranks

Examples

Successor, addition and multiplication on ordinals

$$
\operatorname{Succ}(/ \alpha)=\alpha+1, \operatorname{Add}(\beta / \alpha)=\alpha+\beta, \operatorname{Mult}(\alpha, \beta /)=\alpha \cdot \beta
$$ are in SRSF.

But ordinal exponentiation is not safe recursive:

Theorem

Let f be a safe recursive set function. There is a polynomial q_{f} such that

$$
\operatorname{rank}(f(\vec{x} / \vec{a})) \leq \max (\operatorname{rank}(\vec{a}))+q_{f}(\operatorname{rank}(\vec{x}))
$$

for all sets \vec{x}, \vec{a}.

SRSF and the M-Hierarchy

\vec{x} tuples of sets encoded as set sequences, \star sequence concatenation
Let $\operatorname{Succ}(T)=T \cup\{T\}$;
G_{1}, \ldots, G_{10} functions used by Gödel to define L.

Definition

$$
\begin{aligned}
M_{0}^{T} & =T \\
M_{\alpha+1}^{T} & =\operatorname{Succ}\left(M_{\alpha}^{T}\right) \cup \bigcup_{1 \leq i \leq 10} \operatorname{range}\left(G_{i}\left(\operatorname{Succ}\left(M_{\alpha}^{T}\right)\right) \times G_{i}\left(\operatorname{Succ}\left(M_{\alpha}^{T}\right)\right)\right) \\
M_{\lambda}^{T} & =\bigcup_{\alpha<\lambda} M_{\alpha}^{T} \quad \text { for limit } \lambda
\end{aligned}
$$

Definition

For sets \vec{x}, \vec{y} and $0<n<\omega$ define $\operatorname{SR}_{n}^{*}(\vec{x} / \vec{y}):=M_{n+\operatorname{rank}(\vec{x})^{n}}^{\mathrm{tc}(\overrightarrow{\vec{y}}+\vec{y})}$

Theorem (Sy Friedman, '11)

SRSF functions are exactly the $f(\vec{x} / \vec{y})$ which are uniformly definable in $\mathrm{SR}_{n}^{*}(\vec{x} / \vec{y})$ for some finite n.

Corollary

The SR functions on ω-strings coincide with those computable by an infinite-time Turing machine in time ω^{n} for some finite n, and were considered by Deolaliker, Hamkins, Schindler, Welch and others.

Bounded Set Theories

rank comparison: $\quad x \preceq y$ iff $\operatorname{rank}(x) \leq \operatorname{rank}(y)$
Rank bounded quantification: $\forall x \preceq t \varphi(x)$ and $\exists x \preceq t \varphi(x)$
Σ_{1}^{b} formulas of form $\exists x \preceq t \varphi(x)$ for $\varphi \in \Delta_{0}$.

Definition

Let $\mathcal{L}_{\text {FST }}$ expand L_{\in} by $\quad 0$, Succ,,$+ \times$, rank \ldots
Let KP^{-}be KP without Foundation, and define
$\mathrm{KP}_{1}^{\mathrm{b}}$ to be KP^{-}plus $\sum_{1}^{b}-\in$-Induction.
Let KP^{--}be KP without Δ_{0}-Collection and Foundation, and define T_{1} to be KP^{--}plus Δ_{0}-b-Collection plus Σ_{1}^{b} - \in-Induction.
Δ_{0}-b-Collection is

$$
\forall x \in a \exists y \preceq t(x) \varphi(x, y) \rightarrow \exists z \forall x \in a \exists y \in z \varphi(x, y)
$$

with $\varphi(x, y) \in \Delta_{0}$.

Adapt Barwise

The first chapters of Barwise Admissible Sets and Structures can be adapted to T_{1} for Σ_{1}^{b} and Π_{1}^{b} instead of Σ_{1} and Π_{1} :

Definition

Σ^{b} smallest class containing Δ_{0} and closed under conjunction, disjunction, bounded quantification and existential rank bounded quantification. Π^{b} dually defined.

