Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals

Ideals, ADR's, and mixing reals

Barnabás Farkas*

joint work with Y. Khomskii* and Z. Vidnyánszky

Sets and Computations, Singapore, 2015

Kurt Gödel Research Center, University of Vienna
 Alfréd Rényi Institute, Hungarian Academy of Sciences

(ロ) (同) (三) (三) (三) (○) (○)

Motivation ●○○○○○○	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
The clas	sical setting			

Given a family

$$\mathscr{H} = \{H_0, H_1, \ldots, H_\alpha, \ldots\} \subseteq [\omega]^{\omega}.$$

Do there exist infinite subsets $A_{\alpha} \subseteq H_{\alpha}$ such that the family $\mathscr{A} = \{A_0, A_1, \dots, A_{\alpha}, \dots\}$ is *almost disjoint* (AD), that is, $A_{\alpha} \cap A_{\beta}$ is finite for every $\alpha \neq \beta$? In this case, we say that \mathscr{A} , or more precisely, the map $H_{\alpha} \mapsto A_{\alpha}$ is an *almost disjoint refinement* (ADR) of \mathscr{H} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation ••••••	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
The clas	sical setting			

Given a family

$$\mathscr{H} = \{H_0, H_1, \ldots, H_\alpha, \ldots\} \subseteq [\omega]^{\omega}.$$

Do there exist infinite subsets $A_{\alpha} \subseteq H_{\alpha}$ such that the family $\mathscr{A} = \{A_0, A_1, \dots, A_{\alpha}, \dots\}$ is *almost disjoint* (AD), that is, $A_{\alpha} \cap A_{\beta}$ is finite for every $\alpha \neq \beta$? In this case, we say that \mathscr{A} , or more precisely, the map $H_{\alpha} \mapsto A_{\alpha}$ is an *almost disjoint refinement* (ADR) of \mathscr{H} .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proposition (noticed by many people)

If $\mathcal{H} \subseteq [\omega]^{\omega}$ with $|\mathcal{H}| < \mathfrak{c}$, then \mathcal{H} has an ADR.

Motivation ••••••	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
The clas	sical setting			

Given a family

$$\mathscr{H} = \{H_0, H_1, \ldots, H_\alpha, \ldots\} \subseteq [\omega]^{\omega}.$$

Do there exist infinite subsets $A_{\alpha} \subseteq H_{\alpha}$ such that the family $\mathscr{A} = \{A_0, A_1, \dots, A_{\alpha}, \dots\}$ is *almost disjoint* (AD), that is, $A_{\alpha} \cap A_{\beta}$ is finite for every $\alpha \neq \beta$? In this case, we say that \mathscr{A} , or more precisely, the map $H_{\alpha} \mapsto A_{\alpha}$ is an *almost disjoint refinement* (ADR) of \mathscr{H} .

Proposition (noticed by many people)

If $\mathcal{H} \subseteq [\omega]^{\omega}$ with $|\mathcal{H}| < \mathfrak{c}$, then \mathcal{H} has an ADR.

Theorem (Balcar, Vojtáš)

Every ultrafilter on ω has an ADR.

Motivation •••••	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
The idea	alized version			

Given an ideal \mathscr{I} on ω (Fin:= $[\omega]^{<\omega} \subseteq \mathscr{I}$ and $\omega \notin \mathscr{I}$), and a family

$$\mathscr{H} = \{H_0, H_1, \ldots, H_\alpha, \ldots\} \subseteq \mathscr{I}^+ := \mathscr{P}(\omega) \setminus \mathscr{I}.$$

Do there exist \mathscr{I} -**positive** subsets $A_{\alpha} \subseteq H_{\alpha}$ such that the family $\mathscr{A} = \{A_0, A_1, \dots, A_{\alpha}, \dots\}$ is \mathscr{I} -almost disjoint (\mathscr{I} -AD), that is, $A_{\alpha} \cap A_{\beta} \in \mathscr{I}$ for every $\alpha \neq \beta$? In this case, we say that \mathscr{A} is an \mathscr{I} -almost disjoint refinement (\mathscr{I} -ADR) of \mathscr{H} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation •••••	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
The idea	lized version			

Given an ideal \mathscr{I} on ω (Fin:= $[\omega]^{<\omega} \subseteq \mathscr{I}$ and $\omega \notin \mathscr{I}$), and a family

$$\mathcal{H} = \{H_0, H_1, \dots, H_\alpha, \dots\} \subseteq \mathcal{I}^+ := \mathcal{P}(\omega) \setminus \mathcal{I}.$$

Do there exist \mathscr{I} -**positive** subsets $A_{\alpha} \subseteq H_{\alpha}$ such that the family $\mathscr{A} = \{A_0, A_1, \dots, A_{\alpha}, \dots\}$ is \mathscr{I} -almost disjoint (\mathscr{I} -AD), that is, $A_{\alpha} \cap A_{\beta} \in \mathscr{I}$ for every $\alpha \neq \beta$? In this case, we say that \mathscr{A} is an \mathscr{I} -almost disjoint refinement (\mathscr{I} -ADR) of \mathscr{H} .

Proposition

If *I* is *everywhere meager*, that is,

 $\mathscr{I} \upharpoonright X := \{A \subseteq X : A \in \mathscr{I}\}$ is meager in $\mathscr{P}(X)$

for every $X \in \mathscr{I}^+$ (e.g. \mathscr{I} is analytic or coanalytic), and $\mathscr{H} \subseteq \mathscr{I}^+$ with $|\mathscr{H}| < \mathfrak{c}$, then \mathscr{H} has an \mathscr{I} -ADR.

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals		
Everywhere meager ideals						

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{< c}$, then \mathscr{H} has an \mathscr{I} -ADR.

Proof: First we show that if \mathscr{I} is a meager ideal then there is a perfect $(\mathscr{I}, \operatorname{Fin})$ -*AD* family, that is, a (perfect) \mathscr{I} -AD family \mathscr{B} such that $|A \cap B| < \omega$ for every $\{A, B\} \in [\mathscr{B}]^2$.

Motivation ○o●o○oo	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Everywh	ere meager ide			

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Proof: First we show that if \mathscr{I} is a meager ideal then there is a perfect $(\mathscr{I}, \operatorname{Fin})$ -*AD* family, that is, a (perfect) \mathscr{I} -AD family \mathscr{B} such that $|A \cap B| < \omega$ for every $\{A, B\} \in [\mathscr{B}]^2$.

