Strengthened Ramsey's theorem, finitary Ramsey's theorem and their iteration

Keita Yokoyama

JAIST / UC Berkeley

Sets and Computations, April 20, 2015

2 Strengthened Ramsey and finitary Ramsey

- Strengthened Ramsey's theorem
- Finitary Ramsey's theorem
- Strengthened vs finitary

Iterated versions

- Iterated Paris-Harrington principle
- Iterated finitary vs infinite Ramsey's theorem

(Infinite) Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

RTⁿ_k: for any P : [N]ⁿ → k, there exists an infinite set H ⊆ N such that |P([H]ⁿ)| = 1.
 (H is said to be a homogeneous set for P)

(This sald to be a nonlogeneous set for T.)

- $\mathbf{RT}^n := \forall k \ \mathbf{RT}_k^n$. (In this talk, we may say \mathbf{RT}_{∞}^n .)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA₀, we have the following:

- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$

(Infinite) Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

RTⁿ_k: for any P : [N]ⁿ → k, there exists an infinite set H ⊆ N such that |P([H]ⁿ)| = 1.
 (H is said to be a homogeneous set for P)

(*H* is said to be a *homogeneous* set for *P*.)

• $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)

• $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA₀, we have the following:

•
$$\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$$
.

• $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$

(Infinite) Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

RTⁿ_k: for any P : [N]ⁿ → k, there exists an infinite set H ⊆ N such that |P([H]ⁿ)| = 1.

(*H* is said to be a *homogeneous* set for *P*.)

- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA_0 , we have the following:

•
$$\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$$
.

• $\operatorname{RT}_2^{n+1} \Rightarrow \operatorname{RT}^n$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$

(Infinite) Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

RTⁿ_k: for any P : [N]ⁿ → k, there exists an infinite set H ⊆ N such that |P([H]ⁿ)| = 1.
 (H is said to be a homogeneous set for P)

(*H* is said to be a *homogeneous* set for *P*.)

- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA₀, we have the following:

•
$$\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$$
.

•
$$\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$$
.

Thus, we have

$$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$$

Ramsey's theorem and independent statements from PA

It is well-known that several finite variations of Ramsey's theorem provide independent statements from Peano Arithmetic (PA).

- The first such example was found by Paris (in paper 1978). An "iteration version of Finite Ramsey's theorem with relatively largeness".
- A simplification by Harrington (in manuscript 1977). "Paris-Harrington Principle (PH): Finite Ramsey's theorem with relatively largeness".

Here, $X \subseteq_{\text{fin}} \mathbb{N}$ is *relatively large* if $|X| > \min X$. Then,

- PH_k^n : for any $a \in \mathbb{N}$, there exists $X \subseteq_{\text{fin}} \mathbb{N}$ such that for any $P : [X]^n \to k$, there exists a homogeneous set $H \subseteq X$ which is relatively large and min H > a.
- $PH^n \equiv \forall k PH_k^n$, and $PH \equiv \forall n PH^n$.

Infinite vs finite Ramsey's theorem

Observation

Infinite Ramsey's theorem implies corresponding finite Ramsey's theorem (with some largeness notion), but the usual proof requires weak König's lemma / compactness argument.

This cause the following.

Fact

Iterated version of infinite Ramsey's theorem cannot prove iterated version of finite Ramsey's theorem.

Note that this happens because of the lack of Σ_1^1 -induction, but infinite Ramsey's theorem as itself does not prove such a strong induction.

Infinite vs finite Ramsey's theorem

Observation

Infinite Ramsey's theorem implies corresponding finite Ramsey's theorem (with some largeness notion), but the usual proof requires weak König's lemma / compactness argument.

This cause the following.

Fact

Iterated version of infinite Ramsey's theorem cannot prove iterated version of finite Ramsey's theorem.

Note that this happens because of the lack of Σ_1^1 -induction, but infinite Ramsey's theorem as itself does not prove such a strong induction.

