Maximal orthogonal families in the Sacks extension

Asger Törnquist (Copenhagen) Joint work with David Schrittesser

asgert@math.ku.dk

Singapore, April 10, 2015

向下 イヨト イヨト

Orthogonal measures

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

→ 御 → → 注 → → 注 →

Э

白 ト イヨト イヨト

æ

• P(X) denotes the set of **Borel probability measures** on X;

回 と く ヨ と く ヨ と

- P(X) denotes the set of **Borel probability measures** on X;
- Two measures $\mu, \nu \in P(X)$ are said to be **orthogonal**, written

$\mu \perp \nu$,

just in case:

・ 同 ト ・ ヨ ト ・ ヨ ト

- P(X) denotes the set of **Borel probability measures** on X;
- Two measures $\mu, \nu \in P(X)$ are said to be **orthogonal**, written

$\mu \perp \nu$,

just in case: there is $A \subseteq X$ Borel such that

$$\mu(A) = 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

and

- P(X) denotes the set of **Borel probability measures** on X;
- Two measures $\mu, \nu \in P(X)$ are said to be **orthogonal**, written

$\mu \perp \nu$,

just in case: there is $A \subseteq X$ Borel such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

<ロ> (四) (四) (三) (三) (三)

The space P(X) can be given a standard Borel structure.

(日) (日) (日)

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f: 2^{<\omega} \rightarrow [0,1]$$

satisfying

伺い イヨト イヨト

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f: 2^{<\omega} \rightarrow [0,1]$$

satisfying

1. $f(\emptyset) = 1;$

伺下 イヨト イヨト

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f:2^{<\omega}\rightarrow [0,1]$$

satisfying

1.
$$f(\emptyset) = 1;$$

2. $f(s) = f(s^0) + f(s^1)$ for all $s \in 2^{<\omega}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f: 2^{<\omega} \rightarrow [0,1]$$

satisfying

1.
$$f(\emptyset) = 1$$
;
2. $f(s) = f(s^0) + f(s^1)$ for all $s \in 2^{<\omega}$.
FACTS:

伺 とう ほう く きょう

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f: 2^{<\omega} \rightarrow [0,1]$$

satisfying

1.
$$f(\emptyset) = 1$$

2. $f(s) = f(s^{-}0) + f(s^{-}1)$ for all $s \in 2^{<\omega}$.

FACTS:

Kolmogorov's theorem guarantees that for each such f there is a unique µ^f ∈ P(2^ω) such that µ^f(N_s) = f(s).

伺い イヨト イヨト 三日

The space P(X) can be given a standard Borel structure.

In the case when $X = 2^{\omega}$, there is a convenient alternative way to view P(X), namely by identifying it with the set of functions

$$f: 2^{<\omega} \rightarrow [0,1]$$

satisfying

- 1. $f(\emptyset) = 1;$
- 2. $f(s) = f(s^{-}0) + f(s^{-}1)$ for all $s \in 2^{<\omega}$.

FACTS:

- Kolmogorov's theorem guarantees that for each such f there is a unique µ^f ∈ P(2^ω) such that µ^f(N_s) = f(s).
- ► The subset of [0,1]^{2^{≤ω}} satisfying 1. and 2. above is closed in the product topology, so Polish.

Sets of orthogonal measures

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

回 と く ヨ と く ヨ と

æ

A ⊆ P(X) is called an orthogonal family if any two distinct measures in A are orthogonal.

白 と く ヨ と く ヨ と …

- A ⊆ P(X) is called an orthogonal family if any two distinct measures in A are orthogonal.
- An orthogonal family is **maximal** if it is maximal under inclusion.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- A ⊆ P(X) is called an orthogonal family if any two distinct measures in A are orthogonal.
- An orthogonal family is **maximal** if it is maximal under inclusion.
- ▶ We abbreviate "maximal orthogonal family" by "mof".

伺下 イヨト イヨト

- A ⊆ P(X) is called an orthogonal family if any two distinct measures in A are orthogonal.
- An orthogonal family is **maximal** if it is maximal under inclusion.
- ▶ We abbreviate "maximal orthogonal family" by "mof".

QUESTION (Mauldin, circa 1980):

回 と く ヨ と く ヨ と

- A ⊆ P(X) is called an orthogonal family if any two distinct measures in A are orthogonal.
- An orthogonal family is **maximal** if it is maximal under inclusion.
- ▶ We abbreviate "maximal orthogonal family" by "mof".

