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The classical setting

Given a family
S = {Ho,H1,...,Ha,...} c [w]‘”.

Do there exist infinite subsets A, < H, such that the family

o ={A0,As,...,Aa,...} is almost disjoint (AD), that is, A, N Ag
is finite for every a # 7? In this case, we say that </, or more
precisely, the map H, — Ay is an almost disjoint refinement
(ADR) of #.
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The classical setting

Given a family
S = {Ho,H1,...,Ha,...} c [w]‘”.

Do there exist infinite subsets A, < H, such that the family

o ={A0,As,...,Aa,...} is almost disjoint (AD), that is, A, N Ag
is finite for every a # 7? In this case, we say that </, or more
precisely, the map H, — Ay is an almost disjoint refinement
(ADR) of #.

Proposition (noticed by many people)
If # < [w]® with |#] < ¢, then # has an ADR.

Theorem (Balcar, Vojtas)
Every ultrafilter on w has an ADR.
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The idealized version

Given an ideal .# on w (Fin:= [w]*” <.# and w ¢ .#), and a family
sz{Ho,H1,...,Ha,...}§f+2=9(w)\j.

Do there exist .#-positive subsets A, < H, such that the family
o =4{A0,A1,...,Aq,...} is F-almost disjoint (.7-AD), that is,
AxnAge.s forevery a # B? In this case, we say that «# is an
#-almost disjoint refinement (.#-ADR) of 7.
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The idealized version

Given an ideal .# on w (Fin:= [w]*” <.# and w ¢ .#), and a family
sz{Ho,H1,...,Ha,...}§f+2=9(w)\j.

Do there exist .#-positive subsets A, < H, such that the family
o =4{A0,A1,...,Aq,...} is F-almost disjoint (.7-AD), that is,
AxnAge.s forevery a # B? In this case, we say that «# is an
#-almost disjoint refinement (.#-ADR) of 7.

Proposition

If # is everywhere meager, that is,
Z | X:={Ac X:Ae ¥} is meager in 2(X)

for every X e #* (e.g. .# is analytic or coanalytic), and # c.#*
with |#] < ¢, then # has an #-ADR.
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Everywhere meager ideals

Proposition
If .# is ew.meager and # € [#*]<¢, then # has an .#-ADR.

Proof: First we show that if .# is a meager ideal then there is a
perfect (.#,Fin)-AD family, that is, a (perfect) .#-AD family 28
such that |An B| < w for every {A, B} € [%]?.
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If .# is ew.meager and # € [#*]<¢, then # has an .#-ADR.

Proof: First we show that if .# is a meager ideal then there is a
perfect (.#,Fin)-AD family, that is, a (perfect) .#-AD family 28
such that |An B| < w for every {A, B} € [8].

Applying Talagrand’s characterization, there is a partition
(Pn)new Of w into finite sets such that

{new: Prc A}| <w for every Ae.#.
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Everywhere meager ideals

Proposition
If .# is ew.meager and # € [#*]<¢, then # has an .#-ADR.

Proof: First we show that if .# is a meager ideal then there is a
perfect (.#,Fin)-AD family, that is, a (perfect) .#-AD family 28
such that |An B| < w for every {A, B} € [8].

Applying Talagrand’s characterization, there is a partition
(Pn)new Of w into finite sets such that

{new: Prc A}| <w for every Ae.#.

Let <7 be a perfect AD family (e.g. the branches of 2<“ on

2 (2<?)). For each Ae o/ let A=U{Pn:ne A} € #*, and let
B={A: Ae o}. The function 2(w) — 2(w), A— A’ is injective
and continuous hence 4 is also perfect.
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Everywhere meager ideals

Proposition
If .# is ew.meager and # € [#7]<¢, then # has an .#-ADR.

