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Motivation Borel and projective ideals Strong ADR’s Refinements of I+ ∩V Mixing reals

The classical setting

Given a family

H = {
H0,H1, . . . ,Hα, . . .

}⊆ [ω]ω.

Do there exist infinite subsets Aα ⊆Hα such that the family
A = {

A0,A1, . . . ,Aα, . . .
}

is almost disjoint (AD), that is, Aα∩Aβ

is finite for every α 6=β? In this case, we say that A , or more
precisely, the map Hα 7→Aα is an almost disjoint refinement
(ADR) of H .

Proposition (noticed by many people)

If H ⊆ [ω]ω with |H | < c, then H has an ADR.

Theorem (Balcar, Vojtáš)
Every ultrafilter on ω has an ADR.
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The idealized version

Given an ideal I on ω (Fin:= [ω]<ω ⊆I and ω ∉I ), and a family

H = {
H0,H1, . . . ,Hα, . . .

}⊆I+:=P (ω)\I .

Do there exist I -positive subsets Aα ⊆Hα such that the family
A = {

A0,A1, . . . ,Aα, . . .
}

is I -almost disjoint (I -AD), that is,
Aα∩Aβ ∈I for every α 6=β? In this case, we say that A is an
I -almost disjoint refinement (I -ADR) of H .

Proposition
If I is everywhere meager , that is,

I �X := {
A⊆X :A ∈I

}
is meager in P (X )

for every X ∈I+ (e.g. I is analytic or coanalytic), and H ⊆I+

with |H | < c, then H has an I -ADR.
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Everywhere meager ideals

Proposition

If I is ew.meager and H ∈ [I+]<c, then H has an I -ADR.

Proof: First we show that if I is a meager ideal then there is a
perfect (I ,Fin)-AD family, that is, a (perfect) I -AD family B

such that |A∩B| <ω for every
{
A,B

} ∈ [B]2.

Applying Talagrand’s characterization, there is a partition
(Pn)n∈ω of ω into finite sets such that∣∣{n ∈ω :Pn ⊆A

}∣∣<ω for every A ∈I .

Let A be a perfect AD family (e.g. the branches of 2<ω on
P (2<ω)). For each A ∈A let A′=⋃{

Pn : n ∈A
} ∈I+, and let

B= {
A′ :A ∈A

}
. The function P (ω)→P (ω), A 7→A′ is injective

and continuous hence B is also perfect.
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Everywhere meager ideals

Proposition

If I is ew.meager and H ∈ [I+]<c, then H has an I -ADR.

Proof (ctnd.): Now let H = {
Hα :α< κ}⊆I+ (κ< c). Fix an

I -AD family
{
Aξ : ξ< κ+

}
on H0 and for every α< κ let

Tα=
{
ξ< κ+ :Hα∩Aξ ∈I+}

.

By induction on C= {
α< κ : ∣∣Tα∣∣= κ+}

(3 0) we can pick

ξα∈Tα \
(⋃{

Tβ :
∣∣Tβ∣∣≤ κ}∪{

ξα′ :α′ ∈α\ C
})

and let Eα=Hα∩Aξα ∈I+.

Then the family
{
Eα :α ∈C

}
is an

I -ADR of
{
Hα :α ∈C

}
. We can continue this procedure on{

Hβ :β ∈ κ\C
}

because Eα∩Hβ ∈I for every α ∈C and β ∈ κ\C.
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Some related question

Proposition

If I is ew.meager and H ∈ [I+]<c, then H has an I -ADR.

Question
Assume that there is a perfect (I ,Fin)-AD family. Is I meager?

No.

Question
Assume that there are perfect (I ,Fin)-AD families on every
X ∈I+. Is I (everywhere) meager?

No under b= c. In ZFC?
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Some related question

Question

What can we say about Σ∼1
2 etc ideals?

In L there is a Σ1
2 (i.e. ∆1

2) prime ideal J . Clearly, all J -AD
families are of size ≤ 1.
We can also easily construct a ∆1

2 ideal I from J such that
there are infinite I -AD families but all of them are countable:
Copy J to the elements of an infinite partition of ω, and let I

be the ideal generated by these copies.

Question

Does there exist a Σ∼1
2 ideal I such that every I -AD family is

countable BUT I is nowhere maximal?