What is essential for iterated Ramsey's theorem?

A technical interest:

Question

Is there any good notion extending Ramsey's theorem which implies PH-like statement "naturally" and thus iteration available without any stronger induction?

⇒ Strengthen Ramsey's theorem for coloring families (Y)
 ⇒ "Finitary version" of Ramsey's theorem (Pelupessy, Murakami)

What is essential for iterated Ramsey's theorem?

A technical interest:

Question

Is there any good notion extending Ramsey's theorem which implies PH-like statement "naturally" and thus iteration available without any stronger induction?

- \Rightarrow Strengthen Ramsey's theorem for coloring families (Y)
- ⇒ "Finitary version" of Ramsey's theorem (Pelupessy, Murakami)

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Outline

1 Introduction

2 Strengthened Ramsey and finitary Ramsey

- Strengthened Ramsey's theorem
- Finitary Ramsey's theorem
- Strengthened vs finitary

3 Iterated versions

- Iterated Paris-Harrington principle
- Iterated finitary vs infinite Ramsey's theorem

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Strengthened Ramsey's theorem

We first consider a strengthened version of Ramsey's theorem.

Definition (coloring family)

- An (n, k)-finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$.
- An (n, k)-coloring family is a set P of (n, k)-finite colorings which is closed under restriction.
- $X \subseteq \mathbb{N}$ is in the domain of \mathcal{P} (write $X \in [\operatorname{dom} \mathcal{P}]$) if for any $Y \subseteq_{\operatorname{fin}} X$, there exists $P \in \mathcal{P}$ such that $Y = \operatorname{dom}(P)$.
- *H* ⊆ ℕ is said to be homogeneous for 𝒫 if *H* ∈ [dom 𝒫] then there exists a constant function *P* ∈ [𝒫] (i.e., *P* = ∪_i *P_i* for some {*P_i*} ⊆ 𝒫) such that *H* = dom(*P*).

Note that an (infinite) coloring $P : [\mathbb{N}]^n \to k$ can be considered as a coloring family $\mathcal{P} = \{P \upharpoonright [X]^n \mid X \subseteq_{\text{fin}} \mathbb{N}\}.$

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Strengthened Ramsey's theorem

Definition (Strengthened Ramsey's theorem)

 RT_{k}^{n+} assets the following:

for any (n, k)-coloring family \mathcal{P} , there exists an infinite homogeneous set H for \mathcal{P} .

- \mathbf{RT}_k^{n+} is a generalization of \mathbf{RT}_k^n .
- RTⁿ⁺_k directly implies PHⁿ_k as follows: For given a ∈ N, we want X ⊆_{fin} N such that any P : [X]ⁿ → k has a (†)relatively large homogeneous set H with min H > a. If not, put P := {P | P has no (†)}, then N ∈ [dom P]. By RTⁿ⁺_k, P has an infinite homogeneous set, which leads a contradiction.

• $\operatorname{RT}_{k}^{n+}$ splits into $\operatorname{RT}_{k}^{n}$ plus a version of "Ramsey type König's lemma", and we have $\operatorname{RT}_{k}^{n} \leq \operatorname{RT}_{k}^{n+} \leq \operatorname{RT}_{k}^{n} + \operatorname{WKL}$.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Strengthened Ramsey's theorem

Definition (Strengthened Ramsey's theorem)

 RT_{k}^{n+} assets the following:

for any (n, k)-coloring family \mathcal{P} , there exists an infinite homogeneous set H for \mathcal{P} .

- $\operatorname{RT}_{k}^{n+}$ is a generalization of $\operatorname{RT}_{k}^{n}$.
- $\operatorname{RT}_{k}^{n+}$ directly implies $\operatorname{PH}_{k}^{n}$ as follows:

For given $a \in \mathbb{N}$, we want $X \subseteq_{\text{fin}} \mathbb{N}$ such that any $P : [X]^n \to k$ has a (†)relatively large homogeneous set H with min H > a. If not, put $\mathcal{P} := \{P \mid P \text{ has no } (\dagger)\}$, then $\mathbb{N} \in [\text{dom } \mathcal{P}]$. By RT_k^{n+} , \mathcal{P} has an infinite homogeneous set, which leads a contradiction.