Proof (ctnd.): Now let # = {Hy:a <k} =.#* (x <¢). Fix an
#-AD family {A; : ¢ <x*} on Hp and for every a <« let

To={E<x® :HynAs e I}
By induction on C={a <« :|Ta| =«x*}(3 0) we can pick
fa€ Te\ (U{Tp: | Tl = x}u{éa: o’ @) G

andlet E,=HynA;, €.
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Everywhere meager ideals

Proposition
If .# is ew.meager and # € [#7]<¢, then # has an .#-ADR.

Proof (ctnd.): Now let # = {Hy:a <k} =.#* (x <¢). Fix an
#-AD family {A; : ¢ <x*} on Hp and for every a <« let

To={E<x® :HynAs e I}
By induction on C={a <« :|Ta| =«x*}(3 0) we can pick
fa€ Te\ (U{Tp: | Tl = x}u{éa: o’ @) G

and let E,= HynAs, € #*. Then the family {E,: a € C} is an
#-ADR of {H, : @ € C}. We can continue this procedure on
{Hp:pex\C} because E,nHge.¥ forevery ac Cand e« \C.
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Some related question

Proposition
If .# is ew.meager and # € [#7]<¢, then # has an .#-ADR.

Assume that there is a perfect (.#,Fin)-AD family. Is .# meager?

No.
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Some related question

Proposition
If .# is ew.meager and # € [#7]<¢, then # has an .#-ADR.

Assume that there is a perfect (.#,Fin)-AD family. Is .# meager?

No.

Assume that there are perfect (.#,Fin)-AD families on every
Xes*. Is # (everywhere) meager?

No under b =¢. In ZFC?
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Some related question

Question
What can we say about ;; etc ideals?

In L there is a =} (i.e. A}) prime ideal #. Clearly, all _#-AD
families are of size <1.

We can also easily construct a A; ideal .# from _# such that
there are infinite .#-AD families but all of them are countable:
Copy _¢ to the elements of an infinite partition of w, and let .#
be the ideal generated by these copies.
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Some related question

Question
What can we say about ;; etc ideals?

In L there is a =} (i.e. A}) prime ideal #. Clearly, all _#-AD
families are of size <1.

We can also easily construct a A; ideal .# from _# such that
there are infinite .#-AD families but all of them are countable:
Copy _¢ to the elements of an infinite partition of w, and let .#
be the ideal generated by these copies.

Question

Does there exist a ;; ideal .# such that every .#-AD family is
countable BUT .# is nowhere maximal?

A

Without the complexity condition, Yes in ZFC (O. Selim).
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Refinements of £t NV

Theorem (Brendle | Balcar, Pazak)
Let V < W be transitive models with (22)Y # (2“). Then
W E“[w]” n V has an ADR”
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Refinements of £t NV

Theorem (Brendle | Balcar, Pazak)
Let V < W be transitive models with (22)Y # (2“). Then
W E“[w]” n V has an ADR”

Let V < W be transitive models with !V < V but (2)V # (2*)V,
and let .# be an analytic or coanalytic ideal coded in V. Then

WE“2*nV has an .#-ADR’”
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Examples of Borel ideals

Fs ideals:

@ Summable ideals, e.g.
H1/n= {AQ w: ZneA% < oo}

@ Tsirelson ideals (Farah, Solecki, Velickovic).

@ The eventually different ideals:
62={Acwxw:limsup,_ |{k: (nk) € A}| < co} and
EPin=62 | A where A={(n,m)ewxw:m=n}.

@ The van der Waerden ideal:

#={Acw:Adoes not contain arbitrary long AP’s}.

@ The random graph ideal:

Ran=id({homogeneous subsets of the random graph}).

@ The ideal of graphs with finite chromatic number:
Gr={E c[w]?: y(w, E) <w}.

@ Solecki’s ideal:

F=1d{{A€ Clopen(2?): A(A)=1/2 and x e A} : x e 2}.
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Examples of Borel ideals

Fqs ideals:
@ (Generalized) Density ideals, e.g.
Z= {Agw: |A%g"'—»O}.
@ The uniform density zero ideal:

= {A cw: max{lAm[k;vk+n)\:kew} _ 0}.

@ The trace of the null ideal:
r(N)={Ac2<?: A{x €2 :3°n x | ne A} =0}.