Without the complexity condition, Yes in ZFC (O. Selim).
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Refinements of I +∩V

Theorem (Brendle | Balcar, Pazák)

Let V ⊆W be transitive models with (2ω)V 6= (2ω)W . Then

W |=“[ω]ω∩V has an ADR.”

Theorem

Let V ⊆W be transitive models with ωW
1 ⊆V but (2ω)V 6= (2ω)W ,

and let I be an analytic or coanalytic ideal coded in V . Then

W |=“I+∩V has an I -ADR.”
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Examples of Borel ideals
Fσ ideals:

Summable ideals, e.g.
I1/n=

{
A⊆ω :

∑
n∈A

1
n <∞}

.
Tsirelson ideals (Farah, Solecki, Veličković).
The eventually different ideals:
ED=

{
A⊆ω×ω : limsupn→∞

∣∣{k : (n,k) ∈A
}∣∣<∞

}
and

EDfin= ED �∆ where ∆= {
(n,m) ∈ω×ω :m ≤ n

}
.

The van der Waerden ideal:
W = {

A⊆ω :A does not contain arbitrary long AP’s
}
.

The random graph ideal:
Ran= id

({
homogeneous subsets of the random graph

})
.

The ideal of graphs with finite chromatic number:
Gfc=

{
E ⊆ [ω]2 :χ(ω,E)<ω}

.
Solecki’s ideal:
S = id

{{
A ∈Clopen(2ω) :λ(A)= 1/2 and x ∈A

}
: x ∈ 2ω

}
.
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Examples of Borel ideals
Fσδ ideals:

(Generalized) Density ideals, e.g.
Z=

{
A⊆ω : |A∩n|

n → 0
}
.

The uniform density zero ideal:
Zu=

{
A⊆ω :

max{|A∩[k ,k+n)|:k∈ω}
n → 0

}
.

The trace of the null ideal:
tr(N )= {

A⊆ 2<ω :λ
{
x ∈ 2ω : ∃∞n x � n ∈A

}= 0
}
.

The ideal of nowhere dense subsets of the rationals:
Nwd= {

A⊆Q : int(A)=;}
.

Banach space ideals (Louveau, Veličković).
Fσδσ ideals:

The ideal generated by convergent sequences in Q∩ [0,1]:
Conv= {

A⊆Q∩ [0,1] :
∣∣{acc. points of A (in R)

}∣∣<ω}
.

The Fubini product of Fin by itself:
Fin⊗Fin= {

A⊆ω×ω :∀∞ n ∈ω ∣∣{k : (n,k) ∈A
}∣∣<ω}

.
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Examples of Borel ideals

In general, it is easy to see that there are no Gδ (i.e. Π∼0
2) ideals

but we know the following:

Theorem (Calbrix)

There are Σ∼0
α- and Π∼0

α-complete ideals for every α≥ 3.
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Examples of projective ideals

Example (Zafrany)

For every x ∈ωω let Ix=
{
s ∈ω<ω : x � |s|� s

}
. Then the ideal on

ω<ω generated by
{
Ix : x ∈ωω}

is Σ∼1
1-complete.

Example (Hrušák?, Meza-Alcántara?)
The ideal of graphs without infinite complete subgraphs,

Gc=
{
E ⊆ [ω]2 :∀ X ∈ [ω]ω [X ]2*E

}
is Π∼1

1-complete.

Theorem

There exist Σ∼1
n and Π∼1

n-complete ideals for every n ≥ 1.

Proof (idea): Let A be a perfect AD family. If B is a
Q∼

1
n-complete subset of A , then id(B) is also Q∼

1
n-complete.
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Examples of projective ideals

Theorem

The following ideal (JV ) is Π∼1
1-complete:{

A⊆ω×ω :∀ X ,Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩(X ′×Y ′)=;}
.

Proof: For X ,Y ∈ [ω]ω let T ↑(X ,Y )= {
(n,m) ∈X ×Y : n <m

}
and

let T ↓(X ,Y )= {
(n,m) ∈X ×Y : n >m

}
. We show that a set

A⊆ω×ω is JV -positive iff there are X ,Y ∈ [ω]ω such that

X ×Y ⊆A or A∩ (X ×Y )=T ↑(X ,Y ) or A∩ (X ×Y )=T ↓(X ,Y ).