QUESTION (Mauldin, circa 1980):

Can a mof in $P(2^{\omega})$ be analytic?

(日) (日) (日)

Answer to Mauldin's question

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

(4回) (4回) (4回)

Э

白 ト イヨト イヨト

æ

Theorem (Preiss-Rataj, 1985)

There are no analytic mofs in $P(2^{\omega})$.

白 とう きょう きょう

Theorem (Preiss-Rataj, 1985) There are no analytic mofs in $P(2^{\omega})$.

Remark. A new proof of this theorem, which uses Hjorth's theory of turbulence, was found by Kechris and Sofronidis around 2000.

ヨット イヨット イヨッ

Theorem (Preiss-Rataj, 1985) There are no analytic mofs in $P(2^{\omega})$.

Remark. A new proof of this theorem, which uses Hjorth's theory of turbulence, was found by Kechris and Sofronidis around 2000.

WARNING: For the remainder of the talk, we will study mofs only in $P(2^{\omega})$.

高 とう ヨン うまと

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

(1日) (1日) (日)

Э

Preiss and Rataj's theorem is best possible, in some sense, because of the following:

(신문) (신문)

Preiss and Rataj's theorem is best possible, in some sense, because of the following:

Theorem (Fischer-T., 2009)

If all reals are constructible then there is a Π_1^1 mof in $P(2^{\omega})$.

A B K A B K

Preiss and Rataj's theorem is best possible, in some sense, because of the following:

Theorem (Fischer-T., 2009)

If all reals are constructible then there is a Π_1^1 mof in $P(2^{\omega})$. Here Π_1^1 means lightface co-analytic.

通 とう ほうとう ほうど

A corollary of the proof

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

イロン イヨン イヨン イヨン

Э

The *proof* of the previous theorem shows something better:

(日) (日) (日)

The proof of the previous theorem shows something better: Corollary If there is a Σ_2^1 mof then there is a Π_1^1 mof.

高 とう モン・ く ヨ と

The proof of the previous theorem shows something better: Corollary If there is a Σ_2^1 mof then there is a Π_1^1 mof.

(We will need this, repeatedly, later.)

高 とう モン・ く ヨ と

Cohen and Random destroy mofs

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

・ロ・ ・ 日・ ・ 日・ ・ 日・

Э

It turns out that mofs are very unstable beings:

(1日) (日) (日)

æ
It turns out that mofs are very unstable beings:

Theorem (Fischer-T., 2009)

If there is a Cohen real over L, then there are no Π_1^1 mofs.

白 と く ヨ と く ヨ と

It turns out that mofs are very unstable beings:

Theorem (Fischer-T., 2009)

If there is a Cohen real over L, then there are no Π_1^1 mofs.

Theorem (Fischer-S.D.Friedman-T., 2011)

If there is a Random real over L, then there are no Π_1^1 mofs.

ヨット イヨット イヨッ

It turns out that mofs are very unstable beings:

Theorem (Fischer-T., 2009)

If there is a Cohen real over L, then there are no Π_1^1 mofs.

Theorem (Fischer-S.D.Friedman-T., 2011)

If there is a Random real over L, then there are no Π_1^1 mofs.

QUESTION (Fischer-T., 2009): Does the existence of a Π_1^1 mof imply that all reals are constructible?

The obvious move?

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

<ロ> (四) (四) (三) (三) (三)

・回 ・ ・ ヨ ・ ・ ヨ ・

3

1. Study the problem in the Sacks extension of *L*, which in some sense is the mildest forcing extension of *L*.

伺下 イヨト イヨト

3

- 1. Study the problem in the Sacks extension of *L*, which in some sense is the mildest forcing extension of *L*.
- 2. Specifically, try to construct at Π_1^1 (or just Σ_2^1) mof in L which is *indestructible* for Sacks forcing, i.e., remains a mof in the Sacks extension.

- 1. Study the problem in the Sacks extension of *L*, which in some sense is the mildest forcing extension of *L*.
- 2. Specifically, try to construct at Π_1^1 (or just Σ_2^1) mof in L which is *indestructible* for Sacks forcing, i.e., remains a mof in the Sacks extension.

The second part, however, is doomed to fail:

ヨット イヨット イヨッ

- 1. Study the problem in the Sacks extension of *L*, which in some sense is the mildest forcing extension of *L*.
- 2. Specifically, try to construct at Π_1^1 (or just Σ_2^1) mof in L which is *indestructible* for Sacks forcing, i.e., remains a mof in the Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ_2^1 orthogonal family contained in L can be maximal.