Applying Talagrand's characterization, there is a partition $(P_n)_{n \in \omega}$ of ω into finite sets such that

 $|\{n \in \omega : P_n \subseteq A\}| < \omega \text{ for every } A \in \mathscr{I}.$

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
-		1 1		

Everywhere meager ideals

Proposition

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Proof: First we show that if \mathscr{I} is a meager ideal then there is a perfect $(\mathscr{I}, \operatorname{Fin})$ - \mathcal{AD} family, that is, a (perfect) \mathscr{I} - AD family \mathscr{B} such that $|A \cap B| < \omega$ for every $\{A, B\} \in [\mathscr{B}]^2$.

Applying Talagrand's characterization, there is a partition $(P_n)_{n \in \omega}$ of ω into finite sets such that

 $|\{n \in \omega : P_n \subseteq A\}| < \omega$ for every $A \in \mathscr{I}$.

Let \mathscr{A} be a perfect AD family (e.g. the branches of $2^{<\omega}$ on $\mathscr{P}(2^{<\omega})$). For each $A \in \mathscr{A}$ let $A' = \bigcup \{P_n : n \in A\} \in \mathscr{I}^+$, and let $\mathscr{B} = \{A' : A \in \mathscr{A}\}$. The function $\mathscr{P}(\omega) \to \mathscr{P}(\omega), A \mapsto A'$ is injective and continuous hence \mathscr{B} is also perfect.

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
-				

Everywhere meager ideals

Proposition

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Proof (ctnd.): Now let $\mathcal{H} = \{H_{\alpha} : \alpha < \kappa\} \subseteq \mathcal{I}^+$ ($\kappa < \mathfrak{c}$). Fix an \mathcal{I} -AD family $\{A_{\xi} : \xi < \kappa^+\}$ on H_0 and for every $\alpha < \kappa$ let

$$T_{\alpha} = \{\xi < \kappa^+ : H_{\alpha} \cap A_{\xi} \in \mathscr{I}^+\}.$$

By induction on $C = \{\alpha < \kappa : |T_{\alpha}| = \kappa^+\} (\ni 0)$ we can pick

$$\boldsymbol{\xi}_{\boldsymbol{\alpha}} \in \boldsymbol{T}_{\boldsymbol{\alpha}} \setminus \left(\bigcup \left\{ \boldsymbol{T}_{\boldsymbol{\beta}} : \left| \boldsymbol{T}_{\boldsymbol{\beta}} \right| \leq \kappa \right\} \cup \left\{ \boldsymbol{\xi}_{\boldsymbol{\alpha}'} : \boldsymbol{\alpha}' \in \boldsymbol{\alpha} \setminus \boldsymbol{C} \right\} \right)$$

and let $E_{\alpha} = H_{\alpha} \cap A_{\xi_{\alpha}} \in \mathscr{I}^+$.

Motivation ○○○●○○○	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Everywhere meager ideals				

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Proof (ctnd.): Now let $\mathcal{H} = \{H_{\alpha} : \alpha < \kappa\} \subseteq \mathcal{I}^+$ ($\kappa < \mathfrak{c}$). Fix an \mathcal{I} -AD family $\{A_{\xi} : \xi < \kappa^+\}$ on H_0 and for every $\alpha < \kappa$ let

$$T_{\alpha} = \{\xi < \kappa^+ : H_{\alpha} \cap A_{\xi} \in \mathscr{I}^+\}.$$

By induction on $C = \{\alpha < \kappa : |T_{\alpha}| = \kappa^+\} (\ni 0)$ we can pick

$$\boldsymbol{\xi}_{\boldsymbol{\alpha}} \in T_{\boldsymbol{\alpha}} \setminus \left(\bigcup \{ T_{\boldsymbol{\beta}} : \big| T_{\boldsymbol{\beta}} \big| \leq \kappa \} \cup \{ \boldsymbol{\xi}_{\boldsymbol{\alpha}'} : \boldsymbol{\alpha}' \in \boldsymbol{\alpha} \setminus \boldsymbol{C} \} \right)$$

and let $E_{\alpha} = H_{\alpha} \cap A_{\xi_{\alpha}} \in \mathscr{I}^+$. Then the family $\{E_{\alpha} : \alpha \in C\}$ is an \mathscr{I} -ADR of $\{H_{\alpha} : \alpha \in C\}$. We can continue this procedure on $\{H_{\beta} : \beta \in \kappa \setminus C\}$ because $E_{\alpha} \cap H_{\beta} \in \mathscr{I}$ for every $\alpha \in C$ and $\beta \in \kappa \setminus C$.

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Some re	lated question			

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Question

Assume that there is a perfect (*I*, Fin)-AD family. Is *I* meager?

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

No.

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Some re	lated question			

If \mathscr{I} is ew.meager and $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$, then \mathscr{H} has an \mathscr{I} -ADR.

Question

Assume that there is a perfect (*I*, Fin)-AD family. Is *I* meager?

No.

Question

Assume that there are perfect (\mathscr{I} , Fin)-AD families on every $X \in \mathscr{I}^+$. Is \mathscr{I} (everywhere) meager?

No under b = c. In ZFC?

Motivation ○○○○●○	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Some	related question	1		

What can we say about Σ_2^1 etc ideals?

In *L* there is a Σ_2^1 (i.e. Δ_2^1) prime ideal \mathscr{J} . Clearly, all \mathscr{J} -AD families are of size ≤ 1 .

We can also easily construct a Δ_2^1 ideal \mathscr{I} from \mathscr{J} such that there are infinite \mathscr{I} -AD families but all of them are countable: Copy \mathscr{J} to the elements of an infinite partition of ω , and let \mathscr{I} be the ideal generated by these copies.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation ○○○○●○	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Some	related question	1		

What can we say about Σ_2^1 etc ideals?

In *L* there is a Σ_2^1 (i.e. Δ_2^1) prime ideal \mathscr{J} . Clearly, all \mathscr{J} -AD families are of size ≤ 1 .

We can also easily construct a Δ_2^1 ideal \mathscr{I} from \mathscr{J} such that there are infinite \mathscr{I} -AD families but all of them are countable: Copy \mathscr{J} to the elements of an infinite partition of ω , and let \mathscr{I} be the ideal generated by these copies.

Question

Does there exist a Σ_2^1 ideal \mathscr{I} such that every \mathscr{I} -AD family is countable BUT \mathscr{I} is nowhere maximal?

Without the complexity condition, Yes in ZFC (O. Selim).

Motivation ○○○○○●	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Refiner	nents of $\mathscr{Q}^+ \cap V$,		

Theorem (Brendle | Balcar, Pazák)

Let $V \subseteq W$ be transitive models with $(2^{\omega})^V \neq (2^{\omega})^W$. Then

 $W \models "[\omega]^{\omega} \cap V$ has an ADR."