Let A∈J+
V , i.e. ∃ X= {x0 < x1 < . . . },Y= {y0 < y1 < . . . } ∈ [ω]ω such

that A∩ (X ′×Y ′) 6= ; for every infinite X ′ ⊆X and Y ′ ⊆Y . We
can assume that x0 < y0 < x1 < y1 < . . . . Let c: [ω]2 → 2×2 be the
following coloring: If n <m then c(n,m)= (

χA(xn,ym),χA(xm,yn)
)
.

; H∈ [ω]ω c-hom. ; HX ,HY∈ [H]ω such that HX ∩HY =; and
X ′= {

xn : n ∈HX
}

and Y ′= {
ym :m ∈HY

}
are also alternating.



Motivation Borel and projective ideals Strong ADR’s Refinements of I+ ∩V Mixing reals

Examples of projective ideals

Theorem

The following ideal (JV ) is Π∼1
1-complete:{

A⊆ω×ω :∀ X ,Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩(X ′×Y ′)=;}
.

Proof: For X ,Y ∈ [ω]ω let T ↑(X ,Y )= {
(n,m) ∈X ×Y : n <m

}
and

let T ↓(X ,Y )= {
(n,m) ∈X ×Y : n >m

}
. We show that a set

A⊆ω×ω is JV -positive iff there are X ,Y ∈ [ω]ω such that

X ×Y ⊆A or A∩ (X ×Y )=T ↑(X ,Y ) or A∩ (X ×Y )=T ↓(X ,Y ).

Let A∈J+
V , i.e. ∃ X= {x0 < x1 < . . . },Y= {y0 < y1 < . . . } ∈ [ω]ω such

that A∩ (X ′×Y ′) 6= ; for every infinite X ′ ⊆X and Y ′ ⊆Y . We
can assume that x0 < y0 < x1 < y1 < . . . . Let c: [ω]2 → 2×2 be the
following coloring: If n <m then c(n,m)= (

χA(xn,ym),χA(xm,yn)
)
.

; H∈ [ω]ω c-hom. ; HX ,HY∈ [H]ω such that HX ∩HY =; and
X ′= {

xn : n ∈HX
}

and Y ′= {
ym :m ∈HY

}
are also alternating.



Motivation Borel and projective ideals Strong ADR’s Refinements of I+ ∩V Mixing reals

Examples of projective ideals

Theorem

The following ideal (JV ) is Π∼1
1-complete:{

A⊆ω×ω :∀ X ,Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩(X ′×Y ′)=;}
.

Proof: For X ,Y ∈ [ω]ω let T ↑(X ,Y )= {
(n,m) ∈X ×Y : n <m

}
and

let T ↓(X ,Y )= {
(n,m) ∈X ×Y : n >m

}
. We show that a set

A⊆ω×ω is JV -positive iff there are X ,Y ∈ [ω]ω such that

X ×Y ⊆A or A∩ (X ×Y )=T ↑(X ,Y ) or A∩ (X ×Y )=T ↓(X ,Y ).

Let A∈J+
V , i.e. ∃ X= {x0 < x1 < . . . },Y= {y0 < y1 < . . . } ∈ [ω]ω such

that A∩ (X ′×Y ′) 6= ; for every infinite X ′ ⊆X and Y ′ ⊆Y . We
can assume that x0 < y0 < x1 < y1 < . . . . Let c: [ω]2 → 2×2 be the
following coloring: If n <m then c(n,m)= (

χA(xn,ym),χA(xm,yn)
)
.

; H∈ [ω]ω c-hom. ; HX ,HY∈ [H]ω such that HX ∩HY =; and
X ′= {

xn : n ∈HX
}

and Y ′= {
ym :m ∈HY

}
are also alternating.



Motivation Borel and projective ideals Strong ADR’s Refinements of I+ ∩V Mixing reals

Examples of projective ideals
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A⊆ω×ω :∀ X ,Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩(X ′×Y ′)=;}
.

Proof (ctnd.): A∈J+
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are alternating and c(n,m)= (
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(n <m) is

constant (k ,`) on [HX ∪HY ]
2. We want to show that X ′×Y ′ ⊆A

or A∩ (X ′×Y ′)=T ↑(X ′,Y ′) or A∩ (X ′×Y ′)=T ↓(X ′,Y ′).