- 1. Study the problem in the Sacks extension of *L*, which in some sense is the mildest forcing extension of *L*.
- 2. Specifically, try to construct at Π_1^1 (or just Σ_2^1) mof in L which is *indestructible* for Sacks forcing, i.e., remains a mof in the Sacks extension.

The second part, however, is doomed to fail:

Proposition (T.)

If there is a non-constructible real, then no Σ_2^1 orthogonal family contained in L can be maximal.

...let us sketch the proof of this:

回 と く ヨ と く ヨ と

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

æ

• Suppose
$$\mathcal{A} \subseteq L$$
 is a Σ_2^1 mof.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

æ

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).

回り くほり くほり 一日

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).
- Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

米部 シネヨシネヨシ 三日

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).

Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

This set is Σ¹₂, so we may uniformize it by some f : Y → A which is also Σ¹₂.

伺い イヨン イヨン

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).
- Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

- This set is Σ¹₂, so we may uniformize it by some f : Y → A which is also Σ¹₂.
- For each *v* ∈ A, there can only be **countably many** *µ* such that (*µ*, *v*) ∈ F, so it follows that f is countable-to-1.

▲御▶ ★ 国▶ ★ 国▶ 三日

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).

Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

- This set is Σ¹₂, so we may uniformize it by some f : Y → A which is also Σ¹₂.
- For each *v* ∈ A, there can only be **countably many** *µ* such that (*µ*, *v*) ∈ F, so it follows that f is countable-to-1.
- Since Y is Δ¹₁-isomorphic to 2^ω, we now have a Σ¹₂ countable-to-1 function from 2^ω into the constructible reals.

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).

Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

- This set is Σ¹₂, so we may uniformize it by some f : Y → A which is also Σ¹₂.
- For each *v* ∈ A, there can only be **countably many** *µ* such that (*µ*, *v*) ∈ F, so it follows that f is countable-to-1.
- Since Y is Δ¹₁-isomorphic to 2^ω, we now have a Σ¹₂ countable-to-1 function from 2^ω into the constructible reals.
- This implies that all reals are constructible. (Use the Mansfield-Solovay perfect set theorem!)

- Suppose $\mathcal{A} \subseteq L$ is a Σ_2^1 mof.
- Let Y ⊆ P(2^ω) be a Π⁰₁ Cantor set of orthogonal measures (such can always be found).

Let

$$\mathsf{F} = \{(\mu,\nu) \in \mathsf{Y} \times \mathcal{A} : \mu \not\perp \nu\}.$$

- This set is Σ¹₂, so we may uniformize it by some f : Y → A which is also Σ¹₂.
- For each *v* ∈ A, there can only be **countably many** *µ* such that (*µ*, *v*) ∈ F, so it follows that f is countable-to-1.
- Since Y is Δ¹₁-isomorphic to 2^ω, we now have a Σ¹₂ countable-to-1 function from 2^ω into the constructible reals.

- 4 同 2 4 日 2 4 日 2

 This implies that all reals are constructible. (Use the Mansfield-Solovay perfect set theorem!)

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

<ロ> (四) (四) (三) (三) (三)

The difficulty of there not being any Sacks indestructible Σ^1_2 mofs can be overcome:

・ 回 ト ・ ヨ ト ・ ヨ ト …

3

The difficulty of there not being any Sacks indestructible Σ^1_2 mofs can be overcome:

Theorem (Schrittesser-T., 2015)

In L[s], where s is a single Sacks real over L, there is a (lightface!) Π_1^1 mof.

白 と く ヨ と く ヨ と

The difficulty of there not being any Sacks indestructible Σ^1_2 mofs can be overcome:

Theorem (Schrittesser-T., 2015)

In L[s], where s is a single Sacks real over L, there is a (lightface!) Π_1^1 mof.

The theorem follows from a more general statement about sets that are *maximal discrete* for a relation.

白 と く ヨ と く ヨ と

A general theorem

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

イロン イヨン イヨン イヨン

Э

Definition

If \mathcal{G} is a symmetric relation on a set X, then $\mathcal{A} \subseteq X$ is \mathcal{G} -discrete if

$$(\forall x, y \in \mathcal{A}) \ x \neq y \implies x \notin y.$$

回 と く ヨ と く ヨ と …

3

Definition

If \mathcal{G} is a symmetric relation on a set X, then $\mathcal{A} \subseteq X$ is \mathcal{G} -discrete if

$$(\forall x, y \in \mathcal{A}) \ x \neq y \implies x \ \mathcal{G} \ y.$$

Theorem (Schrittesser-T., 2015)

Let \mathcal{G} be a symmetric Δ_1^1 relation on ω^{ω} (or some other recursively presented Polish space). Then in L[s], the Sacks extension of L, there is a maximal \mathcal{G} -discrete Σ_2^1 set in ω^{ω} .