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Motivation ○○○○○●	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Refinem	nents of $\mathscr{I}^+ \cap V$			

Theorem (Brendle | Balcar, Pazák)

Let $V \subseteq W$ be transitive models with $(2^{\omega})^{V} \neq (2^{\omega})^{W}$. Then

 $W \models "[\omega]^{\omega} \cap V$ has an ADR."

Theorem

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in *V*. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals	
Even weeks as f Devel Mercle					

Examples of Borel ideals

 F_{σ} ideals:

• Summable ideals, e.g.

$$\mathscr{I}_{1/n} = \{A \subseteq \omega : \sum_{n \in A} \frac{1}{n} < \infty\}.$$

- Tsirelson ideals (Farah, Solecki, Veličković).
- The eventually different ideals:

$$\mathscr{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \to \infty} |\{k : (n, k) \in A\}| < \infty \right\} \text{ and}$$

 $\mathscr{ED}_{\mathrm{fin}} = \mathscr{ED} \upharpoonright \Delta \text{ where } \Delta = \{(n, m) \in \omega \times \omega : m \le n\}.$

• The van der Waerden ideal:

 $\mathcal{W} = \{A \subseteq \omega : A \text{ does not contain arbitrary long AP's}\}.$

• The random graph ideal:

 $Ran = id(\{homogeneous subsets of the random graph\}).$

- The ideal of graphs with finite chromatic number: $\mathscr{G}_{fc} = \{ E \subseteq [\omega]^2 : \chi(\omega, E) < \omega \}.$
- Solecki's ideal: $\mathscr{S} = \operatorname{id} \{ \{ A \in \operatorname{Clopen}(2^{\omega}) : \lambda(A) = 1/2 \text{ and } x \in A \} : x \in 2^{\omega} \}.$

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
	0000000			
_				

Examples of Borel ideals

 $F_{\sigma\delta}$ ideals:

• (Generalized) Density ideals, e.g.

$$\mathcal{Z} = \Big\{ A \subseteq \omega : \frac{|A \cap n|}{n} \to 0 \Big\}.$$

• The uniform density zero ideal:

$$\mathcal{Z}_{\boldsymbol{U}} = \Big\{ \boldsymbol{A} \subseteq \boldsymbol{\omega} : \frac{\max\{|\boldsymbol{A} \cap [k, k+n)| : k \in \boldsymbol{\omega}\}}{n} \to \boldsymbol{0} \Big\}.$$

- The trace of the null ideal: $\operatorname{tr}(\mathscr{N}) = \{A \subseteq 2^{<\omega} : \lambda \{x \in 2^{\omega} : \exists^{\infty} n \ x \upharpoonright n \in A\} = 0\}.$
- The ideal of nowhere dense subsets of the rationals: Nwd= {A⊆Q: int(Ā) = ∅}.
- Banach space ideals (Louveau, Veličković).

 $F_{\sigma\delta\sigma}$ ideals:

- The ideal generated by convergent sequences in Q ∩ [0, 1]: Conv = {A ⊆ Q ∩ [0, 1] : |{acc. points of A (in ℝ)}| < ω}.
- The Fubini product of Fin by itself: Fin \otimes Fin = { $A \subseteq \omega \times \omega : \forall^{\infty} n \in \omega | \{k : (n,k) \in A\} | < \omega \}.$

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals	
Examples of Borel ideals					

In general, it is easy to see that there are no G_{δ} (i.e. Π_2^0) ideals but we know the following:

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Calbrix)

There are Σ_{α}^{0} - and Π_{α}^{0} -complete ideals for every $\alpha \geq 3$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals	
Examples of projective ideals					

Example (Zafrany)

For every $x \in \omega^{\omega}$ let $I_x = \{s \in \omega^{<\omega} : x \upharpoonright |s| \leq s\}$. Then the ideal on $\omega^{<\omega}$ generated by $\{I_x : x \in \omega^{\omega}\}$ is $\sum_{i=1}^{1}$ -complete.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
	0000000			

Examples of projective ideals

Example (Zafrany)

For every $x \in \omega^{\omega}$ let $I_x = \{s \in \omega^{<\omega} : x \upharpoonright |s| \leq s\}$. Then the ideal on $\omega^{<\omega}$ generated by $\{I_x : x \in \omega^{\omega}\}$ is $\sum_{i=1}^{1}$ -complete.

Example (Hrušák?, Meza-Alcántara?)

The ideal of graphs without infinite complete subgraphs,

 $\mathscr{G}_{\mathsf{c}} = \{ E \subseteq [\omega]^2 : \forall X \in [\omega]^{\omega} \ [X]^2 \nsubseteq E \} \text{ is } \underset{1}{\mathbb{I}}_1^1 \text{-complete.}$

・ロト・日本・日本・日本・日本

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
	0000000			

Examples of projective ideals

Example (Zafrany)

For every $x \in \omega^{\omega}$ let $I_x = \{s \in \omega^{<\omega} : x \upharpoonright |s| \leq s\}$. Then the ideal on $\omega^{<\omega}$ generated by $\{I_x : x \in \omega^{\omega}\}$ is $\sum_{i=1}^{1}$ -complete.

Example (Hrušák?, Meza-Alcántara?)

The ideal of graphs without infinite complete subgraphs,

 $\mathcal{G}_{c} = \{ E \subseteq [\omega]^{2} : \forall X \in [\omega]^{\omega} [X]^{2} \nsubseteq E \} \text{ is } \Pi_{1}^{1} \text{-complete.}$

Theorem

There exist $\sum_{n=1}^{1}$ and $\prod_{n=1}^{1}$ -complete ideals for every $n \ge 1$.

Proof (idea): Let \mathscr{A} be a perfect AD family. If \mathscr{B} is a \mathscr{Q}_n^1 -complete subset of \mathscr{A} , then $id(\mathscr{B})$ is also \mathscr{Q}_n^1 -complete.