(k ,`)= (0,0) is impossible because then A∩ (X ′×Y ′)=;. If
(k ,`)= (1,1) then X ′×Y ′ ⊆A. If (k ,`)= (1,0) or (k ,`)= (0,1)
then A∩ (X ′×Y ′)=T ↑(X ′,Y ′) or A∩ (X ′×Y ′)=T ↓(X ′,Y ′).
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A⊆ω×ω :∀ X ,Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩(X ′×Y ′)=;}
.

Proof (ctnd.): A∈J+
V iff there are X ,Y ∈ [ω]ω such that

X ′×Y ′ ⊆A or A∩(X ′×Y ′)=T ↑(X ′,Y ′) or A∩(X ′×Y ′)=T ↓(X ′,Y ′).
We will construct a Wadge-reduction K (Q)≤W JV (where
Q= {

x ∈ 2ω :∀∞ n x(n)= 0
}
). Fix an enumeration

2<ω = {
sn : n ∈ω}

and define K (2ω)→P (ω×ω) as follows:

C 7→AC= {
(n,m) : [sn]∩C 6= ; and sm(n)= 1

}
.

It is straightforward to check that C ∈K (Q) iff AC ∈JV .
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Analytic and coanalytic ideals in forcing extensions

An obvious but important observation:

If X ⊆P (ω) is an analytic or coanalytic set with definition ϕ(x ,r)
(where r ∈ωω is a parameter), then the statement

“X is an ideal”

is the conjunction of the following formulas:
(i) ¬ϕ(ω,r) and ∀ x ∈ Fin ϕ(x ,r),
(ii) ∀ x ,y (x * y or ¬ϕ(y ,r) or ϕ(x ,r)),
(iii) ∀ x ,y (¬ϕ(x ,r) or ¬ϕ(y ,r) or ϕ(x ∪y ,r)).
In particular, “X is an ideal” is a Π1

2(r) statement hence
absolute for transitive models V ⊆W with ωW

1 ⊆V and r ∈V .
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Strong ADR’s

Question
Assume that I is everywhere meager and let H ∈ [I+]<c.
Does H have an (I ,Fin)-ADR, that is, an I -ADR A of H

which is an AD family as well?

Theorem
Assume MAκ (or κ< cov(M )?) and let I be an everywhere
meager ideal, then every H ∈ [I+]≤κ has an (I ,Fin)-ADR.

Proof: Let H = {
Hα :α< κ}

, and define p ∈P=P(H ) iff p is a
function, dom(p) ∈ [κ]<ω, and p(α) ∈ [Hα]

<ω for every α ∈ dom(p);
p ≤ q iff (i) dom(p)⊇ dom(q), (ii) ∀ α ∈ dom(q) p(α)⊇ q(α), and

(iii) ∀ {α,β} ∈ [dom(q)]2 p(α)∩p(β)= q(α)∩q(β).

P has the ccc. If G is a
{{

p ∈P :α ∈ dom(p)
}
:α< κ}

-generic
filter, then let FG: κ→P (ω), FG(α)=

⋃{
p(α) : p ∈G

}⊆Hα.
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Strong ADR’s

Theorem
Assume MAκ (or κ< cov(M )?) and let I be an everywhere
meager ideal, then every H ∈ [I+]≤κ has an (I ,Fin)-ADR.

Proof (ctnd.): p ∈P iff dom(p) ∈ [κ]<ω and ∀ α< κ p(α) ∈ [Hα]
<ω;

p ≤ q iff (i) dom(p)⊇ dom(q), (ii) ∀ α ∈ dom(q) p(α)⊇ q(α), and
(iii) ∀ {α,β} ∈ [dom(q)]2 p(α)∩p(β)= q(α)∩q(β). If G is a
reasonably generic filter, then let FG(α)=

⋃{
p(α) : p ∈G

}⊆Hα.
Clearly |FG(α)∩FG(β)| <ω for every α<β< κ.

FG(α) ∈I+? We show that if G is (V ,P)-generic then FG(α) is
a Cohen-real in P (Hα) over V . It is enough because then
FG(α) ∉I �Hα and it holds under MAκ as well. Fix an α< κ,
and define the map e = eα:P→C(Hα):= Fn(Hα,2) as follows:
dom(e(p))=⋃{

p(β)∩Hα :β ∈ dom(p)
}
, e(p)(n)=χp(α)(n).
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Strong ADR’s

Theorem
Assume MAκ (or κ< cov(M )?) and let I be an everywhere
meager ideal, then every H ∈ [I+]≤κ has an (I ,Fin)-ADR.