Definition

Given formula φ and variable a not occurring in φ, write $\varphi^{(a)}$ for result of replacing each unbounded quantifier (this includes rank bounded quantifiers) by bounded quantifier; that is replace $\exists x$ by $\exists x \in a$, and $\forall x$ by $\forall x \in a$.

We observe that $\varphi^{(a)}$ is a Δ_{0}-formula. If φ is Δ_{0} then $\varphi^{(a)}=\varphi$. The following statements are already logically valid for Σ^{b}-formulas φ.
(1) $\varphi^{(a)} \wedge a \subseteq b \rightarrow \varphi^{(b)}$
(2) $\varphi^{(a)} \rightarrow \varphi$
where $a \subseteq b$ abbreviates the formula $\forall x \in a(x \in b)$.

Theorem (The Σ^{b} Reflection Principle)

For every Σ^{b} formula φ there exists an $\mathcal{L}_{\text {FST }}$-term t whose variables are amongst the free variables of φ such that:

$$
T_{1} \vdash \varphi \leftrightarrow \exists x \preceq t \varphi^{(x)}
$$

In particular, any Σ^{b} formula is equivalent to some Σ_{1}^{b} formula in T_{1}.

Theorem (The Σ^{b} Bounded Collection Principle)

For any Σ^{b} formula φ the following is a theorem of T_{1} : If $\forall x \in a \exists y \preceq b \varphi(x, y)$, then there is a set c such that $c \preceq \operatorname{rank}(b)+1$, $\forall x \in a \exists y \in c \varphi(x, y)$ and $\forall y \in c \exists x \in a \varphi(x, y)$.

Theorem (Δ^{b} Separation)

For any Σ^{b} formula $\varphi(x)$ and Π^{b} formula $\psi(x)$, the following is a theorem of T_{1} :
If for all $x \in a, \varphi(x) \leftrightarrow \psi(x)$, then there is a set $b=\{x \in a: \varphi(x)\}$.

Theorem (Σ^{b} Replacement)

For each Σ^{b} formula $\varphi(x, y)$ the following is a theorem of T_{1} : If $\forall x \in a \exists!y \preceq b \varphi(x, y)$, then there is a function f, with $\operatorname{dom}(f)=a$, such that $\forall x \in a \varphi(x, f(x))$.

Theorem (Strong \sum^{b} Replacement)

For each Σ^{b} formula $\varphi(x, y)$ the following is a theorem of T_{1} : If $\forall x \in a \exists!y \preceq b \varphi(x, y)$, then there is a function f, with $\operatorname{dom}(f)=a$, such that
(1) $\forall x \in a f(x) \neq \emptyset$;
(2) $\forall x \in a \forall y \in f(x) \varphi(x, y)$.

Defined relations

Definition

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a Σ^{b} formula of $\mathcal{L}_{\mathrm{FST}}$ and $\psi\left(x_{1}, \ldots, x_{n}\right)$ be a Π^{b} formula of $\mathcal{L}_{\mathrm{FST}}$ such that $T_{1} \vdash \varphi \leftrightarrow \psi$. Let R be a new n-ary relation symbol and define R by

$$
\begin{equation*}
\forall x_{1} \ldots \forall x_{n}\left[R\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \varphi\left(x_{1}, \ldots, x_{n}\right)\right] \tag{R}
\end{equation*}
$$

R is then called a Δ^{b} relation symbol of T_{1}.