@ The ideal of nowhere dense subsets of the rationals:
Nwd={AcQ:int(A) = }.

@ Banach space |deals (Louveau, Velickovic).

F,so ideals:

@ The ideal generated by convergent sequences in Q N[0, 1]:
Conv={A<Qn[0,1]: |{acc. points of A (in R)}| < w}.

@ The Fubini product of Fin by itself:
Fin®Fin={Acwxw:¥Y*®new [{k:(nk)eA}| <w}.
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Examples of Borel ideals

In general, it is easy to see that there are no G (i.e. Ijg) ideals
but we know the following:

Theorem (Calbrix)
There are £9- and 19-complete ideals for every a > 3.
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Examples of projective ideals

Example (Zafrany)

For every x e w® let Iy={se w<?: x | |s| £ s}. Then the ideal on
o= generated by {/x : x € v} is £1-complete.




Borel and projective ideals
@0000

Examples of projective ideals

Example (Zafrany)

For every x e w® let Iy={se w<?: x | |s| £ s}. Then the ideal on
o= generated by {/x : x € v} is £1-complete.

Example (Hrusak?, Meza-Alcantara?)
The ideal of graphs without infinite complete subgraphs,

Go={Ec[w]?:V Xe[w]” [X]? ¢ E} is I}-complete.
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Examples of projective ideals

Example (Zafrany)

For every x e w® let Iy={se w<?: x | |s| £ s}. Then the ideal on
o= generated by {/x : x € v} is £1-complete.

Example (Hrusak?, Meza-Alcantara?)
The ideal of graphs without infinite complete subgraphs,

Go={Ec[w]?:V Xe[w]” [X]? ¢ E} is I}-complete.

Theorem

There exist £ and I1}-complete ideals for every n>1.

Proof (idea): Let <7 be a perfect AD family. If 2 is a
QJ-complete subset of <, then id(2) is also Q}-complete.




Borel and projective ideals
0@000

Examples of projective ideals

The following ideal (_#y) is II}-complete:
{Acwxw:V X, Yew]”IX e[X]?IY e[Y]” An(X'xY')=g}.
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Examples of projective ideals

Theorem

The following ideal (_#y) is II}-complete:
{Acwxw:V X, Yew]”IX e[X]?IY e[Y]” An(X'xY')=g}.

Proof: For X, Y e [w]® let T'(X,Y)={(n,m)e X x Y :n<m} and
let TH(X, Y)={(n,m)e X x Y :n>m}. We show that a set
Acwxwis gy-positive iff there are X, Y € [w]” such that

XxYcAor An(XxY)=TI(X,Y)or An(Xx Y)=THX,Y).
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Examples of projective ideals

Theorem
The following ideal (_#y) is II}-complete:
{Acwxw:V X, Yew]”IX e[X]?IY e[Y]” An(X'xY')=g}.

Proof: For X, Y e [w]® let T'(X,Y)={(n,m)e X x Y :n<m} and
let TH(X, Y)={(n,m)e X x Y :n>m}. We show that a set
Acwxwis gy-positive iff there are X, Y € [w]” such that

XxYcAor An(XxY)=TI(X,Y)or An(Xx Y)=THX,Y).

Let Ae g, i.e. I X={Xo<x1<..},Y={yo<y1<...}€[w]” such
that An (X' x Y’) # @ for every infinite X’< X and Y'c Y. We
can assume that xp < Jp < xq < y1 <.... Let ¢c: [w]?> — 2 x 2 be the
following coloring: If n< mthen c(n, m)= (xa(Xn, Ym), xa(Xm, ¥n))-
~» He [w]® c-hom. ~ Hx, Hye [H]“ such that Hx n Hy = ¢ and
X'={xn:neHx} and Y'={ym: me Hy} are also alternating.
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Examples of projective ideals

Theorem
The following ideal (_#y) is II}-complete:
[Acwxw:V X, Ye[w]*IX e[X]?TY e[Y]? An(X'xY') =g}