Proof (ctnd.): p ∈P iff dom(p) ∈ [κ]<ω and ∀ α< κ p(α) ∈ [Hα]
<ω;

p ≤ q iff (i) dom(p)⊇ dom(q), (ii) ∀ α ∈ dom(q) p(α)⊇ q(α), and
(iii) ∀ {α,β} ∈ [dom(q)]2 p(α)∩p(β)= q(α)∩q(β). e:P→C(Hα),
dom(e(p))=⋃{

p(β)∩Hα :β ∈ dom(p)
}
, e(p)(n)=χp(α)(n).

Then
e is a projection, that is, e is order-preserving, onto, e(;)=;,
and

∀ p ∈P ∀ s ∈C(Hα)
(
s ≤ e(p)→∃ p′ ≤ p e(p′)= s

)
.

We know that if G is (V ,P)-generic then e[G] generates a
(V ,C(Hα))-generic filter G′, and clearly the Cohen real defined
from G′ is FG(α), we are done.
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Refinements of I +∩V

Theorem (an abuse of Brendle’s proof with DST,)

Let V ⊆W be transitive models with ωW
1 ⊆V but (2ω)V 6= (2ω)W ,

and let I be an analytic or coanalytic ideal coded in V . Then

W |=“I+∩V has an I -ADR.”

Proof: Fix perfect I -AD families AX on every X ∈I+ in V . The
statement “AX is an I -AD family” is Π∼1

2 (hence absolute):(∀ A ∈AX A ∈I+)
and

(∀ A,B ∈AX (A 6=B →A∩B ∈I )
)
.

For every X ,Y ∈I+∩V let B(X ,Y )= {
A ∈AX :A∩Y ∈I+}

.
Then B(X ,Y ) is also (co)analytic (it is a cont. preimage of I+).
Working in W , fix an enumeration

{
Xα :α< κ}

of the set I+∩V
where κ= |cV |. We will construct the desired I -ADR

{
Aα :α< κ}

and the sequence (Bα)α<κ in I+ by recursion on κ.
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Refinements of I +∩V

Theorem

Let V ⊆W , ωW
1 ⊆V , (2ω)V 6= (2ω)W , and let I ∈V be an analytic

or coanalytic. Then W |=“I+∩V has an I -ADR.”

Proof (ctnd.):
{
Xα :α< κ}=I+∩V . AX= a perfect I -AD on

X ∈I+∩V . B(X ,Y )= {
A ∈AX :A∩Y ∈I+} ∈Σ∼1

1∪Π∼1
1. ; I -ADR{

Aα :α< κ}
of I+∩V and (Bα)α<κ in I+ (κ= |cV |).

Assume that
{
Aξ : ξ<α

}
and (Bξ)ξ<α are done, and let

γα=min
{
γ :B(Xγ,Xα) contains a perfect set

}≤α.

Notice that γV
α = γW

α because if S is Σ∼1
1 (or Π∼1

1 resp.), then “S
contains a perfect subset” is Π∼1

2 (Σ∼1
2 resp.).

We also know that perfect sets coded in V have at least κ many
new elements (i.e. from 2ω \V ) in W : use the group structure on
2ω. Let Bα∈B(Xγα ,Xα)\(V ∪{

Bξ : ξ<α
}
) and Aα=Xα∩Bα ∈I+.
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We claim that
{
Aα :α< κ}

is an I -AD family. Let α 6=β.
If γα = γβ =γ then Bα,Bβ ∈AXγ

and hence Aα∩Aβ ⊆Bα∩Bβ ∈I .
If γα < γβ. Then B(Xγα ,Xβ) does not contain perfect subsets. It
is enough to see that B(Xγα ,Xβ) is the same set is W . Why?
Because then Bα ∉B(Xγα ,Xβ) but Bα ∈AXγα

, hence it yields that
Aα∩Aβ ⊆Bα∩Xβ ∈I .
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}≤α.
Bα∈B(Xγα ,Xα)\(V ∪{

Bξ : ξ<α
}
) and Aα=Xα∩Bα ∈I+.

