Regularity properties and derived forcing properties

David Chodounský

Institute of Mathematics AS CR

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Joint work with Jindřich Zapletal.

- D. Chodounský, J. Zapletal, *Why Y-c.c.*, to appear in Ann. Pure Appl. Logic; arXiv:1409.4596
- T. Yorioka, Todorcevic orderings as examples of ccc orderings without adding random reals, Comment. Math. Univ. Carolin. 56,1 (2015) 125–132.

Outline

Definitions

Properties

Examples

Iterations

Applications

Questions

Generalizations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Definitions

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Definitions

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

Definition

A poset *P* is *Y*-proper if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $p \in P \cap M$ there is a *Y*-master condition $q \leq p$ which is a master condition for *M* and such that for every $r \leq q$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{s \in \text{RO}(P) \cap M : s \geq r\} \subseteq \mathcal{F}$.

Lemma

 σ -centered \Rightarrow Y-c.c. \Rightarrow c.c.c.

Fact

strongly proper \Rightarrow Y-proper \Rightarrow proper

Lemma σ -centered \Rightarrow Y-c.c. \Rightarrow c.c.c. Fact strongly proper \Rightarrow Y-proper \Rightarrow proper

Proposition

An atomless Y-proper forcing adds an unbounded real.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Corollary

A Y-proper forcing does not add random reals.

Theorem (ω_1 -aproximation property)

Let P be a Y-proper poset, κ be a cardinal, and let f be a name for a function in κ^{κ} . If $P \Vdash f \upharpoonright a \in V$ for each $a \in [\kappa]^{\omega} \cap V$, then $P \Vdash f \in V$.

Corollary

A Y-proper forcing does not add branches of uncountable cofinality into trees.

Theorem

Let X be a second countable topological space and $H \subseteq [X]^2$ be an open set – a graph. If P is Y-proper, then every H-anticlique in a P-generic extension is covered by a ground model countable set of H-anticliques.

Corollary

A Y-proper forcing cannot force an instance of OCA for a clopen graph.

Theorem

Y-proper forcings preserve ω_1 -covers of compact Polish spaces consisting of G_δ sets.

Corollary

A Y-proper forcing cannot separate a gap in $\mathcal{P}(\omega)$ of uncountable cofinality.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Corollary

A Y-proper forcing does not increase $cov(\mathcal{N})$.

Let X be a set, $\pi \subset [X]^2$ 1. $P_{\pi} = \{ p \in [X]^{<\omega} : [p]^2 \subset \pi \}$ $q \leq p$ iff $q \supseteq p$ 2. $Q_{\pi} = [X]^{<\omega}$

 $q \leq p \quad ext{iff} \quad q \supseteq p \quad \& \quad (q \setminus p) imes p \subset \pi$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Let X be a set,
$$\pi \subset [X]^2$$

1. $P_{\pi} = \left\{ p \in [X]^{<\omega} : [p]^2 \subset \pi \right\}$
 $q \leq p$ iff $q \supseteq p$
2. $Q_{\pi} = [X]^{<\omega}$
 $q \leq p$ iff $q \supseteq p$ & $(q \setminus p) \times p \subset \pi$

Theorem

If Q_{π} is c.c.c., then both Q_{π} and P_{π} are Y-c.c.

Let X be a set,
$$\pi \subset [X]^2$$

1. $P_{\pi} = \left\{ p \in [X]^{<\omega} : [p]^2 \subset \pi \right\}$
 $q \leq p$ iff $q \supseteq p$
2. $Q_{\pi} = [X]^{<\omega}$
 $q \leq p$ iff $q \supseteq p$ & $(q \setminus p) \times p \subset \pi$

Theorem

If Q_{π} is c.c.c., then both Q_{π} and P_{π} are Y-c.c.

Corollary

The following forcings are Y-c.c.;

- specializing an ω_1 -Aronszajn tree,
- freezing an (ω_1, ω_1) -gap,
- poset of finite sets of functions with positive oscillation,
- Todorcevic poset T(Y) as defined by Balcar & Pazák & Thümmel (provided that T(Y) is c.c.c.).