• $\operatorname{RT}_{k}^{n+}$ splits into $\operatorname{RT}_{k}^{n}$ plus a version of "Ramsey type König's lemma", and we have $\operatorname{RT}_{k}^{n} \leq \operatorname{RT}_{k}^{n+} \leq \operatorname{RT}_{k}^{n} + \operatorname{WKL}$.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Strengthened Ramsey's theorem

Definition (Strengthened Ramsey's theorem)

```
RT_{k}^{n+} assets the following:
```

for any (n, k)-coloring family \mathcal{P} , there exists an infinite homogeneous set H for \mathcal{P} .

- $\operatorname{RT}_{k}^{n+}$ is a generalization of $\operatorname{RT}_{k}^{n}$.
- RTⁿ⁺_k directly implies PHⁿ_k as follows: For given a ∈ N, we want X ⊆_{fin} N such that any P : [X]ⁿ → k has a (†)relatively large homogeneous set H with min H > a. If not, put P := {P | P has no (†)}, then N ∈ [dom P]. By RTⁿ⁺_k, P has an infinite homogeneous set, which leads a contradiction.
- $\operatorname{RT}_{k}^{n+}$ splits into $\operatorname{RT}_{k}^{n}$ plus a version of "Ramsey type König's lemma", and we have $\operatorname{RT}_{k}^{n} \leq \operatorname{RT}_{k}^{n+} \leq \operatorname{RT}_{k}^{n} + \operatorname{WKL}$.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Strengthened Ramsey's theorem

Definition (Strengthened Ramsey's theorem)

```
RT_{k}^{n+} assets the following:
```

for any (n, k)-coloring family \mathcal{P} , there exists an infinite homogeneous set H for \mathcal{P} .

- $\operatorname{RT}_{k}^{n+}$ is a generalization of $\operatorname{RT}_{k}^{n}$.
- RTⁿ⁺_k directly implies PHⁿ_k as follows: For given a ∈ N, we want X ⊆_{fin} N such that any P : [X]ⁿ → k has a (†)relatively large homogeneous set H with min H > a. If not, put P := {P | P has no (†)}, then N ∈ [dom P]. By RTⁿ⁺_k, P has an infinite homogeneous set, which leads a contradiction.
- $\operatorname{RT}_{k}^{n+}$ splits into $\operatorname{RT}_{k}^{n}$ plus a version of "Ramsey type König's lemma", and we have $\operatorname{RT}_{k}^{n} \leq \operatorname{RT}_{k}^{n+} \leq \operatorname{RT}_{k}^{n} + \operatorname{WKL}$.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary version?

What is "finitary" version?

- Inspired by Terrence Tao's essay in his blog in 2007, Gaspar and Kohlenbach (2010) studied several finitary versions of the pigeon hole principle.
- Pelupessy generalized the G/K study and introduced finitary Ramsey's theorem FinRT_k^n , and showed $\text{RT}_k^n \leq \text{Fin}\text{RT}_k^n \leq \text{RT}_k^n + \text{WKL}.$
- Murakami studies finitary versions of another Ramsey type principle.

10/26

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary version?

What is "finitary" version?

- Inspired by Terrence Tao's essay in his blog in 2007, Gaspar and Kohlenbach (2010) studied several finitary versions of the pigeon hole principle.
- Pelupessy generalized the G/K study and introduced finitary Ramsey's theorem FinRT_k^n , and showed $\text{RT}_k^n \leq \text{FinRT}_k^n \leq \text{RT}_k^n + \text{WKL}.$
- Murakami studies finitary versions of another Ramsey type principle.