We claim that
{
Aα :α< κ}

is an I -AD family. Let α 6=β.
If γα = γβ =γ then Bα,Bβ ∈AXγ

and hence Aα∩Aβ ⊆Bα∩Bβ ∈I .
If γα < γβ. Then B(Xγα ,Xβ) does not contain perfect subsets. It
is enough to see that B(Xγα ,Xβ) is the same set is W . Why?
Because then Bα ∉B(Xγα ,Xβ) but Bα ∈AXγα

, hence it yields that
Aα∩Aβ ⊆Bα∩Xβ ∈I .
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Refinements of I +∩V

Theorem

Let V ⊆W , ωW
1 ⊆V , (2ω)V 6= (2ω)W , and let I ∈V be an analytic

or coanalytic. Then W |=“I+∩V has an I -ADR.”

Proof (ctnd.):
{
Xα :α< κ}=I+∩V . AX= a perfect I -AD on

X ∈I+∩V . B(X ,Y )= {
A ∈AX :A∩Y ∈I+} ∈Σ∼1

1∪Π∼1
1. ; I -ADR{

Aα :α< κ}
of I+∩V and (Bα)α<κ in I+ (κ= |cV |).

γα=min
{
γ :B(Xγ,Xα) contains a perfect set

}≤α.
Bα∈B(Xγα ,Xα)\(V ∪{

Bξ : ξ<α
}
) and Aα=Xα∩Bα ∈I+. We

show that if γα < γβ then B(Xγα ,Xβ)∩V =B(Xγα ,Xβ)∩W .

The
set K :=B(Xγα ,Xβ) ∈Σ∼1

1 ∪Π∼1
1 does not contain perfect subsets.

Applying the Mansfield-Solovay theorem, K ⊆ L[r ] (where
K ∈Σ1

1(r)∪Π1
1(r), r ∈V ). Assume on the contrary that it

contains a new real E∈K W \ V , then E ∈ Lα[r ]W for some
α<ωW

1 ⊆V . But we know that Lα[r ]W = Lα[r ]V , a contradiction.
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Mixing reals

Definition

Let P be a forcing notion. We say that an f ∈ωω∩VP is a
mixing real over V if |f [X ]∩Y | =ω for every X ,Y ∈ [ω]ω∩V .

Clearly, it is enough to require that ∀ X ,Y ∈ [ω]ω∩V f [X ]∩Y 6= ;.

Proposition
Let P be a forcing notion. Then the following are equivalent:

(i) There is a mixing real f ∈ωω∩VP over V .
(ii) There is an f ∈ωω∩VP s.t. f [X ]=ω for all X ∈ [ω]ω∩V .
(iii) There is a partition, an ω-splitting real, (Yn)n∈ω of ω into

infinite sets in VP such that ∀ X ∈ [ω]ω∩V ∀ n |X ∩Yn| =ω
(i.e. ∀ X ∈ [ω]ω∩V ∀ n X ∩Yn 6= ;).
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Mixing reals

Why is this property relevant to almost-disjoint refinements? Fix
an AD family

{
Aα :α< c

} ∈V , and let
{
Xα :α< c

}= [ω]ω∩V be an
enumeration. If f ∈ωω∩VP is an injective(!) mixing real over V ,
then

{
f [Aα]∩Xα :α< c

} ∈VP is an ADR of [ω]ω∩V .
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In the context of classical properties

C-reals dom. reals

inj. mixing -

∗
-

unb. reals

B-reals mix. reals

-

∀ n n-spl. r.

¬Laver prop.
?

- ¬Sacks prop.
?
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A few more questions

Question

Let V ⊆W be transitive models with ωW
1 ⊆V but (2ω)V 6= (2ω)W ,

and let I be an analytic or coanalytic ideal coded in V . Does
there exist an (I ,Fin)-ADR of I+∩V in W? Or at least an
I -ADR

{
AX :X ∈I+∩V

}
of I+∩V such that

AX ∩AY ⊆BX ,Y ∈I ∩V for every distinct X ,Y ∈I+∩V?

Question

Is it possible that V ⊆W , CardV =CardW but P V (ω) 6=P W (ω),
and W |=“[ω]ω∩V has a projective ADR”?
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Thank you for your attention!

(Feel free to answer our questions BUT please

be so kind and do not find mistakes in the proofs ,)
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