Proof (ctnd.): Ae ¢ is witnessed by X, Y. There are disjoint
Hy, Hye [w]® such that X'={x,: ne Hx} and Y'={ym: me Hy}
are alternating and c(n, m)= (xa(Xn, Ym), xa(Xm, ¥n)) (n< m) is
constant (k, /) on [Hyx u Hy]2. We want to show that X' x Y/ c A
or An(X'x Y')=THX",Y")or An(X'x Y')=TH X', Y").
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Examples of projective ideals

Theorem
The following ideal (_#y) is II}-complete:
[Acwxw:V X, Ye[w]*IX e[X]?TY e[Y]? An(X'xY') =g}

Proof (ctnd.): Ae ¢ is witnessed by X, Y. There are disjoint
Hy, Hye [w]® such that X'={x,: ne Hx} and Y'={ym: me Hy}
are alternating and c(n, m)= (xa(Xn, Ym), xa(Xm, ¥n)) (n< m) is
constant (k, /) on [Hyx u Hy]2. We want to show that X' x Y/ c A
or An(X'xY) =TI (X", Y)or An(X'x Y)=THX",Y").

(k,¢) =(0,0) is impossible because then An (X' x Y')=g. If
(k,¢)=(1,1)then X' x Y'cA. If (k,¢)=(1,0) or (k,¢)=(0,1)
then An(X'x Y')=TH(X',Y)or An(X' x Y)= THX', Y').
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Examples of projective ideals

Theorem
The following ideal (_#y) is I1}-complete:
{Acwxw:V X, Yew]”IX e[X]?3Y e[Y]” An(X'xY')=g}.

Proof (ctnd.): Ae g, iff there are X, Y € [w]“ such that

X'xY' cAor An(X'xY)=TI(X",Y")or An(X'xY)=TH X", Y.
We will construct a Wadge—reduction K (Q)=w Zv (where
Q={x€2?:v* nx(n)=0}). Fix an enumeration

2<¥ ={sp:new} and deflne H(29) — P(w x w) as follows:

CHAC: {(n»m) [Sn]ﬂc;é@and Sm _1}
It is straightforward to check that C e #(Q) iff Ac € _¢y.
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Analytic and coanalytic ideals in forcing extensions

An obvious but important observation:

If X < 2(w) is an analytic or coanalytic set with definition ¢(x,r)
(where r e 0 is a parameter), then the statement

“X is an ideal”

is the conjunction of the following formulas:
(i) 7¢(w,r)and V x eFin ¢(x,r),
(i) Y x,y (xZyor-e(y,r)ore(x,r)),
(i) ¥V x,¥ (me(x,r) or =gp(y,r) or p(xuy,r)).
In particular, “X is an ideal” is a H;(r) statement hence
absolute for transitive models V< W with o < Vand re V.
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Strong ADR’s

Assume that .# is everywhere meager and let # € [.#*]<°.
Does .# have an (.#,Fin)-ADR, that is, an .#-ADR « of #
which is an AD family as well?
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Question

Assume that .# is everywhere meager and let # € [.#*]<°.
Does .# have an (.#,Fin)-ADR, that is, an .#-ADR « of #
which is an AD family as well?

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [#*]=* has an (.#,Fin)-ADR.

|
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Strong ADR’s

Question

Assume that .# is everywhere meager and let # € [.#*]<°.
Does .# have an (.#,Fin)-ADR, that is, an .#-ADR « of #
which is an AD family as well?

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [#*]=* has an (.#,Fin)-ADR.

Proof: Let # = {H, : a <«x}, and define peP =P(%) iff pis a
function, dom(p) € [x]<“, and p(a) € [Ha]<“ for every a € dom(p);
p < q iff (i) dom(p) 2dom(q), (i) V a € dom(q) p(a)2qg(«), and

(iii) V {a, B} € [dom(q)]? p(a) np(B) = g(a) N q(B).
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Strong ADR’s

Question

Assume that .# is everywhere meager and let # € [.#*]<°.
Does .# have an (.#,Fin)-ADR, that is, an .#-ADR « of #
which is an AD family as well?