The following are Y-proper;

- Laver forcing, Miller forcing,
- poset for forcing an instance of PID,
- poset for killing an S-space,
- forcing for killing Tukey types between $\omega \times \omega_1$ and $[\omega_1]^{<\omega}$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Iterations

Theorem

Y-c.c. is preserved under finite support forcing iteration.

Meta-theorem

Let Φ be a property of complete Boolean algebras such that

 $ZFC \vdash \Phi \Rightarrow c.c.c.$, and Φ is preserved under the finite support iteration and complete sub-algebras.

Let κ be a regular uncountable cardinal such that $\Diamond_{\kappa^+}(\operatorname{cof} \kappa)$ holds. There is a complete Boolean algebra satisfying Φ and forcing MA_{κ}(Φ).

Corollary

If κ is a regular uncountable cardinal such that $\Diamond_{\kappa^+}(\operatorname{cof} \kappa)$ holds, then there is a Y-c.c. poset forcing $MA_{\kappa}(Y$ -c.c.).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Iterations

Proposition

Y-properness is preserved under finite step forcing iteration.

Theorem

Assume there is a supercompact cardinal. Then there is a Y-proper poset forcing FA(Y-proper).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Applications

Applications

Question (Bagaria)

Does MA(σ -centered) + every ω_1 -Aronszajn tree is special imply MA(σ -linked)?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Questions

Question

Suppose that P, Q are Y-c.c. posets such that $P \times Q$ is c.c.c. Is $P \times Q$ Y-c.c.?

Question

Is every Y-proper c.c.c. poset Y-c.c.?

Question

Does FA(Y-proper) imply $\mathfrak{c} = \omega_2$?

Question

Let $P = \langle P_n, \dot{Q}_n : n \in \omega \rangle$ be a CS iteration of atomless Y-proper posets. Is this forcing Y-proper?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Is there a Y-c.c. poset not adding a Cohen real?

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

Definition

A poset *P* is *Y*-proper if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $p \in P \cap M$ there is a *Y*-master condition $q \leq p$ which is a master condition for *M* and such that for every $r \leq q$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{s \in \text{RO}(P) \cap M : s \geq r\} \subseteq \mathcal{F}$.

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

Definition

A poset *P* is *Y*-proper if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $p \in P \cap M$ there is a *Y*-master condition $q \leq p$ which is a master condition for *M* and such that for every $r \leq q$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{s \in \text{RO}(P) \cap M : s \geq r\} \subseteq \mathcal{F}$.

Variations:

► filter

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

Definition

A poset *P* is *Y*-proper if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $p \in P \cap M$ there is a *Y*-master condition $q \leq p$ which is a master condition for *M* and such that for every $r \leq q$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{s \in \text{RO}(P) \cap M : s \geq r\} \subseteq \mathcal{F}$.

Variations:

- ► filter
- principal filter

Definition

A poset *P* satisfies *Y-c.c.* if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $q \in P$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{ p \in \text{RO}(P) \cap M : p \ge q \} \subseteq \mathcal{F}$.

Definition

A poset *P* is *Y*-proper if for every countable elementary submodel $M \prec H_{\theta}$, $P \in M$, and every condition $p \in P \cap M$ there is a *Y*-master condition $q \leq p$ which is a master condition for *M* and such that for every $r \leq q$ there is a filter $\mathcal{F} \in M$ on RO (*P*) such that $\{s \in \text{RO}(P) \cap M : s \geq r\} \subseteq \mathcal{F}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Variations:

- ► filter
- principal filter
- σ -complete filter

Variations:

- ► F is a filter
- ► F is a principal filter
- *F* is a σ -complete filter

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Variations:

- F is a filter
- F is a principal filter
- *F* is a σ -complete filter
- F is a n-linked set
- ▶ for every $\{ p_n : n \in \omega \} \subset F$ the Boolean value lim inf $p_n \neq 0$ ▶ ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Variations:

- F is a filter
- F is a principal filter
- *F* is a σ -complete filter
- F is a n-linked set
- ▶ for every $\{ p_n : n \in \omega \} \subset F$ the Boolean value lim inf $p_n \neq 0$

▶ ...