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals		
Examples of projective ideals						
The	orem					

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,\,Y\in[\omega]^\omega\ \exists\ X'\in[X]^\omega\ \exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation Borel and projective ideals	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
	0000000			
-	1	2010 B		

Examples of projective ideals

Theorem

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,\,Y\in[\omega]^\omega\exists\ X'\in[X]^\omega\exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

Proof: For $X, Y \in [\omega]^{\omega}$ let $T^{\uparrow}(X, Y) = \{(n, m) \in X \times Y : n < m\}$ and let $T^{\downarrow}(X, Y) = \{(n, m) \in X \times Y : n > m\}$. We show that a set $A \subseteq \omega \times \omega$ is \mathscr{J}_V -positive iff there are $X, Y \in [\omega]^{\omega}$ such that $X \times Y \subseteq A$ or $A \cap (X \times Y) = T^{\uparrow}(X, Y)$ or $A \cap (X \times Y) = T^{\downarrow}(X, Y)$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Examp	es of projective	ideals		

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,\,Y\in[\omega]^\omega\exists\ X'\in[X]^\omega\exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

Proof: For $X, Y \in [\omega]^{\omega}$ let $T^{\uparrow}(X, Y) = \{(n, m) \in X \times Y : n < m\}$ and let $T^{\downarrow}(X, Y) = \{(n, m) \in X \times Y : n > m\}$. We show that a set $A \subseteq \omega \times \omega$ is \mathscr{J}_{V} -positive iff there are $X, Y \in [\omega]^{\omega}$ such that

$$X \times Y \subseteq A \text{ or } A \cap (X \times Y) = T^{\uparrow}(X, Y) \text{ or } A \cap (X \times Y) = T^{\downarrow}(X, Y).$$

Let $A \in \mathscr{J}_V^+$, i.e. $\exists X = \{x_0 < x_1 < ...\}, Y = \{y_0 < y_1 < ...\} \in [\omega]^{\omega}$ such that $A \cap (X' \times Y') \neq \emptyset$ for every infinite $X' \subseteq X$ and $Y' \subseteq Y$. We can assume that $x_0 < y_0 < x_1 < y_1 < ...$ Let $c: [\omega]^2 \rightarrow 2 \times 2$ be the following coloring: If n < m then $c(n,m) = (\chi_A(x_n, y_m), \chi_A(x_m, y_n))$. $\rightsquigarrow H \in [\omega]^{\omega} c$ -hom. $\rightsquigarrow H_X, H_Y \in [H]^{\omega}$ such that $H_X \cap H_Y = \emptyset$ and $X' = \{x_n : n \in H_X\}$ and $Y' = \{y_m : m \in H_Y\}$ are also alternating.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Examp	les of projective	ideals		

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,Y\in[\omega]^\omega\exists\ X'\in[X]^\omega\exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

Proof (ctnd.): $A \in \mathscr{J}_V^+$ is witnessed by X, Y. There are disjoint $H_X, H_Y \in [\omega]^{\omega}$ such that $X' = \{x_n : n \in H_X\}$ and $Y' = \{y_m : m \in H_Y\}$ are alternating and $c(n,m) = (\chi_A(x_n,y_m), \chi_A(x_m,y_n))$ (n < m) is constant (k, ℓ) on $[H_X \cup H_Y]^2$. We want to show that $X' \times Y' \subseteq A$ or $A \cap (X' \times Y') = T^{\uparrow}(X', Y')$ or $A \cap (X' \times Y') = T^{\downarrow}(X', Y')$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Fxamp	les of projective	ideals		

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,Y\in[\omega]^\omega\exists\ X'\in[X]^\omega\exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

Proof (ctnd.): $A \in \mathscr{J}_V^+$ is witnessed by X, Y. There are disjoint $H_X, H_Y \in [\omega]^{\omega}$ such that $X' = \{x_n : n \in H_X\}$ and $Y' = \{y_m : m \in H_Y\}$ are alternating and $c(n, m) = (\chi_A(x_n, y_m), \chi_A(x_m, y_n))$ (n < m) is constant (k, ℓ) on $[H_X \cup H_Y]^2$. We want to show that $X' \times Y' \subseteq A$ or $A \cap (X' \times Y') = T^{\uparrow}(X', Y')$ or $A \cap (X' \times Y') = T^{\downarrow}(X', Y')$. (k, ℓ) = (0,0) is impossible because then $A \cap (X' \times Y') = \emptyset$. If $(k, \ell) = (1, 1)$ then $X' \times Y' \subseteq A$. If $(k, \ell) = (1, 0)$ or $(k, \ell) = (0, 1)$ then $A \cap (X' \times Y') = T^{\uparrow}(X', Y')$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Example	es of projective	ideals		

The following ideal (\mathcal{J}_V) is \mathbb{I}_1^1 -complete:

 $\big\{A\subseteq\omega\times\omega:\forall\ X,\,Y\in[\omega]^\omega\exists\ X'\in[X]^\omega\exists\ Y'\in[Y]^\omega\ A\cap(X'\times Y')=\emptyset\big\}.$

Proof (ctnd.): $A \in \mathscr{J}_V^+$ iff there are $X, Y \in [\omega]^\omega$ such that $X' \times Y' \subseteq A$ or $A \cap (X' \times Y') = T^{\uparrow}(X', Y')$ or $A \cap (X' \times Y') = T^{\downarrow}(X', Y')$. We will construct a Wadge-reduction $\mathscr{K}(\mathbb{Q}) \leq_W \mathscr{J}_V$ (where $\mathbb{Q} = \{x \in 2^\omega : \forall^\infty \ n \ x(n) = 0\}$). Fix an enumeration $2^{<\omega} = \{s_n : n \in \omega\}$ and define $\mathscr{K}(2^\omega) \to \mathscr{P}(\omega \times \omega)$ as follows: $C \mapsto A_C = \{(n,m) : [s_n] \cap C \neq \emptyset \text{ and } s_m(n) = 1\}.$

It is straightforward to check that $C \in \mathcal{K}(\mathbb{Q})$ iff $A_C \in \mathcal{J}_V$.

Motivation 0000000	Borel and projective ideals ○○○○○○○	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Analy	tic and coanalyti	c ideals in [.]	forcing extensi	ons

An obvious but important observation:

If $X \subseteq \mathscr{P}(\omega)$ is an analytic or coanalytic set with definition $\varphi(x, r)$ (where $r \in \omega^{\omega}$ is a parameter), then the statement

"X is an ideal"

is the conjunction of the following formulas:

(i)
$$\neg \varphi(\omega, r)$$
 and $\forall x \in \operatorname{Fin} \varphi(x, r)$,
(ii) $\forall x, y \ (x \nsubseteq y \text{ or } \neg \varphi(y, r) \text{ or } \varphi(x, r))$,
(iii) $\forall x, y \ (\neg \varphi(x, r) \text{ or } \neg \varphi(y, r) \text{ or } \varphi(x \cup y, r))$.
In particular, "*X* is an ideal" is a $\Pi_2^1(r)$ statement hence
absolute for transitive models $V \subseteq W$ with $\omega_1^W \subseteq V$ and $r \in V$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume that \mathscr{I} is everywhere meager and let $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$. Does \mathscr{H} have an $(\mathscr{I}, \operatorname{Fin})$ -**ADR**, that is, an \mathscr{I} -ADR \mathscr{A} of \mathscr{H} which is an AD family as well?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume that \mathscr{I} is everywhere meager and let $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$. Does \mathscr{H} have an $(\mathscr{I}, \operatorname{Fin})$ -**ADR**, that is, an \mathscr{I} -ADR \mathscr{A} of \mathscr{H} which is an AD family as well?