A B K A B K

Definition

If \mathcal{G} is a symmetric relation on a set X, then $\mathcal{A} \subseteq X$ is \mathcal{G} -discrete if

$$(\forall x, y \in \mathcal{A}) \ x \neq y \implies x \ \mathcal{G} \ y.$$

Theorem (Schrittesser-T., 2015)

Let \mathcal{G} be a symmetric Δ_1^1 relation on ω^{ω} (or some other recursively presented Polish space). Then in L[s], the Sacks extension of L, there is a maximal \mathcal{G} -discrete Σ_2^1 set in ω^{ω} .

NOMENCLATURE: We abbreviate maximal \mathcal{G} -discrete set by \mathcal{G} -mds or simpy mds.

(4) (5) (4) (5) (4)

How the general theorem implies the theorem about mofs in L[s]

回 と く ヨ と く ヨ と

æ

How the general theorem implies the theorem about mofs in L[s]

The theorem about mofs follows from this general theorem about \mathcal{G} -discrete sets since:

How the general theorem implies the theorem about mofs in L[s]

The theorem about mofs follows from this general theorem about \mathcal{G} -discrete sets since:

We can apply the general theorem to the relation "is not orthogonal" in P(2^ω) to get a Σ¹₂ mof;

The theorem about mofs follows from this general theorem about \mathcal{G} -discrete sets since:

- We can apply the general theorem to the relation "is not orthogonal" in P(2^ω) to get a Σ¹₂ mof;
- Use the fact that the existence of a Σ₂¹ mof implies the existence of a Π₁¹ mof.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Э

Theorem (Schrittesser-T., 2015)

Let \mathcal{G} be a symmetric Δ_1^1 relation on ω^{ω} (or some other recursively presented Polish space). Then in L[s], the Sacks extension of L, there is a maximal \mathcal{G} -discrete Σ_2^1 set in ω^{ω} .

ヨット イヨット イヨッ

Theorem (Schrittesser-T., 2015)

Let \mathcal{G} be a symmetric Δ_1^1 relation on ω^{ω} (or some other recursively presented Polish space). Then in L[s], the Sacks extension of L, there is a maximal \mathcal{G} -discrete Σ_2^1 set in ω^{ω} .

To prove the above, we will build (in L) a G-mds inductively by sometimes adding a single new element which is not G-related any of the things that have already been added, and sometimes adding an entire perfect G-discrete set, all element of which are not G-related to everything previously added.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Schrittesser-T., 2015)

Let \mathcal{G} be a symmetric Δ_1^1 relation on ω^{ω} (or some other recursively presented Polish space). Then in L[s], the Sacks extension of L, there is a maximal \mathcal{G} -discrete Σ_2^1 set in ω^{ω} .

- ► To prove the above, we will build (in L) a G-mds inductively by sometimes adding a single new element which is not G-related any of the things that have already been added, and sometimes adding an entire perfect G-discrete set, all element of which are not G-related to everything previously added.
- A (the?) key ingredient is Galvin's Ramsey theorem for Polish spaces.

(1日) (日) (日)
Setting up for the proof

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

イロン イヨン イヨン イヨン

Э

► Sacks forcing, S, is of course forcing with perfect subtrees of $2^{<\omega}$.

(本部) (本語) (本語) (語)

- ► Sacks forcing, S, is of course forcing with perfect subtrees of $2^{<\omega}$.
- ▶ Sacks forcing has *continuous reading of names* for reals, in the following sense: If $p \in \mathbb{S}$, \dot{x} an \mathbb{S} -name, and $p \Vdash \dot{x} \in \omega^{\omega}$, then there is a continuous function $\eta : 2^{\omega} \to \omega^{\omega}$ and $q \leq p$ such that

$$q\Vdash \dot{x}=\eta(x_G),$$

伺 とう ヨン うちょう

where x_G is the canonical name for the generic.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

æ

Theorem (Galvin, 1968)

Let X be a nonempty perfect Polish space, and suppose

$$[X]^2 = P_0 \cup P_1,$$

where P_0 , P_1 have the Baire property. Then there is a Cantor set $C \subseteq X$ such that $[C]^2 \subseteq P_0$ or $[C]^2 \subseteq P_1$.