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [#*]=* has an (.#,Fin)-ADR.

Proof: Let # = {H, : a <«x}, and define peP =P(%) iff pis a

function, dom(p) € [x]<“, and p(a) € [Ha]<“ for every a € dom(p);

p < q iff (i) dom(p) 2dom(q), (i) V a € dom(q) p(a)2qg(«), and
(ili) ¥ {a, B} € [dom(q)]? p(@) np(B) = q(a) nq(p).

P has the ccc. If Gis a {{peP: a e dom(p)} : @ < x}-generic
filter, then let Fg:x — 2(w), Fg(a) =U{p(a): pe G} < H,.
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Strong ADR’s

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [.#*]=* has an (.#,Fin)-ADR.

Proof (ctnd.): peP iff dom(p) € [x]~“ and V a <« p(«a) € [Ha]=*;
p < q iff (i) dom(p) 2dom(q), (ii) V a € dom(q) p(a)=2qg(«a), and
(il ¥ {a, B} € [dom(q)? p(a) np(B) = g(a) nq(p). If Gis a
reasonably generic filter, then let Fg(a)=U{p(a): pe G} c H,.
Clearly |Fg(a)n Fg(B)| < w for every a < B <x.
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Strong ADR’s

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [.#*]=* has an (.#,Fin)-ADR.

Proof (ctnd.): peP iff dom(p) € [x]~“ and V a <« p(«a) € [Ha]=*;
p < q iff (i) dom(p) 2dom(q), (ii) V a € dom(q) p(a)=2qg(«a), and
(i) ¥ (@, } € [dom(q)]2 p(a) np() = a(a) N q(p). It Gis a
reasonably generic filter, then let Fg(a)=U{p(a): pe G} c H,.
Clearly |Fg(a)n Fg(B)| < w for every a < B <x.

Fg(a) e #7? We show that if G is (V,P)-generic then Fg(a) is
a Cohen-real in 22(H,) over V. It is enough because then
Fg(a) ¢ .# | Hy and it holds under MA, as well.
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Strong ADR’s

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [.#*]=* has an (.#,Fin)-ADR.

Proof (ctnd.): peP iff dom(p) € [x]~“ and V a <« p(«a) € [Ha]=*;
p < q iff (i) dom(p) 2dom(q), (ii) V a € dom(q) p(a)=2qg(«a), and
(ii) ¥ 1a, B} € [dom(q)]2 p(a) np(B) = q(a) nq(p). If Gis a
reasonably generic filter, then let Fg(a)=U{p(a): pe G} c H,.
Clearly |Fg(a)n Fg(B)| < w for every a < B <x.

Fg(a) e #7? We show that if G is (V,P)-generic then Fg(a) is
a Cohen-real in 22(H,) over V. It is enough because then
Fg(a) ¢ .# | H, and it holds under MA, as well. Fix an a <x,
and define the map e = e,: P —C(H, ):=Fn(Hy,2) as follows:
dom(e(p)) =U{p(B) N Ha : p € dom(p)}, e(p)(n) = xp(a)(N)-
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Strong ADR’s

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [#7]=* has an (.,Fin)-ADR.

Proof (ctnd.): peP iff dom(p) € [x]<“ and V a <« p(a) € [Ha]<*;
p < q iff (i) dom(p) 2dom(q), (ii) V a € dom(q) p(a)=2qg(«), and
(iii) V {a, B} € [dom(q)]? p() np(B) = q(a) N q(B). &:P —C(Ha),
dom(e(p)) =U{p(B) N Ha : p € dom(p)}, e(p)(n) = xp(a)(N)-
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Strong ADR’s

Theorem

Assume MA, (or x <cov(.#)?) and let .# be an everywhere
meager ideal, then every # € [#7]=* has an (.,Fin)-ADR.