Lemma

Let T_{1} be formulated in $\mathcal{L}_{\mathrm{FST}}$ and let R be a Δ^{b} relation symbol of T_{1}. Let T_{1}^{\prime} be T_{1} as formulated in $\mathcal{L}_{\mathrm{FST}}(\mathrm{R})$, plus the defining axiom (R) above.
(1) For every formula $\theta(\vec{x}, \mathrm{R})$ of $\mathcal{L}_{\mathrm{FST}}(\mathrm{R})$, there is a formula $\theta_{0}(\vec{x})$ of $\mathcal{L}_{\text {FST }}$ such that

$$
T_{1}+(\mathrm{R}) \vdash \theta(\vec{x}, \mathrm{R}) \leftrightarrow \theta_{0}(\vec{x})
$$

Moreover, if θ is a Σ^{b} formula of $\mathcal{L}_{\mathrm{FST}}(\mathrm{R})$ then θ_{0} is a Σ^{b}-formula of $\mathcal{L}_{\text {FST }}$.
(2) For every Δ_{0} formula $\theta(\vec{x}, \mathrm{R})$ of $\mathcal{L}_{\mathrm{FST}}(\mathrm{R})$, there are Σ^{b} and Π^{b} formulas $\theta_{0}(\vec{x}), \theta_{1}(\vec{x})$ of $\mathcal{L}_{\mathrm{FST}}$ such that

$$
T_{1}+(\mathrm{R}) \vdash \theta(\vec{x}, \mathrm{R}) \leftrightarrow \theta_{0}(\vec{x}) \quad \text { and } \quad T_{1}+(\mathrm{R}) \vdash \theta(\vec{x}, \mathrm{R}) \leftrightarrow \theta_{1}(\vec{x})
$$

(3) T_{1}^{\prime} is a conservative extension of T_{1}.

Definition

Let $\varphi\left(x_{1}, \ldots, x_{n}, y\right)$ be a Σ^{b} formula of $\mathcal{L}_{\mathrm{FST}}$ and $t\left(x_{1}, \ldots, x_{n}\right)$ a term of $\mathcal{L}_{\text {FST }}$ such that

$$
T_{1} \vdash \forall x_{1}, \ldots, x_{n} \exists!y \preceq t\left(x_{1}, \ldots, x_{n}\right) \varphi\left(x_{1}, \ldots, x_{n}, y\right) .
$$

Let F be a new n-ary function symbol and define F by

$$
\begin{equation*}
\forall x_{1} \ldots x_{n}, y\left[\mathrm{~F}\left(x_{1}, \ldots, x_{n}\right)=y \leftrightarrow \varphi\left(x_{1}, \ldots, x_{n}, y\right)\right] \tag{F}
\end{equation*}
$$

F is then called a Σ^{b} function symbol of T_{1}.

Lemma

Let T_{1} be formulated in $\mathcal{L}_{\mathrm{FST}}$ and let F be a Σ^{b} function symbol of T_{1}. Let T_{1}^{\prime} be T_{1} as formulated in $\mathcal{L}_{\mathrm{FST}}(\mathrm{F})$, plus the defining axiom (F) above.
(1) For every formula $\theta(\vec{x}, \mathrm{~F})$ of $\mathcal{L}_{\mathrm{FST}}(\mathrm{F})$, there is a formula $\theta_{0}(\vec{x})$ of $\mathcal{L}_{\text {FST }}$ such that

$$
T_{1}+(\mathrm{F}) \vdash \theta(\vec{x}, \mathrm{~F}) \leftrightarrow \theta_{0}(\vec{x})
$$

Moreover, if θ is a Σ^{b} formula of $\mathcal{L}_{\mathrm{FST}}(\mathrm{F})$ then θ_{0} is a Σ^{b}-formula of $\mathcal{L}_{\text {FST }}$.
(2) For every Δ_{0} formula $\theta(\vec{x}, \mathrm{~F})$ of $\mathcal{L}_{\mathrm{FST}}(\mathrm{F})$, there are Σ^{b} and Π^{b} formulas $\theta_{0}(\vec{x}), \theta_{1}(\vec{x})$ of $\mathcal{L}_{\text {FST }}$ such that

$$
T_{1}+(\mathrm{F}) \vdash \theta(\vec{x}, \mathrm{~F}) \leftrightarrow \theta_{0}(\vec{x}) \quad \text { and } \quad T_{1}+(\mathrm{F}) \vdash \theta(\vec{x}, \mathrm{~F}) \leftrightarrow \theta_{1}(\vec{x})
$$

(3) T_{1}^{\prime} is a conservative extension of T_{1}.