Theorem

Assume MA_{κ} (or $\kappa < cov(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an (\mathscr{I}, Fin) -ADR.

・ロト ・聞ト ・ヨト ・ヨト 三日

Motivation	Borel and projective ideals	Strong ADR's ●○○	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume that \mathscr{I} is everywhere meager and let $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$. Does \mathscr{H} have an $(\mathscr{I}, \operatorname{Fin})$ -**ADR**, that is, an \mathscr{I} -ADR \mathscr{A} of \mathscr{H} which is an AD family as well?

Theorem

Assume MA_{κ} (or $\kappa < \operatorname{cov}(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an $(\mathscr{I}, \operatorname{Fin})$ -ADR.

Proof: Let $\mathscr{H} = \{H_{\alpha} : \alpha < \kappa\}$, and define $p \in \mathbb{P} = \mathbb{P}(\mathscr{H})$ iff p is a function, dom $(p) \in [\kappa]^{<\omega}$, and $p(\alpha) \in [H_{\alpha}]^{<\omega}$ for every $\alpha \in \text{dom}(p)$; $p \le q$ iff (i) dom $(p) \supseteq \text{dom}(q)$, (ii) $\forall \alpha \in \text{dom}(q) \ p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [\text{dom}(q)]^2 \ p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$.

Motivation 0000000	Borel and projective ideals	Strong ADR's ●○○	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume that \mathscr{I} is everywhere meager and let $\mathscr{H} \in [\mathscr{I}^+]^{<\mathfrak{c}}$. Does \mathscr{H} have an $(\mathscr{I}, \operatorname{Fin})$ -**ADR**, that is, an \mathscr{I} -ADR \mathscr{A} of \mathscr{H} which is an AD family as well?

Theorem

Assume MA_{κ} (or $\kappa < \operatorname{cov}(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an $(\mathscr{I}, \operatorname{Fin})$ -ADR.

Proof: Let $\mathscr{H} = \{H_{\alpha} : \alpha < \kappa\}$, and define $p \in \mathbb{P} = \mathbb{P}(\mathscr{H})$ iff p is a function, dom $(p) \in [\kappa]^{<\omega}$, and $p(\alpha) \in [H_{\alpha}]^{<\omega}$ for every $\alpha \in \text{dom}(p)$; $p \le q$ iff (i) dom $(p) \supseteq \text{dom}(q)$, (ii) $\forall \alpha \in \text{dom}(q) \ p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [\text{dom}(q)]^2 \ p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. \mathbb{P} has the ccc. If *G* is a $\{\{p \in \mathbb{P} : \alpha \in \text{dom}(p)\} : \alpha < \kappa\}$ -generic

filter, then let $F_G: \kappa \to \mathscr{P}(\omega), F_G(\alpha) = \bigcup \{p(\alpha) : p \in G\} \subseteq H_\alpha$.

Motivation 0000000	Borel and projective ideals	Strong ADR's ○●○	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume MA_{κ} (or $\kappa < \operatorname{cov}(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an $(\mathscr{I}, \operatorname{Fin})$ -ADR.

Proof (ctnd.): $p \in \mathbb{P}$ iff dom $(p) \in [\kappa]^{<\omega}$ and $\forall \alpha < \kappa p(\alpha) \in [H_{\alpha}]^{<\omega}$; $p \leq q$ iff (i) dom $(p) \supseteq$ dom(q), (ii) $\forall \alpha \in$ dom $(q) p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [$ dom $(q)]^2 p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. If *G* is a reasonably generic filter, then let $F_G(\alpha) = \bigcup \{p(\alpha) : p \in G\} \subseteq H_{\alpha}$. Clearly $|F_G(\alpha) \cap F_G(\beta)| < \omega$ for every $\alpha < \beta < \kappa$.

Motivation 0000000	Borel and projective ideals	Strong ADR's ○●○	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume MA_{κ} (or $\kappa < \operatorname{cov}(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an $(\mathscr{I}, \operatorname{Fin})$ -ADR.

Proof (ctnd.): $p \in \mathbb{P}$ iff dom(p) $\in [\kappa]^{<\omega}$ and $\forall \alpha < \kappa p(\alpha) \in [H_{\alpha}]^{<\omega}$; $p \leq q$ iff (i) dom(p) \supseteq dom(q), (ii) $\forall \alpha \in \text{dom}(q) p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [\text{dom}(q)]^2 p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. If *G* is a reasonably generic filter, then let $F_G(\alpha) = \bigcup \{p(\alpha) : p \in G\} \subseteq H_{\alpha}$. Clearly $|F_G(\alpha) \cap F_G(\beta)| < \omega$ for every $\alpha < \beta < \kappa$. $F_G(\alpha) \in \mathscr{I}^+$? We show that if *G* is (V, \mathbb{P}) -generic then $F_G(\alpha)$ is a Cohen-real in $\mathscr{P}(H_{\alpha})$ over *V*. It is enough because then $F_G(\alpha) \notin \mathscr{I} \upharpoonright H_{\alpha}$ and it holds under MA_K as well.

Motivation 0000000	Borel and projective ideals	Strong ADR's ○●○	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume MA_{κ} (or $\kappa < \operatorname{cov}(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an $(\mathscr{I}, \operatorname{Fin})$ -ADR.

Proof (ctnd.): $p \in \mathbb{P}$ iff dom $(p) \in [\kappa]^{<\omega}$ and $\forall \alpha < \kappa p(\alpha) \in [H_{\alpha}]^{<\omega}$; $p \leq q$ iff (i) dom(p) \supseteq dom(q), (ii) $\forall \alpha \in \text{dom}(q) \ p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [\operatorname{dom}(q)]^2 p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. If G is a reasonably generic filter, then let $F_G(\alpha) = \bigcup \{p(\alpha) : p \in G\} \subseteq H_\alpha$. Clearly $|F_G(\alpha) \cap F_G(\beta)| < \omega$ for every $\alpha < \beta < \kappa$. $F_G(\alpha) \in \mathscr{I}^+$? We show that if **G** is (V, \mathbb{P}) -generic then $F_G(\alpha)$ is a Cohen-real in $\mathcal{P}(H_{\alpha})$ over V. It is enough because then $F_G(\alpha) \notin \mathcal{I} \upharpoonright H_{\alpha}$ and it holds under MA_k as well. Fix an $\alpha < \kappa$, and define the map $e = e_{\alpha}$: $\mathbb{P} \to \mathbb{C}(H_{\alpha}) := \operatorname{Fn}(H_{\alpha}, 2)$ as follows: $\operatorname{dom}(e(p)) = \bigcup \{ p(\beta) \cap H_{\alpha} : \beta \in \operatorname{dom}(p) \}, \ e(p)(n) = \chi_{p(\alpha)}(n).$

0000000	00000000		0000	000			
Strong	Strong ADR's						

Assume MA_{κ} (or $\kappa < cov(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an (\mathscr{I}, Fin) -ADR.