Proof (ctnd.): peP iff dom(p) € [x]<“ and V a <« p(a) € [Ha]<*;
p < q iff (i) dom(p) 2dom(q), (ii) V a € dom(q) p(a)=2qg(«), and
(iii) V {a, B} € [dom(q)]? p(@) np(B) = q(a) N q(B). &:P —C(Ha),
dom(e(p)) =U{p(B)  Ha : B e dom(p)}, €(p)(7) = Ap(a)(n)- Then
e is a projection, that is, e is order-preserving, onto, e(g) = @,
and

VpePVseC(Hy) (s<e(p)—3p <pe(p)=s5).

We know that if G is (V,P)-generic then e[G] generates a
(V,C(Hg))-generic filter G', and clearly the Cohen real defined
from G' is Fg(a), we are done.
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Refinements of £t NV

Theorem (an abuse of Brendle’s proof with DST®)

Let V < W be transitive models with o}V < V but (2)¥ # (2*)V,
and let .# be an analytic or coanalytic ideal coded in V. Then

W E“2*nV has an .#-ADR.”
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Refinements of £t NV

Theorem (an abuse of Brendle’s proof with DST®)

Let V < W be transitive models with o}V < V but (2)¥ # (2*)V,
and let .# be an analytic or coanalytic ideal coded in V. Then

W E“2*nV has an .#-ADR.”

Proof: Fix perfect .#-AD families </x on every Xe.#* in V. The
statement “ofx is an .#-AD family” is 13; (hence absolute):

(VAeax Ace#*)and (V A Beslx (A#B— AnBe.9)).
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Refinements of £t NV

Theorem (an abuse of Brendle’s proof with DST®)

Let V < W be transitive models with !V < V but (2¢)¥ # (2#)W
and let .# be an analytic or coanalytic ideal coded in V. Then

W E“2*nV has an .#-ADR.”

Proof: Fix perfect .#-AD families </x on every Xe.#* in V. The
statement “ofx is an .#-AD family” is 13; (hence absolute):

(VAeax Ace#*)and (V A Beslx (A#B— AnBe.9)).

Forevery X,Ye s nVlet B(X,Y)={Aedx:AnYe st}
Then B(X,Y) is also (co)analytlc (|t is a cont. preimage of .#*).
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Refinements of £t NV

Theorem (an abuse of Brendle’s proof with DST®)

Let V < W be transitive models with !V < V but (2¢)¥ # (2#)W
and let .# be an analytic or coanalytic ideal coded in V. Then

W E“2*nV has an .#-ADR.”

Proof: Fix perfect .#-AD families </x on every Xe.#* in V. The
statement “ofx is an .#-AD family” is 13; (hence absolute):

(VAeax Ace#*)and (V A Beslx (A#B— AnBe.9)).
Forevery X,Ye s nVlet B(X,Y)={Aedx:AnYe st}

Then B(X,Y) is also (co)analytic (|t is a cont. preimage of .#*).

Working in W, fix an enumeration {X, : a <«} of the set #* nV
where «=|c"|. We will construct the desired .#-ADR {A, : a <k}
and the sequence (B, )<« in £* by recursion on «.
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Theorem

Let Ve W, 0¥ cV, (29)V #(29)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR”

Proof (ctnd.): {X,: a <x}=9"n V. «x= a perfect #-AD on
XestnV. B(X,Y)={Acsx:AnYes}ezlunl. ~ #-ADR
{Ag:a<x}of ¥V and (By)a<x in £* (x =1cY)).

Assume that {A; : ¢ < a} and (B;):<, are done, and let

Yo=min{y: B(Xy, X,) contains a perfect set} < a.
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Theorem

Let Ve W, 0¥ cV, (29)V #(29)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR”

Proof (ctnd.): {X, :a <x}=*"nV. o/x= a perfect #-AD on
XegtnV.B(X,Y)={Aex: AmY€J+}€Z1UH1 ~ #-ADR
{Ag:a<x}of #*nVand (By)a<x in £ (k= cY)).