10/26

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary version?

What is "finitary" version?

- Inspired by Terrence Tao's essay in his blog in 2007, Gaspar and Kohlenbach (2010) studied several finitary versions of the pigeon hole principle.
- Pelupessy generalized the G/K study and introduced finitary Ramsey's theorem $\operatorname{Fin}\operatorname{RT}_k^n$, and showed $\operatorname{RT}_k^n \leq \operatorname{Fin}\operatorname{RT}_k^n \leq \operatorname{RT}_k^n + \operatorname{WKL}$.
- Murakami studies finitary versions of another Ramsey type principle.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary version?

What is "finitary" version?

- Inspired by Terrence Tao's essay in his blog in 2007, Gaspar and Kohlenbach (2010) studied several finitary versions of the pigeon hole principle.
- Pelupessy generalized the G/K study and introduced finitary Ramsey's theorem $\operatorname{Fin}\operatorname{RT}_k^n$, and showed $\operatorname{RT}_k^n \leq \operatorname{Fin}\operatorname{RT}_k^n \leq \operatorname{RT}_k^n + \operatorname{WKL}$.
- Murakami studies finitary versions of another Ramsey type principle.

10/26

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

We generalize PH by using largeness notion given by a finitary operation.

- For a given $F : [\mathbb{N}]^{<\mathbb{N}} \to \mathbb{N}$, a set $X \subseteq_{\text{fin}} \mathbb{N}$ is said to be *F*-large if |X| > F(X).
- "relatively large" \leftrightarrow "r-large" for $r(X) = \min X$.
- $\operatorname{PH}_k^{n,F}$: there exists $X \subseteq_{\operatorname{fin}} \mathbb{N}$ such that for any $P : [X]^n \to k$, there exists a homogeneous set $H \subseteq X$ which is *F*-large.
- In case *F* is a constant function, $PH_k^{n,F}$ corresponds to "finite Ramsey's theorem".

Of course, $PH_k^{n,F}$ would be false if F is not appropriate. Roughly speaking, F needs to make infinite set "large".

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

We generalize PH by using largeness notion given by a finitary operation.

- For a given $F : [\mathbb{N}]^{<\mathbb{N}} \to \mathbb{N}$, a set $X \subseteq_{\text{fin}} \mathbb{N}$ is said to be *F*-large if |X| > F(X).
- "relatively large" \leftrightarrow "r-large" for $r(X) = \min X$.
- $\operatorname{PH}_{k}^{n,F}$: there exists $X \subseteq_{\operatorname{fin}} \mathbb{N}$ such that for any $P : [X]^{n} \to k$, there exists a homogeneous set $H \subseteq X$ which is *F*-large.
- In case *F* is a constant function, $PH_k^{n,F}$ corresponds to "finite Ramsey's theorem".

Of course, $PH_k^{n,F}$ would be false if *F* is not appropriate. Roughly speaking, *F* needs to make infinite set "large".

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

We generalize PH by using largeness notion given by a finitary operation.

- For a given $F : [\mathbb{N}]^{<\mathbb{N}} \to \mathbb{N}$, a set $X \subseteq_{\text{fin}} \mathbb{N}$ is said to be *F*-large if |X| > F(X).
- "relatively large" \leftrightarrow "r-large" for $r(X) = \min X$.
- $\operatorname{PH}_{k}^{n,F}$: there exists $X \subseteq_{\operatorname{fin}} \mathbb{N}$ such that for any $P : [X]^{n} \to k$, there exists a homogeneous set $H \subseteq X$ which is *F*-large.
- In case *F* is a constant function, $PH_k^{n,F}$ corresponds to "finite Ramsey's theorem".

Of course, $PH_k^{n,F}$ would be false if *F* is not appropriate. Roughly speaking, *F* needs to make infinite set "large".

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

We generalize PH by using largeness notion given by a finitary operation.