. . .

- ▶ there is $\varepsilon \in \mathbb{Q}^+$ and a finitely additive probability measure μ such that $\varepsilon < \mu(p)$ for all $p \in F$
- ► there is g ∈ (ω^ω)^V such that for every n ∈ ω and every collection of g(n) many elements of F, there are n many elements in the collection with a common lower bound

Meta-definition

A property $\Phi(F, \mathbb{B})$ of subsets *F* of complete Boolean algebras \mathbb{B} is a *regularity property* if the following is provable in ZFC:

- 1. (nontriviality) $\Phi(\{1\}, \mathbb{B})$ for every complete Boolean algebra \mathbb{B} ;
- 2. (closure up) $\Phi(F, \mathbb{B}) \to \Phi(G, \mathbb{B})$ whenever $G = \{ p \in \mathbb{B} : \exists q \in F \ q \leq p \};$
- 3. (restriction) $\Phi(F, \mathbb{B})$ implies $\Phi(F \cap (\mathbb{B} \upharpoonright p), \mathbb{B} \upharpoonright p)$, and $\Phi(F, \mathbb{B} \upharpoonright p)$ implies $\Phi(F, \mathbb{B})$ for each $p \in \mathbb{B}^+$;
- (complete subalgebras) if B₀ is a complete subalgebra of B₁: for every F ⊂ B₁ Φ(F, B₁) → Φ(F ∩ B₀, B₀) holds, and for every F ⊂ B₀ Φ(F, B₀) → Φ(F, B₁) holds;

Meta-definition

A property $\Phi(F, \mathbb{B})$ of subsets *F* of complete Boolean algebras \mathbb{B} is a *regularity property* if the following is provable in ZFC:

- 1. (nontriviality) $\Phi(\{1\}, \mathbb{B})$ for every complete Boolean algebra \mathbb{B} ;
- 2. (closure up) $\Phi(F, \mathbb{B}) \to \Phi(G, \mathbb{B})$ whenever $G = \{ p \in \mathbb{B} : \exists q \in F \ q \leq p \};$
- 3. (restriction) $\Phi(F, \mathbb{B})$ implies $\Phi(F \cap (\mathbb{B} \upharpoonright p), \mathbb{B} \upharpoonright p)$, and $\Phi(F, \mathbb{B} \upharpoonright p)$ implies $\Phi(F, \mathbb{B})$ for each $p \in \mathbb{B}^+$;
- (complete subalgebras) if B₀ is a complete subalgebra of B₁: for every F ⊂ B₁ Φ(F, B₁) → Φ(F ∩ B₀, B₀) holds, and for every F ⊂ B₀ Φ(F, B₀) → Φ(F, B₁) holds;
- 5. (iteration) if $\dot{\mathbb{B}}_1$ is a \mathbb{B}_0 -name for a complete Boolean algebra, $F_0 \subset \mathbb{B}_0$, \dot{F}_1 a name for a subset of \mathbb{B}_1 , $\Phi(F_0, \mathbb{B}_0)$ and $1 \Vdash \Phi(\dot{F}_1, \dot{\mathbb{B}}_1)$, then $\Phi(F_0 * \dot{F}_1, \mathbb{B}_0 * \dot{\mathbb{B}}_1)$ where

$$F_0 * \dot{F}_1 = \{ \langle p_0, \dot{p}_1 \rangle \in \mathbb{B}_0 * \dot{\mathbb{B}}_1 \colon p_0 \land \| \dot{p}_1 \in \dot{F}_1 \| \in F_0 \}.$$

Meta-definition

Let \mathfrak{G} be a set with a binary operation *. A property $\Phi(g, F, \mathbb{B})$ of subsets *F* of complete Boolean algebras \mathbb{B} and elements $g \in \mathfrak{G}$ is a \mathfrak{G} -*regularity property* if the following is provable in ZFC for each $g \in \mathfrak{G}$:

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 1. (nontriviality);
- 2. (closure up);
- 3. (restriction);
- 4. (complete subalgebras);