Assume that {A; : ¢ < a} and (B;):<, are done, and let

Yo=min{y: B(Xy, Xa) contains a perfect set} < a

Notice that y¥ =y because if Sis £} (or I} resp.), then “S
contains a perfect subset” is I1} (£} resp.).
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Theorem

Let Ve W, 0¥ cV, (29)V #(29)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR”

Proof (ctnd.): {X, :a <x}=*"nV. o/x= a perfect #-AD on
XegtnV.B(X,Y)={Aex: AmY€J+}€Z1UH1 ~ #-ADR
{Ag:a<x}of #*nVand (By)a<x in £ (k= cY)).

Assume that {A; : ¢ < a} and (B;):<, are done, and let

Yo=min{y: B(Xy, Xa) contains a perfect set} < a

Notice that y¥ =y because if Sis £} (or I} resp.), then “S
contains a perfect subset” is I1} (£} resp.).

We also know that perfect sets coded in V have at least x many
new elements (i.e. from 2“\ V) in W: use the group structure on
2¢. Let Bye B(Xy,, Xo)\(VU{Bs:é<a}) and Ay= X, nBy € 77,
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Theorem

Let Ve W, 0V c Vv, (29)V #(22)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR””

Proof (ctnd.): {X, :a <x}=9"nV. «/x= a perfect #-AD on
XegtnV.B(X,Y)={Aedx: AﬂY€f+}€Z1UH1.MJADR
{Aq:a<x}of TNV and (By)a<x in F* (x =|cY)).

yo=min{y : B(Xy, Xy) contains a perfect set} < a.

Bae B(Xy,, Xa)\(VU{Bs:E<a}) and Ay=XynBye F™.




Refinements of #* NV
000

Refinements of £t NV

Theorem

Let Ve W, 0V c Vv, (29)V #(22)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR””

Proof (ctnd.): {X, :a <x}=9"nV. «/x= a perfect #-AD on
XegtnV.B(X,Y)={Aedx: AﬂYEﬂ+}€Z1UH1.MJ ADR
{Aq:a<x}of TNV and (By)a<x in F* (x =|cY)).

yo=min{y : B(Xy, Xy) contains a perfect set} < a.

Bae B(Xy,, Xa)\(VU{Bs:E<a}) and Ay=XynBye F™.

We claim that {Aq : @ <«} is an .#-AD family. Let a # B.

If ya =yp =y then By, Bg € «/x, and hence A;nAg<BanBge s.
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Theorem

Let Ve W, 0V c Vv, (29)V #(22)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR””

Proof (ctnd.): {X, :a <x}=9"nV. «/x= a perfect #-AD on
Xeg nV.B(X,Y)={Aecdx:AnYes}tezlunl. ~ #-ADR
{Aq:a<x}of TNV and (By)a<x in F* (x =|cY)).

yo=min{y : B(Xy, Xy) contains a perfect set} < a.

Bae B(Xy,, Xa)\(VU{Bs:E<a}) and Ay=XynBye F™.

We claim that {A, : a <} is an .#-AD family. Let a # B.

If ya =yp =y then By, Bg € «/x, and hence A;nAg<BanBge s.
If ya <yp. Then B(X,,,Xs) does not contain perfect subsets. It
is enough to see that B(X,,, X;) is the same set is W. Why?
Because then B, ¢ B(X,,, Xp) but B, € «/x_, hence it yields that
AenAgcBynXge s
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Theorem

Let Ve W, 0l <V, (22)V #(2°)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR”

Proof (ctnd.): {X,:a <x}=9*nV. o«/x= a perfect #-AD on
Xesg nV.B(X,Y)={Aesdx:AnYes*}ezlunl. ~ #-ADR
{Ag:a<x}of F¥nVand (By)a<x in £ (k= cY)).

yo=min{y : B(Xy, Xy) contains a perfect set} < a.