T_{1} characterises SRSF

Definition

$T_{1} \Sigma_{1}$-defines a set function f if there is a Σ_{1} formula φ such that $V \vDash \forall x \varphi(x, f(x))$ and $T_{1} \vdash \forall x \exists!y \varphi(x, y)$. $T_{1} \Sigma_{1}^{b}$-defines a set function f if $\varphi \in \Sigma_{1}^{b}$.

Theorem (B.14)

The Σ_{1}-definable functions of T_{1} are exactly the safe recursive set functions.

Proof utilises characterisation of SRSF as those functions uniformly definable in SR^{*} using the M-hierarchy.

Corollary

The Δ_{1} definable predicates of T_{1} are exctly the predicates in SRSF.

Defining SRSF in T_{1}

We show that all SRSF functions are Σ_{1}^{b}-definable in T_{1}
Let ψ_{n} be Σ_{1}^{b}-definition of $x \mapsto \operatorname{SR}_{n}^{*}(x /)$ in T_{1}.
$f(x /) \in$ SRSF $\quad \Rightarrow \quad$ (uniformly definable in SR^{*})

$$
f(x /)=z \quad \text { iff } \quad \mathrm{SR}_{n}^{*}(x /) \vDash \varphi(x, z) \quad \text { by some } \varphi
$$

Hence $\quad f(x /)=\bigcup\left\{z \in \operatorname{SR}_{n}^{*}(x /): \varphi(x, z)^{\operatorname{SR}_{n}^{*}(x /)}\right\}$
Let $\chi(x, u, v)$ be the Δ_{0}-formula

$$
\begin{aligned}
\psi_{n}(x, u) & \wedge \forall y \in v\left(y \in u \wedge \varphi^{u}(x, y)\right) \\
& \wedge \forall y \in u\left(\varphi^{u}(x, y) \rightarrow y \in v\right)
\end{aligned}
$$

and let $\chi(x, z)$ be $\exists u, v(\chi(x, u, v) \wedge z=\bigcup v)$. Then
$V \vDash \forall x \chi(x, f(x /))$ and $V \vDash \forall x \exists!z \chi(x, z)$
$T_{1} \vdash \forall x, u, u^{\prime}, v, v^{\prime}\left(\chi(x, u, v) \wedge \chi\left(x, u^{\prime}, v^{\prime}\right) \rightarrow u=u^{\prime} \wedge v=v^{\prime}\right)$
using Σ_{1}-definability of SR_{n}^{*} and Extensionality, and

$$
T_{1} \vdash \forall x \exists u, v \chi(x, u, v)
$$

using Σ_{1}-definability of SR_{n}^{*} and Δ_{0}-Separation.

Proof theoretic analysis

Adapt M.Rathjen's argument:
$f(x) \Sigma_{1}$-definable in T_{1}
\Rightarrow exists $\varphi(x, y, z) \in \Delta_{0}$ such that $V \vDash \forall x \exists z \varphi(x, f(x), z)$ and $T_{1} \vdash \forall x \exists!y \exists z \varphi(x, y, z)$
$\Rightarrow \quad T_{1} \vdash \forall x \exists u \psi(x, u)$ for $\psi(x, u)$ denoting $\varphi\left(x,(u)_{0},(u)_{1}\right)$.
Interpretation Theorem (next slide) shows that there exists finite n such that

$$
\begin{aligned}
& V \vDash \exists u \in M_{n+\operatorname{rank}(x)^{n}}^{\operatorname{tc}(\{x\})} \psi(x, u) \text { for any } x \in V \\
& \Rightarrow \quad \operatorname{SR}_{m}^{*}(x /) \vDash \exists y \exists z \varphi(x, y, z) \text { for some } m \geq n \text { independent of } x \\
& \Rightarrow \quad f(x)=y \text { iff } \operatorname{SR}_{m}^{*}(x /) \vDash \exists z \varphi(x, y, z) \\
& \Rightarrow \quad f \in \operatorname{SRSF}
\end{aligned}
$$