.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

| 4 回 2 4 U = 2 4 U =

æ

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

伺下 イヨト イヨト

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

Then: For any $p \in \mathbb{S}$ there is $q \leq p$ such that either

向下 イヨト イヨト

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

Then: For any $p \in \mathbb{S}$ there is $q \leq p$ such that either

(1) $\eta(x) \mathcal{G} \eta(y)$ for all $x, y \in [q]$;

高 とう ヨン うまと

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

Then: For any $p \in \mathbb{S}$ there is $q \leq p$ such that either

(1)
$$\eta(x) \mathcal{G} \eta(y)$$
 for all $x, y \in [q]$;

or

(2) $\eta(x) \not\subseteq \eta(y)$ for all $x, y \in [q]$;

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

Then: For any $p \in \mathbb{S}$ there is $q \leq p$ such that either

(1)
$$\eta(x) \mathrel{\mathcal{G}} \eta(y)$$
 for all $x, y \in [q];$

or

(2)
$$\eta(x) \not\subseteq \eta(y)$$
 for all $x, y \in [q]$;

(We will call q a Galvin witness to p and η .)

A 3 1 A 3 1

Let \mathcal{G} be a symmetric Borel (binary) relation on ω^{ω} , and let $\eta: 2^{\omega} \to \omega^{\omega}$ be continuous (or just Borel).

Then: For any $p \in \mathbb{S}$ there is $q \leq p$ such that either

(1)
$$\eta(x) \mathrel{\mathcal{G}} \eta(y)$$
 for all $x,y \in [q];$

or

(2)
$$\eta(x) \not \subseteq \eta(y)$$
 for all $x, y \in [q]$;

(We will call q a Galvin witness to p and η .)

Proof.

This is exactly Galvin's theorem applies to

$$\{(x,y)\in 2^{\omega}:\eta(x)\ \mathcal{G}\ \eta(y)\}$$

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

・ロト ・日本 ・ヨト ・ヨト

Э

We now turn to the proof of our general theorem.

伺下 イヨト イヨト

э

We now turn to the proof of our general theorem.

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

・吊り イヨト イヨト ニヨ

We now turn to the proof of our general theorem.

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

向下 イヨト イヨト

We now turn to the proof of our general theorem.

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

q' is a subtree of q (not necessarily perfect);

向下 イヨト イヨト

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

- q' is a subtree of q (not necessarily perfect);
- ▶ q is a Galvin witness for η, i.e. one of the two alternatives of the corollary hold for q.

伺下 イヨト イヨト

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

- ▶ q' is a subtree of q (not necessarily perfect);
- ▶ q is a Galvin witness for n, i.e. one of the two alternatives of the corollary hold for q.
- If alternative (1) holds then q' is the left-most branch of q;

伺下 イヨト イヨト

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

- ▶ q' is a subtree of q (not necessarily perfect);
- ▶ q is a Galvin witness for η, i.e. one of the two alternatives of the corollary hold for q.
- ▶ If alternative (1) holds then q' is the left-most branch of q;
- If alternative (2) holds, then q = q'.

マロト イヨト イヨト ニヨ

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

- q' is a subtree of q (not necessarily perfect);
- ▶ q is a Galvin witness for n, i.e. one of the two alternatives of the corollary hold for q.
- ▶ If alternative (1) holds then q' is the left-most branch of q;
- If alternative (2) holds, then q = q'.
- \mathcal{A}^0 will be constructed in stages, \mathcal{A}^0_{ξ} , $\xi < \omega_1$.

Work (for now) in *L*. We will construct, inductively, a Σ_2^1 set \mathcal{A}^0 , consisting of triples

$$(q,q',\eta)\in\subseteq\mathbb{S} imes\mathcal{P}(2^{<\omega}) imes\mathcal{C}(2^{\omega},\omega^{\omega})$$

where (among other properties) we will have:

- ▶ q' is a subtree of q (not necessarily perfect);
- ▶ q is a Galvin witness for n, i.e. one of the two alternatives of the corollary hold for q.
- ▶ If alternative (1) holds then q' is the left-most branch of q;
- If alternative (2) holds, then q = q'.
- \mathcal{A}^0 will be constructed in stages, \mathcal{A}^0_{ξ} , $\xi < \omega_1$.
- At limit stages we will have $\mathcal{A}^0_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{A}^0_{\xi}$.