Meta-definition

Let \mathfrak{G} be a set with a binary operation *. A property $\Phi(g, F, \mathbb{B})$ of subsets F of complete Boolean algebras \mathbb{B} and elements $g \in \mathfrak{G}$ is a \mathfrak{G} -regularity property if the following is provable in ZFC for each $g \in \mathfrak{G}$:

- 1. (nontriviality);
- 2. (closure up);
- 3. (restriction);
- 4. (complete subalgebras);

and

5. if $\dot{\mathbb{B}}_1$ is a \mathbb{B}_0 -name for a complete Boolean algebra, $F_0 \subset \mathbb{B}_0$, \dot{F}_1 a name for a subset of \mathbb{B}_1 , $\Phi(g_0, F_0, \mathbb{B}_0)$ and $1 \Vdash \Phi(\check{g}_1, \dot{F}_1, \dot{\mathbb{B}}_1)$, then $\Phi(g_0 * g_1, F_0 * \dot{F}_1, \mathbb{B}_0 * \dot{\mathbb{B}}_1)$.

Definition

Suppose that $\langle \mathfrak{G}, * \rangle$ is a set with a binary operation. Suppose that Φ is a \mathfrak{G} -regularity property of subsets of complete Boolean algebras.

- 1. A poset *P* is Φ -*c.c.* if for every countable elementary submodel $M \prec H_{\theta}$ containing *P*, \mathfrak{G} , and every condition $q \in P$ there is an element $g \in \mathfrak{G} \cap M$ and a set $F \subset \operatorname{RO}(P)$, $F \in M$ such that $\Phi(g, F)$ and $\{ p \in \operatorname{RO}(P) \cap M : p \ge q \} \subseteq F$.
- 2. *P* is Φ -proper if for every countable elementary submodel $M \prec H_{\theta}$ containing *P*, \mathfrak{G} and every condition $p \in P \cap M$ there is a Φ -master condition $q \leq p$ which is a master for *M*, and for every $r \leq q$, there is an element $g \in \mathfrak{G} \cap M$ and a set $F \subset \operatorname{RO}(P), F \in M$ such that $\Phi(g, F)$ and $\{p \in \operatorname{RO}(P) \cap M : p \geq q\} \subseteq F$.

Theorem If ZFC $\Vdash \Phi(F) \rightarrow F$ is ω -c.c. (" Φ is ω -c.c.") then P is Φ -c.c. \Rightarrow P is c.c.c.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem If ZFC $\Vdash \Phi(F) \rightarrow F$ is ω -c.c. (" Φ is ω -c.c.") then P is Φ -c.c. \Rightarrow P is c.c.c.

Theorem (ω_1 -aproximation property)

Let Φ be an ω -c.c., P be a Φ -proper poset, κ be a cardinal, and let f be a name for a function in κ^{κ} . If $P \Vdash f \upharpoonright a \in V$ for each $a \in [\kappa]^{\omega} \cap V$, then $P \Vdash f \in V$.

Theorem

Let X be a second countable topological space and $H \subseteq [X]^2$ be an open set – a graph. If Φ is ω -c.c. and P is Φ -proper, then every H-anticlique in a P-generic extension is covered by a ground model countable set of H-anticliques.

Theorem

 Φ -c.c. + c.c.c. is preserved under finite support forcing iteration.

Corollary

If κ is a regular uncountable cardinal such that $\Diamond_{\kappa^+}(\cos \kappa)$ holds, and Φ is a regularity property such that Φ -c.c. \Rightarrow c.c.c., then there is a Φ -c.c. poset forcing MA_{κ}(Φ -c.c.).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem

 Φ -c.c. + c.c.c. is preserved under finite support forcing iteration.

Corollary

If κ is a regular uncountable cardinal such that $\Diamond_{\kappa^+}(\cos \kappa)$ holds, and Φ is a regularity property such that Φ -c.c. \Rightarrow c.c.c., then there is a Φ -c.c. poset forcing MA_{κ}(Φ -c.c.).

Proposition

 Φ -properness is preserved under finite step forcing iteration.

Theorem

Assume there is a supercompact cardinal. Then there is a Φ -proper poset forcing FA(Φ -proper).