Bo€ B(Xy,, Xa)\(VU{B: : ¢ <a}) and A,=Xon By e £+, We
show that if 4 < y4 then B(X,,, Xg)n V = B(Xy,, X5) n W.
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Theorem

Let Ve W, 0l <V, (22)V #(2°)W, and let .# € V be an analytic
or coanalytic. Then W =“#* n V has an .#-ADR”

Proof (ctnd.): {X,:a <x}=9*nV. o«/x= a perfect #-AD on
Xesg nV.B(X,Y)={Aesdx:AnYes*}ezlunl. ~ #-ADR
{Ag:a<x}of F¥nVand (By)a<x in £ (k= cY)).

yo=min{y : B(Xy, Xy) contains a perfect set} < a.

Bo€ B(Xy,, Xa)\(VU{B: : ¢ <a}) and A,=Xon By e £+, We
show that if y, <y then B(X,,, Xg)n V = B(X,,,X3)n W. The
set K:= B(X,,,Xs) € ;] U 1;[] does not contain perfect subsets.
Applying the Mansfield-Solovay theorem, K < L[r] (where

K ezl(r)unil(r), re V). Assume on the contrary that it
contains a new real Ee KW\ V, then E e L,[r]" for some

a <oV c V. But we know that La[r]" = L,[r]", a contradiction.




Mixing reals
[ Jele}

Mixing reals

Definition
Let P be a forcing notion. We say that an fe w” n V¥ is a
mixing real over V if |[f[X]nY|=w for every X,Y € [w]*n V.

Clearly, it is enough to require that vV X, Y € [w]n V f[X]nY # 2.
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Mixing reals

Definition
Let P be a forcing notion. We say that an fe w” n V¥ is a
mixing real over V if |[f[X]nY|=w for every X,Y € [w]*n V.

Clearly, it is enough to require that vV X, Y € [w]n V f[X]nY # 2.

Proposition
Let P be a forcing notion. Then the following are equivalent:

(i) There is a mixing real f € w® n V¥ over V.
(i) Thereis an few?n VP s.t. f[X]=w forall Xe[w]®n V.
(iii) There is a partition, an w-splitting real, (Yn)new Of w into
infinite sets in V¥ suchthat vV X e [w]*nV ¥V n|Xn Yyl =w
(ile. V Xe[w]?nV VY nXnYy#3).
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Why is this property relevant to almost-disjoint refinements? Fix
an AD family {A;:a<c}eV,andlet {X,:a <} =[w]’nV be an
enumeration. If f e w® n V® is an injective(!) mixing real over V,
then {f[As]n Xy : @ <c} e VP is an ADR of [w]?n V.
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In the context of classical properties

inj. mixing ——— unb. reals

AN

mix. reals

-Laver prop. —— —Sacks prop.
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mix. reals v nn-spl.r.
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-Laver prop. ——  —Sacks prop.



In the context of classical properties

C-reals dom. reals

*

inj. mixing —— unb. reals

N\

*
mix. reals v nn-spl.r.
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N
-Laver prop. ——  —Sacks prop.



In the context of classical properties

C-reals dom. reals
*
inj. mixing unb. reals
\. *
B-reals mix. reals v nn-spl. r.

A
—Laver prop. —~Sacks prop.




A few more questions

Question

Let V < W be transitive models with o}V < V but (2)¥ # (2*)V,
and let .# be an analytic or coanalytic ideal coded in V. Does
there exist an (.#,Fin)-ADR of #*nV in W? Or at least an
#-ADR {Ax: X e 9" nV} of #*n V such that
AxnAy < Bxye#nV for every distinct X,Ye s nV?




A few more questions

Question

Let V < W be transitive models with o}V < V but (2)¥ # (2*)V,
and let .# be an analytic or coanalytic ideal coded in V. Does
there exist an (.#,Fin)-ADR of #*nV in W? Or at least an
#-ADR {Ax: X e 9" nV} of #*n V such that
AxnAy < Bxye#nV for every distinct X,Ye s nV?

Is it possible that V < W, Card" = Card" but 2" (w) # 2% (w),
and W =“[w]” n V has a projective ADR”?




Thank you for your attention!

(Feel free to answer our questions BUT please

be so kind and do not find mistakes in the proofs ©)
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