イロト イポト イラト イラト 一日

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

・ロト ・日本 ・ヨト ・ヨト

Э

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

回 と く ヨ と く ヨ と

Let $D \subseteq \omega_1$ be the (unbounded) set of $\delta < \omega_1$ such that $\blacktriangleright L_{\delta} \models \mathsf{ZF}^-$;

- ► $L_{\delta} \models ZF^{-};$
- ► $L_{\delta} \models$ "For every continuous $\eta : 2^{\omega} \rightarrow \omega^{\omega}$, the set of Galvin witnesses for η is dense in S";

(本部) (本語) (本語) (語)

- ► $L_{\delta} \models ZF^{-};$
- ► $L_{\delta} \models$ "For every continuous $\eta : 2^{\omega} \rightarrow \omega^{\omega}$, the set of Galvin witnesses for η is dense in S";

•
$$L_{\delta} \models$$
 "all sets are countable".

(本部) (本語) (本語) (語)

- $L_{\delta} \models \mathsf{ZF}^{-};$
- ► $L_{\delta} \models$ "For every continuous $\eta : 2^{\omega} \rightarrow \omega^{\omega}$, the set of Galvin witnesses for η is dense in S";
- $L_{\delta} \models$ "all sets are countable".

Let δ_{ξ} , $\xi < \omega_1$, enumerate D increasingly.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

・ロト ・日本 ・ヨト ・ヨト

Э

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

(本部)) (本語)) (本語)) (語)

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

<回> < E> < E> < E> = E

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

1. Every $x \in [q]$ is a Sacks real over $L_{\delta_{\mathcal{E}}}$;

< 回 > < 注 > < 注 > □ =

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

- 1. Every $x \in [q]$ is a Sacks real over $L_{\delta_{\mathcal{E}}}$;
- 2. q is a Galvin witness for p and η ;

・吊り ・ヨト ・ヨト ・ヨ

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

- 1. Every $x \in [q]$ is a Sacks real over $L_{\delta_{\mathcal{E}}}$;
- 2. q is a Galvin witness for p and η ;
- 3. For all $(r, r', \eta') \in \mathcal{A}^0_{\mathcal{E}}$ we have

$$(\forall x \in [q])(\forall y \in [r']) \ \eta(x) \ \mathcal{G} \ \eta'(y)$$

・吊り ・ヨト ・ヨト ・ヨ

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

- 1. Every $x \in [q]$ is a Sacks real over $L_{\delta_{\mathcal{E}}}$;
- 2. q is a Galvin witness for p and η ;
- 3. For all $(r, r', \eta') \in \mathcal{A}^0_{\mathcal{E}}$ we have

$$(\forall x \in [q])(\forall y \in [r']) \ \eta(x) \ \mathcal{G} \ \eta'(y)$$

(4月) (3日) (3日) 日

We will call such a q a stage $\xi + 1$ Galvin witness for (p, η) .

Suppose \mathcal{A}^0_{ξ} has been defined, and $\mathcal{A}^0_{\xi} \subseteq L_{\delta_{\xi}}$. Call $(p,\eta) \in L_{\delta_{\xi}} \cap \mathbb{S} \times C(2^{\omega}, \omega^{\omega})$ a **candidate** at stage $\xi + 1$ if there is $q \in L_{\delta_{\xi+1}} \cap \mathbb{S}$ such that

- 1. Every $x \in [q]$ is a Sacks real over $L_{\delta_{\mathcal{E}}}$;
- 2. q is a Galvin witness for p and η ;
- 3. For all $(r, r', \eta') \in \mathcal{A}^0_{\mathcal{E}}$ we have

$$(\forall x \in [q])(\forall y \in [r']) \ \eta(x) \ \mathcal{G} \ \eta'(y)$$

We will call such a q a stage $\xi + 1$ Galvin witness for (p, η) .

Note: What (3) is essentially saying is that what we are considering to add to our \mathcal{G} -mds at this point is not \mathcal{G} -related to anything we put in previously.
Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

Э

• If no candidate exists at stage $\xi + 1$, we do nothing.