Proof (ctnd.): $p \in \mathbb{P}$ iff dom $(p) \in [\kappa]^{<\omega}$ and $\forall \alpha < \kappa p(\alpha) \in [H_{\alpha}]^{<\omega}$; $p \le q$ iff (i) dom $(p) \supseteq$ dom(q), (ii) $\forall \alpha \in$ dom $(q) p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [$ dom $(q)]^2 p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. $e: \mathbb{P} \to \mathbb{C}(H_{\alpha})$, dom $(e(p)) = \bigcup \{p(\beta) \cap H_{\alpha} : \beta \in$ dom $(p)\}, e(p)(n) = \chi_{p(\alpha)}(n)$.

Motivation 0000000	Borel and projective ideals	Strong ADR's ○○●	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Strong	ADR's			

Assume MA_{κ} (or $\kappa < cov(\mathcal{M})$?) and let \mathscr{I} be an everywhere meager ideal, then every $\mathscr{H} \in [\mathscr{I}^+]^{\leq \kappa}$ has an (\mathscr{I}, Fin) -ADR.

Proof (ctnd.): $p \in \mathbb{P}$ iff dom(p) $\in [\kappa]^{<\omega}$ and $\forall \alpha < \kappa p(\alpha) \in [H_{\alpha}]^{<\omega}$; $p \leq q$ iff (i) dom(p) \supseteq dom(q), (ii) $\forall \alpha \in \text{dom}(q) p(\alpha) \supseteq q(\alpha)$, and (iii) $\forall \{\alpha, \beta\} \in [\text{dom}(q)]^2 p(\alpha) \cap p(\beta) = q(\alpha) \cap q(\beta)$. $e: \mathbb{P} \to \mathbb{C}(H_{\alpha})$, dom(e(p)) $= \bigcup \{p(\beta) \cap H_{\alpha} : \beta \in \text{dom}(p)\}, e(p)(n) = \chi_{p(\alpha)}(n)$. Then e is a **projection**, that is, e is order-preserving, onto, $e(\phi) = \phi$, and

$$\forall \ p \in \mathbb{P} \ \forall \ s \in \mathbb{C}(H_{\alpha}) \ (s \le e(p) \to \exists \ p' \le p \ e(p') = s).$$

We know that if G is (V, \mathbb{P}) -generic then e[G] generates a $(V, \mathbb{C}(H_{\alpha}))$ -generic filter G', and clearly the Cohen real defined from G' is $F_G(\alpha)$, we are done.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\bullet \circ \circ \circ$	Mixing reals
Refine	ments of $\mathscr{A}^+ \cap \mathcal{V}$	/		

Theorem (an abuse of Brendle's proof with DST⁽³⁾)

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in *V*. Then

 $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\bullet \circ \circ \circ$	Mixing reals
Dofinor	popto of $(f^+ \circ V)$			

Theorem (an abuse of Brendle's proof with DST©)

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in *V*. Then

 $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof: Fix perfect \mathscr{I} -AD families \mathscr{A}_{χ} on every $X \in \mathscr{I}^+$ in V. The statement " \mathscr{A}_{χ} is an \mathscr{I} -AD family" is \mathbb{I}_2^1 (hence absolute):

 $(\forall A \in \mathscr{A}_X A \in \mathscr{I}^+) \text{ and } (\forall A, B \in \mathscr{A}_X (A \neq B \rightarrow A \cap B \in \mathscr{I})).$

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\bullet \circ \circ \circ$	Mixing reals
Define	a = a + a + a + a + a + a + a + a + a +	/		

Theorem (an abuse of Brendle's proof with DST[©])

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in *V*. Then

 $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof: Fix perfect \mathscr{I} -AD families \mathscr{A}_{χ} on every $X \in \mathscr{I}^+$ in V. The statement " \mathscr{A}_{χ} is an \mathscr{I} -AD family" is \mathbb{I}_2^1 (hence absolute):

 $(\forall A \in \mathscr{A}_X A \in \mathscr{I}^+)$ and $(\forall A, B \in \mathscr{A}_X (A \neq B \rightarrow A \cap B \in \mathscr{I}))$.

For every $X, Y \in \mathscr{I}^+ \cap V$ let $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\}$. Then B(X, Y) is also (co)analytic (it is a cont. preimage of \mathscr{I}^+).

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\bullet \circ \circ \circ$	Mixing reals
	a = a + a + a + a + a + a + a + a + a +			

Theorem (an abuse of Brendle's proof with DST[©])

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in *V*. Then

 $W \models \mathscr{G}^+ \cap V$ has an \mathscr{G} -ADR."

Proof: Fix perfect \mathscr{I} -AD families \mathscr{A}_X on every $X \in \mathscr{I}^+$ in V. The statement " \mathscr{A}_X is an \mathscr{I} -AD family" is \mathbb{I}_2^1 (hence absolute):

 $(\forall A \in \mathscr{A}_X A \in \mathscr{I}^+)$ and $(\forall A, B \in \mathscr{A}_X (A \neq B \rightarrow A \cap B \in \mathscr{I}))$.

For every $X, Y \in \mathscr{I}^+ \cap V$ let $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\}$. Then B(X, Y) is also (co)analytic (it is a cont. preimage of \mathscr{I}^+). Working in W, fix an enumeration $\{X_{\alpha} : \alpha < \kappa\}$ of the set $\mathscr{I}^+ \cap V$ where $\kappa = |\mathfrak{c}^V|$. We will construct the desired \mathscr{I} -ADR $\{A_{\alpha} : \alpha < \kappa\}$ and the sequence $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ by recursion on κ .