Interpretation Theorem

For formula ψ (which may contain unbounded quantifiers) write $\psi_{v}^{\alpha, \beta}$ for replacing each unbounded quantifier (this includes range bounded quantifiers) $\forall x$ and $\exists x$ in ψ by $\forall x \in M_{\alpha}^{\mathrm{tc}(v)}$ and $\exists x \in M_{\beta}^{\mathrm{tc}(v)}$, respectively.

Theorem (Interpretation Theorem, B.14)

Let $\Gamma(\vec{a})$ be set of $\Delta_{0}\left(\Sigma_{1}\right)$ formulas with free variables amongst \vec{a}. If $T_{1} \vdash \Gamma(\vec{a})$, then there exists polynomial p such that

$$
V \vDash \bigvee \Gamma(\vec{u})_{v}^{\alpha, \alpha+p(\operatorname{rank}(\vec{u}))} \text { for all } \alpha \text { and } \vec{u}, v \text { such that } \vec{u} \in M_{\alpha}^{v} .
$$

Conclusion can be strengthend to be provable in T_{0}

Collection Rule

$$
\Delta_{0} \text { Collection Rule: } \quad \frac{\Gamma, b \notin t, \exists y \varphi(b, y)}{\Gamma, \exists z \forall x \in t \exists y \in z \varphi(x, y)}
$$

with b Eigenvariable, $\varphi \in \Delta_{0}$ and $\Gamma \subset \Sigma_{1} \cup \Pi_{1}$

Theorem (B.'15)

T_{1} is closed under above Δ_{0} Collection Rule.

Corollary

$\mathrm{KP}_{1}^{\mathrm{b}}$ is $\forall \Sigma_{1}$ conservative over T_{1}.

Corollary

The Σ_{1} definable functions of $\mathrm{KP}_{1}^{\mathrm{b}}$ are exactly SRSF.

Corollary

The Δ_{1} definable predicates of $\mathrm{KP}_{1}^{\mathrm{b}}$ are exctly the predicates in SRSF.

Open Problems / Work in Progress

- Can KP_{1}^{b} be interpreted in some fragement of Bounded Arithmetic (in analogy to fact that $\mathrm{KP}^{-}+\Sigma_{1}$ - -Induction can be interpreted in $\left.I \Sigma_{1}\right)$
- What is the "right" definition for theory for CRSF? Perform bootstrapping.
- Once the right definitions have been settled, study bounded set theory hierarchy KP_{i}^{b} and characterise their Σ_{1}-definable functions. Links to "usual" complexity theory?

Summary

- Defined a restriction of Kripke-Platek set theory $\mathrm{KP}_{1}^{\mathrm{b}}$ by defining new "rank" bounded quantifier $\exists x \preceq y$ to define Σ_{1}^{b}, and restricting class foundation to $\sum_{1}^{b}-\epsilon$-induction.
- Showed that the Σ_{1} definable functions in $\mathrm{KP}_{1}^{\mathrm{b}}$ are exactly the SRSF functions.
- Main proof theoretic tool: the interpretation theorem, that showed that in proofs of $\Sigma_{1} \cup \Pi_{1}$ statements in (a fragment of) $\mathrm{KP}_{1}^{\mathrm{b}}$, witnesses for existential quantifiers can be found polynomially above given witnesses to universal quantifiers in the M-hierarchy.

Take Away Message:

Combining set theory and complexity theory is fruitful and fun!