(ロ) (同) (E) (E) (E)

- If no candidate exists at stage $\xi + 1$, we do nothing.
- If a candidate exists at stage ξ + 1, let (p, η) be the least such (in L), and let q be the least Galvin witness for p and η, and

向下 イヨト イヨト

- If no candidate exists at stage $\xi + 1$, we do nothing.
- If a candidate exists at stage ξ + 1, let (p, η) be the least such (in L), and let q be the least Galvin witness for p and η, and
 - if alternative (1) holds for q and η, then we let q' be the left-most branch in q;

・ 同 ト ・ ヨ ト ・ ヨ ト …

- If no candidate exists at stage $\xi + 1$, we do nothing.
- If a candidate exists at stage ξ + 1, let (p, η) be the least such (in L), and let q be the least Galvin witness for p and η, and
 - if alternative (1) holds for q and η, then we let q' be the left-most branch in q;
 - if alternative (2) holds, then we let q' = q.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If no candidate exists at stage $\xi + 1$, we do nothing.
- If a candidate exists at stage ξ + 1, let (p, η) be the least such (in L), and let q be the least Galvin witness for p and η, and
 - if alternative (1) holds for q and η, then we let q' be the left-most branch in q;
 - if alternative (2) holds, then we let q' = q.

• Let
$$\mathcal{A}^0_{\xi+1} = \mathcal{A}^0_{\xi} \cup \{(q,q',\eta)\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- If no candidate exists at stage $\xi + 1$, we do nothing.
- If a candidate exists at stage ξ + 1, let (p, η) be the least such (in L), and let q be the least Galvin witness for p and η, and
 - if alternative (1) holds for q and η, then we let q' be the left-most branch in q;
 - if alternative (2) holds, then we let q' = q.

• Let
$$\mathcal{A}^0_{\xi+1} = \mathcal{A}^0_{\xi} \cup \{(q,q',\eta)\}$$

After all this, let

$$\mathcal{A}^{\mathsf{0}} = igcup_{\xi < \omega_1} \mathcal{A}^{\mathsf{0}}_{\xi}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

Э

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

(ロ) (同) (E) (E) (E)

We let

$$\mathcal{A} = \{x \in \omega^{\omega} : (\exists (q, q', \eta) \in \mathcal{A}^0) (\exists y \in [q']) \ x = \eta(y)\},\$$

which is then also Σ_2^1 .

We let

$$\mathcal{A} = \{ x \in \omega^{\omega} : (\exists (q, q', \eta) \in \mathcal{A}^0) (\exists y \in [q']) \ x = \eta(y) \},$$

which is then also Σ_2^1 .

We claim that ${\mathcal A}$ is a maximal ${\mathcal G}\text{-discrete}$ set.

・ 回 と く ヨ と く ヨ と

æ

We let

$$\mathcal{A} = \{ x \in \omega^{\omega} : (\exists (q, q', \eta) \in \mathcal{A}^0) (\exists y \in [q']) \ x = \eta(y) \},$$

which is then also Σ_2^1 .

We claim that ${\mathcal A}$ is a maximal ${\mathcal G}\text{-discrete}$ set.

That \mathcal{A} is \mathcal{G} -discrete is clear by construction (and this will hold in any model, not just L[s]).

回 と く ヨ と く ヨ と

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

Э

Let G be S - generic over L. Suppose, seeking a contradiction, that A is not maximal. Let \dot{x} be an S-name and suppose

$$p_0 \Vdash \dot{x} \in \omega^{\omega} \land (\forall y \in \mathcal{A}) \dot{x} \mathscr{G} y.$$

コン・ヘリン・ヘリン

Let G be S - generic over L. Suppose, seeking a contradiction, that A is not maximal. Let \dot{x} be an S-name and suppose

$$p_0 \Vdash \dot{x} \in \omega^{\omega} \land (\forall y \in \mathcal{A}) \dot{x} \not {\mathcal{G}} y.$$

We may further assume that there is a continuous $\eta:2^\omega\to\omega^\omega$ such that

 $p_0 \Vdash \eta(x_G) = \dot{x}.$

Let G be S - generic over L. Suppose, seeking a contradiction, that A is not maximal. Let \dot{x} be an S-name and suppose

$$p_0 \Vdash \dot{x} \in \omega^{\omega} \land (\forall y \in \mathcal{A}) \dot{x} \mathcal{G} y.$$

We may further assume that there is a continuous $\eta:2^\omega\to\omega^\omega$ such that

$$p_0 \Vdash \eta(x_G) = \dot{x}.$$

CLAIM: The set D_{η} of $q \in S$ such that for some q' we have $(q, q', \eta) \in A^0$ is dense below p_0 .