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\circ \bullet \circ \circ$	Mixing reals
Rofinon	pents of $a^+ \circ V$,		

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a \text{ perfect } \mathscr{I} \text{-AD on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} \text{-ADR}$ $\{A_{\alpha} : \alpha < \kappa\} \text{ of } \mathscr{I}^+ \cap V \text{ and } (B_{\alpha})_{\alpha < \kappa} \text{ in } \mathscr{I}^+ (\kappa = |\mathfrak{c}^V|).$ Assume that $\{A_{\xi} : \xi < \alpha\}$ and $(B_{\xi})_{\xi < \alpha}$ are done, and let $\gamma_{\alpha} = \min\{\gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set}\} \le \alpha.$

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Pofinom	onte of $(f^+ \cap V)$			

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a \text{ perfect } \mathscr{I} - AD \text{ on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} - ADR$ $\{A_{\alpha} : \alpha < \kappa\}$ of $\mathscr{I}^+ \cap V$ and $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ ($\kappa = |\mathfrak{c}^V|$). Assume that $\{A_{\xi} : \xi < \alpha\}$ and $(B_{\xi})_{\xi < \alpha}$ are done, and let

 $\gamma_{\alpha} = \min \{ \gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set} \} \le \alpha.$

Notice that $\gamma_{\alpha}^{V} = \gamma_{\alpha}^{W}$ because if *S* is Σ_{1}^{1} (or Π_{1}^{1} resp.), then "*S* contains a perfect subset" is Π_{2}^{1} (Σ_{2}^{1} resp.).

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\circ \bullet \circ \circ$	Mixing reals
Dofinom	onto of $(t^+ \circ V)$			

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_{\chi} = a \text{ perfect } \mathscr{I} \text{-AD on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_{\chi} : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} \text{-ADR}$ $\{A_{\alpha} : \alpha < \kappa\}$ of $\mathscr{I}^+ \cap V$ and $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ ($\kappa = |\mathfrak{c}^V|$). Assume that $\{A_{\xi} : \xi < \alpha\}$ and $(B_{\xi})_{\xi < \alpha}$ are done, and let

 $\gamma_{\alpha} = \min \{ \gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set} \} \le \alpha.$

Notice that $\gamma_{\alpha}^{V} = \gamma_{\alpha}^{W}$ because if S is Σ_{1}^{1} (or Π_{1}^{1} resp.), then "S contains a perfect subset" is Π_{2}^{1} (Σ_{2}^{1} resp.). We also know that perfect sets coded in V have at least κ many new elements (i.e. from $2^{\omega} \setminus V$) in W: use the group structure on 2^{ω} . Let $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\})$ and $A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^{+}$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Pofinor	monte of $a^+ \circ b$	/		

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a \text{ perfect } \mathscr{I} \text{-AD on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} \text{-ADR}$ $\{A_{\alpha} : \alpha < \kappa\} \text{ of } \mathscr{I}^+ \cap V \text{ and } (B_{\alpha})_{\alpha < \kappa} \text{ in } \mathscr{I}^+ (\kappa = |\mathfrak{c}^V|)$. $\gamma_{\alpha} = \min\{\gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set}\} \le \alpha$. $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}) \text{ and } A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^+$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\circ \circ \bullet \circ$	Mixing reals
Define	monto of π^+ - λ	/		

Refinements of $\mathscr{I}^+ \cap \mathcal{V}$

Theorem

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a \text{ perfect } \mathscr{I} \text{-AD on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} \text{-ADR}$ $\{A_{\alpha} : \alpha < \kappa\} \text{ of } \mathscr{I}^+ \cap V \text{ and } (B_{\alpha})_{\alpha < \kappa} \text{ in } \mathscr{I}^+ (\kappa = |\mathfrak{c}^V|)$. $\gamma_{\alpha} = \min\{\gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set}\} \le \alpha$. $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}) \text{ and } A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^+$. We claim that $\{A_{\alpha} : \alpha < \kappa\}$ is an \mathscr{I} -AD family. Let $\alpha \neq \beta$. If $\gamma_{\alpha} = \gamma_{\beta} = \gamma$ then $B_{\alpha}, B_{\beta} \in \mathscr{A}_{X_{\gamma}}$ and hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap B_{\beta} \in \mathscr{I}$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\circ \circ \bullet \circ$	Mixing reals

Theorem

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_{\chi} = a$ perfect \mathscr{I} -AD on $X \in \mathscr{I}^+ \cap V. \ \mathcal{B}(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1. \rightsquigarrow \mathscr{I}-ADR$ $\{A_{\alpha}: \alpha < \kappa\}$ of $\mathscr{I}^+ \cap V$ and $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ $(\kappa = |\mathfrak{c}^V|)$. $\gamma_{\alpha} = \min \{ \gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set} \} \le \alpha.$ $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}) \text{ and } A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^+.$ We claim that $\{A_{\alpha} : \alpha < \kappa\}$ is an \mathscr{I} -AD family. Let $\alpha \neq \beta$. If $\gamma_{\alpha} = \gamma_{\beta} = \gamma$ then $B_{\alpha}, B_{\beta} \in \mathscr{A}_{X_{\gamma}}$ and hence $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap B_{\beta} \in \mathscr{I}$. If $\gamma_{\alpha} < \gamma_{\beta}$. Then $B(X_{\gamma_{\alpha}}, X_{\beta})$ does not contain perfect subsets. It is enough to see that $B(X_{\gamma_{\alpha}}, X_{\beta})$ is the same set is W. Why? Because then $B_{\alpha} \notin B(X_{\gamma_{\alpha}}, X_{\beta})$ but $B_{\alpha} \in \mathscr{A}_{X_{\gamma_{\alpha}}}$, hence it yields that $A_{\alpha} \cap A_{\beta} \subseteq B_{\alpha} \cap X_{\beta} \in \mathscr{I}.$

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Defe		/		

Theorem

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a \text{ perfect } \mathscr{I} - AD \text{ on}$ $X \in \mathscr{I}^+ \cap V$. $B(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma_1^1 \cup \Pi_1^1$. $\rightsquigarrow \mathscr{I} - ADR$ $\{A_{\alpha} : \alpha < \kappa\}$ of $\mathscr{I}^+ \cap V$ and $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ ($\kappa = |\mathfrak{c}^V|$). $\gamma_{\alpha} = \min\{\gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set}\} \le \alpha$. $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\}) \text{ and } A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^+$. We show that if $\gamma_{\alpha} < \gamma_{\beta}$ then $B(X_{\gamma_{\alpha}}, X_{\beta}) \cap V = B(X_{\gamma_{\alpha}}, X_{\beta}) \cap W$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$ $\circ \circ \circ \bullet$	Mixing reals
D (1				

Theorem

Let $V \subseteq W$, $\omega_1^W \subseteq V$, $(2^{\omega})^V \neq (2^{\omega})^W$, and let $\mathscr{I} \in V$ be an analytic or coanalytic. Then $W \models \mathscr{I}^+ \cap V$ has an \mathscr{I} -ADR."

