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Orthogonal measures

Let X be a standard Borel space:

I P(X ) denotes the set of Borel probability measures on X ;

I Two measures µ, ν ∈ P(X ) are said to be orthogonal, written

µ ⊥ ν,

just in case: there is A ⊆ X Borel such that

µ(A) = 1

and
ν(A) = 0.
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The space P(X)

The space P(X ) can be given a standard Borel structure.

In the case when X = 2ω, there is a convenient alternative way to
view P(X ), namely by identifying it with the set of functions

f : 2<ω → [0, 1]

satisfying

1. f (∅) = 1;

2. f (s) = f (s_0) + f (s_1) for all s ∈ 2<ω.

FACTS:

I Kolmogorov’s theorem guarantees that for each such f there
is a unique µf ∈ P(2ω) such that µf (Ns) = f (s).

I The subset of [0, 1]2
<ω

satisfying 1. and 2. above is closed in
the product topology, so Polish.
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Sets of orthogonal measures

Definition

I A ⊆ P(X ) is called an orthogonal family if any two distinct
measures in A are orthogonal.

I An orthogonal family is maximal if it is maximal under
inclusion.

I We abbreviate “maximal orthogonal family” by “mof”.

QUESTION (Mauldin, circa 1980):

Can a mof in P(2ω) be analytic?
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Answer to Mauldin’s question

Mauldin’s question was answered fairly soon:

Theorem (Preiss-Rataj, 1985)

There are no analytic mofs in P(2ω).

Remark. A new proof of this theorem, which uses Hjorth’s theory
of turbulence, was found by Kechris and Sofronidis around 2000.

WARNING: For the remainder of the talk, we will study mofs only
in P(2ω).
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What about co-analytic, then?

Preiss and Rataj’s theorem is best possible, in some sense, because
of the following:

Theorem (Fischer-T., 2009)

If all reals are constructible then there is a Π1
1 mof in P(2ω).

Here Π1
1 means lightface co-analytic.
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A corollary of the proof

The proof of the previous theorem shows something better:

Corollary

If there is a Σ1
2 mof then there is a Π1

1 mof.

(We will need this, repeatedly, later.)
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Cohen and Random destroy mofs

It turns out that mofs are very unstable beings:

Theorem (Fischer-T., 2009)

If there is a Cohen real over L, then there are no Π1
1 mofs.

Theorem (Fischer-S.D.Friedman-T., 2011)

If there is a Random real over L, then there are no Π1
1 mofs.

QUESTION (Fischer-T., 2009): Does the existence of a Π1
1 mof

imply that all reals are constructible?
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The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The obvious move?

To answer this question, there is an obvious response:

1. Study the problem in the Sacks extension of L, which in some
sense is the mildest forcing extension of L.

2. Specifically, try to construct at Π1
1 (or just Σ1

2) mof in L which
is indestructible for Sacks forcing, i.e., remains a mof in the
Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ1
2 orthogonal family

contained in L can be maximal.

...let us sketch the proof of this:

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



Sketch of proof

I Suppose A ⊆ L is a Σ1
2 mof.

I Let Y ⊆ P(2ω) be a Π0
1 Cantor set of orthogonal measures

(such can always be found).

I Let
F = {(µ, ν) ∈ Y ×A : µ 6⊥ ν}.

I This set is Σ1
2, so we may uniformize it by some f : Y → A

which is also Σ1
2.

I For each ν ∈ A, there can only be countably many µ such
that (µ, ν) ∈ F , so it follows that f is countable-to-1.

I Since Y is ∆1
1-isomorphic to 2ω, we now have a Σ1

2

countable-to-1 function from 2ω into the constructible reals.

I This implies that all reals are constructible. (Use the
Mansfield-Solovay perfect set theorem!)
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I This implies that all reals are constructible. (Use the
Mansfield-Solovay perfect set theorem!)
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Main theorem

The difficulty of there not being any Sacks indestructible Σ1
2 mofs

can be overcome:

Theorem (Schrittesser-T., 2015)

In L[s], where s is a single Sacks real over L, there is a (lightface!)
Π1
1 mof.