ヨット イヨット イヨッ

Let G be S - generic over L. Suppose, seeking a contradiction, that A is not maximal. Let \dot{x} be an S-name and suppose

$$p_0 \Vdash \dot{x} \in \omega^{\omega} \land (\forall y \in \mathcal{A}) \dot{x} \not {\mathcal{G}} y.$$

We may further assume that there is a continuous $\eta:2^\omega\to\omega^\omega$ such that

$$p_0 \Vdash \eta(x_G) = \dot{x}.$$

CLAIM: The set D_{η} of $q \in S$ such that for some q' we have $(q, q', \eta) \in A^0$ is dense below p_0 .

Proof. Essentially clear by the construction and Galvin's theorem, since every (p, η) , where $p \le p_0$, becomes a candidate at some stage.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

・ロン ・四と ・ヨン ・ヨン

Э

CLAIM: The set D_{η} of $q \in \mathbb{S}$ such that for some q' we have $(q, q', \eta) \in \mathcal{A}^0$ is dense below p_0 .

回 と く ヨ と く ヨ と

CLAIM: The set D_{η} of $q \in \mathbb{S}$ such that for some q' we have $(q, q', \eta) \in \mathcal{A}^0$ is dense below p_0 .

Using the claim, we are now done, since then there is $q \in G$ (the Sacks generic over L) for which one of the alternatives hold, and

高 とう ヨン うまと

CLAIM: The set D_{η} of $q \in \mathbb{S}$ such that for some q' we have $(q, q', \eta) \in \mathcal{A}^{0}$ is dense below p_{0} .

Using the claim, we are now done, since then there is $q \in G$ (the Sacks generic over L) for which one of the alternatives hold, and

If alternative (1) holds (i.e., the G is a complete graph on η([q])), and y is the unique branch of q', then since x_G ∈ [q] we get

$$\dot{x} = \eta(x_G) \mathcal{G} \eta(y),$$

・ 同 ト ・ ヨ ト ・ ヨ ト ……

contradicting that $p_0 \Vdash \dot{x} \not {\mathcal{G}} \mathcal{A}$.

CLAIM: The set D_{η} of $q \in \mathbb{S}$ such that for some q' we have $(q, q', \eta) \in \mathcal{A}^{0}$ is dense below p_{0} .

Using the claim, we are now done, since then there is $q \in G$ (the Sacks generic over L) for which one of the alternatives hold, and

If alternative (1) holds (i.e., the G is a complete graph on η([q])), and y is the unique branch of q', then since x_G ∈ [q] we get

$$\dot{\mathbf{x}} = \eta(\mathbf{x}_{G}) \ \mathcal{G} \ \eta(\mathbf{y}),$$

contradicting that $p_0 \Vdash \dot{x} \not \in \mathcal{A}$.

If alternative (2) holds (i.e., η([q]) is G-discrete), then
x_G ∈ [q], and so η(x_G) ∈ A, again contradicting p₀ ⊩ x 𝔅 A.

- 4 周 ト 4 日 ト 4 日 ト - 日

End remarks

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

<ロ> (四) (四) (三) (三) (三) (三)

The proof clearly uses a very special property of Sacks forcing, namely Galvin's theorem, so we must ask:

回 と く ヨ と く ヨ と …

- The proof clearly uses a very special property of Sacks forcing, namely Galvin's theorem, so we must ask:
- QUESTION: What happens to Π¹₁ mofs if we add *two* Sacks reals?

伺い イヨト イヨト

- The proof clearly uses a very special property of Sacks forcing, namely Galvin's theorem, so we must ask:
- QUESTION: What happens to Π¹₁ mofs if we add *two* Sacks reals?
- We also know that if we add a Mathias real to L, then there are no Π¹₁ (or Σ¹₂) mofs.

コン・ヘリン・ヘリン

- The proof clearly uses a very special property of Sacks forcing, namely Galvin's theorem, so we must ask:
- QUESTION: What happens to Π¹₁ mofs if we add *two* Sacks reals?
- We also know that if we add a Mathias real to L, then there are no Π¹₁ (or Σ¹₂) mofs.
- The analogue of Galvin's theorem (or, if you prefer, the corollary) is false for Laver, Mathias, Silver, Cohen, Hechler.

向下 イヨト イヨト

Thank you.

Asger Törnquist (Copenhagen) Joint work with David Schrittes Maximal orthogonal families in the Sacks extension

● ▶ < ミ ▶

< E

æ