Proof (ctnd.): $\{X_{\alpha} : \alpha < \kappa\} = \mathscr{I}^+ \cap V$. $\mathscr{A}_X = a$ perfect \mathscr{I} -AD on $X \in \mathscr{I}^+ \cap V. \ \mathcal{B}(X, Y) = \{A \in \mathscr{A}_X : A \cap Y \in \mathscr{I}^+\} \in \Sigma^1_+ \cup \Pi^1_+. \rightsquigarrow \mathscr{I}-ADR$ $\{A_{\alpha}: \alpha < \kappa\}$ of $\mathscr{I}^+ \cap V$ and $(B_{\alpha})_{\alpha < \kappa}$ in \mathscr{I}^+ $(\kappa = |\mathfrak{c}^V|)$. $\gamma_{\alpha} = \min \{ \gamma : B(X_{\gamma}, X_{\alpha}) \text{ contains a perfect set} \} \le \alpha.$ $B_{\alpha} \in B(X_{\gamma_{\alpha}}, X_{\alpha}) \setminus (V \cup \{B_{\xi} : \xi < \alpha\})$ and $A_{\alpha} = X_{\alpha} \cap B_{\alpha} \in \mathscr{I}^+$. We show that if $\gamma_{\alpha} < \gamma_{\beta}$ then $B(X_{\gamma_{\alpha}}, X_{\beta}) \cap V = B(X_{\gamma_{\alpha}}, X_{\beta}) \cap W$. The set $K := B(X_{\gamma_{\alpha}}, X_{\beta}) \in \sum_{1}^{1} \cup \prod_{1}^{1}$ does not contain perfect subsets. Applying the Mansfield-Solovay theorem, $K \subseteq L[r]$ (where $K \in \Sigma_1^1(r) \cup \Pi_1^1(r), r \in V$. Assume on the contrary that it contains a new real $E \in K^W \setminus V$, then $E \in L_{\alpha}[r]^W$ for some $\alpha < \omega_1^W \subseteq V$. But we know that $L_{\alpha}[r]^W = L_{\alpha}[r]^V$, a contradiction.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
Mixina	reals			

Definition

Let \mathbb{P} be a forcing notion. We say that an $f \in \omega^{\omega} \cap V^{\mathbb{P}}$ is a *mixing real* over V if $|f[X] \cap Y| = \omega$ for every $X, Y \in [\omega]^{\omega} \cap V$.

Clearly, it is enough to require that $\forall X, Y \in [\omega]^{\omega} \cap V f[X] \cap Y \neq \emptyset$.

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals ●○○
Mixina	reals			

Definition

Let \mathbb{P} be a forcing notion. We say that an $f \in \omega^{\omega} \cap V^{\mathbb{P}}$ is a *mixing real* over V if $|f[X] \cap Y| = \omega$ for every $X, Y \in [\omega]^{\omega} \cap V$.

Clearly, it is enough to require that $\forall X, Y \in [\omega]^{\omega} \cap V f[X] \cap Y \neq \emptyset$.

Proposition

Let \mathbb{P} be a forcing notion. Then the following are equivalent:

- (i) There is a mixing real $f \in \omega^{\omega} \cap V^{\mathbb{P}}$ over *V*.
- (ii) There is an $f \in \omega^{\omega} \cap V^{\mathbb{P}}$ s.t. $f[X] = \omega$ for all $X \in [\omega]^{\omega} \cap V$.
- (iii) There is a partition, an ω -splitting real, $(Y_n)_{n \in \omega}$ of ω into infinite sets in $V^{\mathbb{P}}$ such that $\forall X \in [\omega]^{\omega} \cap V \forall n | X \cap Y_n | = \omega$ (i.e. $\forall X \in [\omega]^{\omega} \cap V \forall n X \cap Y_n \neq \emptyset$).

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals ○●○
Mixing r	eals			

Why is this property relevant to almost-disjoint refinements? Fix an AD family $\{A_{\alpha} : \alpha < \mathfrak{c}\} \in V$, and let $\{X_{\alpha} : \alpha < \mathfrak{c}\} = [\omega]^{\omega} \cap V$ be an enumeration. If $f \in \omega^{\omega} \cap V^{\mathbb{P}}$ is an injective(!) mixing real over V, then $\{f[A_{\alpha}] \cap X_{\alpha} : \alpha < \mathfrak{c}\} \in V^{\mathbb{P}}$ is an ADR of $[\omega]^{\omega} \cap V$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
In the co	ontext of classica	al propertie	es	

In the co	ntext of classica	al propertie	es	
Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals

A few more questions

Question

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in V. Does there exist an $(\mathscr{I}, \operatorname{Fin})$ -ADR of $\mathscr{I}^+ \cap V$ in W? Or at least an \mathscr{I} -ADR $\{A_X : X \in \mathscr{I}^+ \cap V\}$ of $\mathscr{I}^+ \cap V$ such that $A_X \cap A_Y \subseteq B_{X,Y} \in \mathscr{I} \cap V$ for every distinct $X, Y \in \mathscr{I}^+ \cap V$?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation 0000000	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals
A few m	ore questions			

Let $V \subseteq W$ be transitive models with $\omega_1^W \subseteq V$ but $(2^{\omega})^V \neq (2^{\omega})^W$, and let \mathscr{I} be an analytic or coanalytic ideal coded in V. Does there exist an $(\mathscr{I}, \operatorname{Fin})$ -ADR of $\mathscr{I}^+ \cap V$ in W? Or at least an \mathscr{I} -ADR $\{A_X : X \in \mathscr{I}^+ \cap V\}$ of $\mathscr{I}^+ \cap V$ such that $A_X \cap A_Y \subseteq B_{X,Y} \in \mathscr{I} \cap V$ for every distinct $X, Y \in \mathscr{I}^+ \cap V$?

Question

Is it possible that $V \subseteq W$, $\operatorname{Card}^V = \operatorname{Card}^W$ but $\mathscr{P}^V(\omega) \neq \mathscr{P}^W(\omega)$, and $W \models "[\omega]^{\omega} \cap V$ has a projective ADR"?

Motivation	Borel and projective ideals	Strong ADR's	Refinements of $\mathscr{I}^+ \cap V$	Mixing reals

Thank you for your attention!

(Feel free to answer our questions BUT please

be so kind and do not find mistakes in the proofs (3)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>