The theorem follows from a more general statement about sets
that are maximal discrete for a relation.
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A general theorem

Definition
If G is a symmetric relation on a set X , then A ⊆ X is G-discrete
if

(∀x , y ∈ A) x 6= y =⇒ x 6 G y .

Theorem (Schrittesser-T., 2015)

Let G be a symmetric ∆1
1 relation on ωω (or some other recursively

presented Polish space). Then in L[s], the Sacks extension of L,
there is a maximal G-discrete Σ1

2 set in ωω.

NOMENCLATURE: We abbreviate maximal G-discrete set by
G-mds or simpy mds.
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How the general theorem implies the theorem about mofs
in L[s]

The theorem about mofs follows from this general theorem about
G-discrete sets since:

I We can apply the general theorem to the relation “is not
orthogonal” in P(2ω) to get a Σ1

2 mof;

I Use the fact that the existence of a Σ1
2 mof implies the

existence of a Π1
1 mof.
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Strategy

Recall our general theorem again:

Theorem (Schrittesser-T., 2015)

Let G be a symmetric ∆1
1 relation on ωω (or some other recursively

presented Polish space). Then in L[s], the Sacks extension of L,
there is a maximal G-discrete Σ1

2 set in ωω.

I To prove the above, we will build (in L) a G-mds inductively
by sometimes adding a single new element which is not
G-related any of the things that have already been added, and
sometimes adding an entire perfect G-discrete set, all element
of which are not G-related to everything previously added.

I A (the?) key ingredient is Galvin’s Ramsey theorem for
Polish spaces.
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Setting up for the proof

I Sacks forcing, S, is of course forcing with perfect subtrees of
2<ω.

I Sacks forcing has continuous reading of names for reals, in the
following sense: If p ∈ S, ẋ an S-name, and p 
 ẋ ∈ ωω, then
there is a continuous function η : 2ω → ωω and q ≤ p such
that

q 
 ẋ = η(xG ),

where xG is the canonical name for the generic.
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 ẋ = η(xG ),

where xG is the canonical name for the generic.

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



Galvin’s theorem

Theorem (Galvin, 1968)

Let X be a nonempty perfect Polish space, and suppose

[X ]2 = P0 ∪ P1,

where P0,P1 have the Baire property. Then there is a Cantor set
C ⊆ X such that [C ]2 ⊆ P0 or [C ]2 ⊆ P1.
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A corollary of Galvin’s theorem

Corollary

Let G be a symmetric Borel (binary) relation on ωω, and let
η : 2ω → ωω be continuous (or just Borel).

Then: For any p ∈ S there is q ≤ p such that either

(1) η(x) G η(y) for all x , y ∈ [q];
or

(2) η(x) 6 G η(y) for all x , y ∈ [q];

(We will call q a Galvin witness to p and η.)

Proof.
This is exactly Galvin’s theorem applies to

{(x , y) ∈ 2ω : η(x) G η(y)}
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The construction, 1

We now turn to the proof of our general theorem.

Work (for now) in L. We will construct, inductively, a Σ1
2 set A0,

consisting of triples

(q, q′, η) ∈⊆ S× P(2<ω)× C (2ω, ωω)

where (among other properties) we will have:

I q′ is a subtree of q (not necessarily perfect);

I q is a Galvin witness for η, i.e. one of the two alternatives of
the corollary hold for q.

I If alternative (1) holds then q′ is the left-most branch of q;

I If alternative (2) holds, then q = q′.

I A0 will be constructed in stages, A0
ξ , ξ < ω1.

I At limit stages we will have A0
λ =

⋃
ξ<λ A

0
ξ .
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The construction, 2

Let D ⊆ ω1 be the (unbounded) set of δ < ω1 such that

I Lδ |=ZF−;

I Lδ |=“For every continuous η : 2ω → ωω, the set of Galvin
witnesses for η is dense in S”;

I Lδ |=“all sets are countable”.

Let δξ, ξ < ω1, enumerate D increasingly.
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The construction, 3

Suppose A0
ξ has been defined, and A0

ξ ⊆ Lδξ .

Call (p, η) ∈ Lδξ ∩ S× C (2ω, ωω) a candidate at stage ξ + 1 if
there is q ∈ Lδξ+1

∩ S such that

1. Every x ∈ [q] is a Sacks real over Lδξ ;

2. q is a Galvin witness for p and η;

3. For all (r , r ′, η′) ∈ A0
ξ we have

(∀x ∈ [q])(∀y ∈ [r ′]) η(x) 6 G η′(y)

We will call such a q a stage ξ + 1 Galvin witness for (p, η).

Note: What (3) is essentially saying is that what we are
considering to add to our G-mds at this point is not G-related to
anything we put in previously.
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The construction, 4

I If no candidate exists at stage ξ + 1, we do nothing.
I If a candidate exists at stage ξ + 1, let (p, η) be the least such

(in L), and let q be the least Galvin witness for p and η, and
I if alternative (1) holds for q and η, then we let q′ be the

left-most branch in q;
I if alternative (2) holds, then we let q′ = q.

I Let A0
ξ+1 = A0

ξ ∪ {(q, q′, η)}

After all this, let
A0 =

⋃
ξ<ω1

A0
ξ .
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The construction, 5

FACT: A0 is Σ1
2.

We let

A = {x ∈ ωω : (∃(q, q′, η) ∈ A0)(∃y ∈ [q′]) x = η(y)},

which is then also Σ1
2.

We claim that A is a maximal G-discrete set.

That A is G-discrete is clear by construction (and this will hold in
any model, not just L[s]).
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The construction, 5

Let G be S - generic over L. Suppose, seeking a contradiction,
that A is not maximal. Let ẋ be an S-name and suppose

p0 
 ẋ ∈ ωω ∧ (∀y ∈ A) ẋ 6 G y .

We may further assume that there is a continuous η : 2ω → ωω

such that
p0 
 η(xG ) = ẋ .

CLAIM: The set Dη of q ∈ S such that for some q′ we have
(q, q′, η) ∈ A0 is dense below p0.

Proof: Essentially clear by the construction and Galvin’s theorem,
since every (p, η), where p ≤ p0, becomes a candidate at some
stage.
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CLAIM: The set Dη of q ∈ S such that for some q′ we have
(q, q′, η) ∈ A0 is dense below p0.

Proof: Essentially clear by the construction and Galvin’s theorem,
since every (p, η), where p ≤ p0, becomes a candidate at some
stage.

Asger Törnquist (Copenhagen) Joint work with David SchrittesserMaximal orthogonal families in the Sacks extension



The construction, 5

Let G be S - generic over L. Suppose, seeking a contradiction,
that A is not maximal. Let ẋ be an S-name and suppose
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The construction, 6

CLAIM: The set Dη of q ∈ S such that for some q′ we have
(q, q′, η) ∈ A0 is dense below p0.

Using the claim, we are now done, since then there is q ∈ G (the
Sacks generic over L) for which one of the alternatives hold, and

I If alternative (1) holds (i.e., the G is a complete graph on
η([q])), and y is the unique branch of q′, then since xG ∈ [q]
we get

ẋ = η(xG ) G η(y),

contradicting that p0 
 ẋ 6 G A.

I If alternative (2) holds (i.e., η([q]) is G-discrete), then
xG ∈ [q], and so η(xG ) ∈ A, again contradicting p0 
 ẋ 6 G A.
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η([q])), and y is the unique branch of q′, then since xG ∈ [q]
we get

ẋ = η(xG ) G η(y),

contradicting that p0 
 ẋ 6 G A.

I If alternative (2) holds (i.e., η([q]) is G-discrete), then
xG ∈ [q], and so η(xG ) ∈ A, again contradicting p0 
 ẋ 6 G A.
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End remarks

I The proof clearly uses a very special property of Sacks forcing,
namely Galvin’s theorem, so we must ask:

I QUESTION: What happens to Π1
1 mofs if we add two Sacks

reals?

I We also know that if we add a Mathias real to L, then there
are no Π1

1 (or Σ1
2) mofs.

I The analogue of Galvin’s theorem (or, if you prefer, the
corollary) is false for Laver, Mathias, Silver, Cohen, Hechler.
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Thank you.
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