- For a given $F : [\mathbb{N}]^{<\mathbb{N}} \to \mathbb{N}$, a set $X \subseteq_{\text{fin}} \mathbb{N}$ is said to be *F*-large if |X| > F(X).
- "relatively large" \leftrightarrow "r-large" for $r(X) = \min X$.
- $\operatorname{PH}_{k}^{n,F}$: there exists $X \subseteq_{\operatorname{fin}} \mathbb{N}$ such that for any $P : [X]^{n} \to k$, there exists a homogeneous set $H \subseteq X$ which is *F*-large.
- In case *F* is a constant function, $PH_k^{n,F}$ corresponds to "finite Ramsey's theorem".

Of course, $PH_k^{n,F}$ would be false if *F* is not appropriate. Roughly speaking, *F* needs to make infinite set "large".

11/26

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

- *F* is said to be asymptotically stable ($F \in AS$) if for any infinite set *X*, $\forall A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M$.
- *F* is said to be weakly stable ($F \in WS$) if for any infinite set *X*, $\exists A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M.$
- *F* is said to be strongly stable ($F \in SS$) if for any infinite set *X*, $\exists M \in \mathbb{N} \forall A_n \nearrow X \forall^{\infty} n F(A_n) \leq M.$

Definition (Finitary Ramsey's theorem)

The following are equivalent over RCA₀.

- FinRT^{*n*}_{*k*}: for any $F \in AS$, PH^{*n*,F} holds. (Pelupessy)
- FinRTⁿ⁺ : for any $F \in WS$, PH^{n,F} holds.
- FinRTⁿ⁻ : for any $F \in SS$, PH^{n,F} holds.

We may loosely write $FinRT_k^n$ for one of the above.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

- *F* is said to be asymptotically stable ($F \in AS$) if for any infinite set *X*, $\forall A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M$.
- *F* is said to be weakly stable ($F \in WS$) if for any infinite set *X*, $\exists A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M.$
- *F* is said to be strongly stable ($F \in SS$) if for any infinite set *X*, $\exists M \in \mathbb{N} \forall A_n \nearrow X \forall^{\infty} n F(A_n) \leq M.$

Definition (Finitary Ramsey's theorem)

The following are equivalent over RCA₀.

- FinRT^{*n*}_{*k*}: for any $F \in AS$, PH^{*n*,*F*}_{*k*} holds. (Pelupessy)
- FinRTⁿ⁺ : for any $F \in WS$, PH^{n,F} holds.
- FinRTⁿ⁻ : for any $F \in SS$, PH^{n,F} holds.

We may loosely write $FinRT_k^n$ for one of the above.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

Finitary Ramsey's theorem

- *F* is said to be asymptotically stable ($F \in AS$) if for any infinite set *X*, $\forall A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M$.
- *F* is said to be weakly stable ($F \in WS$) if for any infinite set *X*, $\exists A_n \nearrow X \exists M \in \mathbb{N} \forall^{\infty} n F(A_n) \leq M.$
- *F* is said to be strongly stable ($F \in SS$) if for any infinite set *X*, $\exists M \in \mathbb{N} \forall A_n \nearrow X \forall^{\infty} n F(A_n) \leq M.$

Definition (Finitary Ramsey's theorem)

The following are equivalent over RCA₀.

- FinRT^{*n*}_{*k*}: for any $F \in AS$, PH^{*n*,*F*}_{*k*} holds. (Pelupessy)
- FinRTⁿ⁺ : for any $F \in WS$, PH^{n,F} holds.
- FinRT_k^{*n*-}: for any $F \in SS$, PH_k^{*n*,*F*} holds.

We may loosely write $FinRT_k^n$ for one of the above.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

RT_k^{n+} vs FinR T_k^n

- Trivially, $\operatorname{Fin} \operatorname{RT}_{k}^{n}$ is a generalization of $\operatorname{PH}_{k}^{n}$.
- On the other hand, $\operatorname{Fin} \operatorname{RT}_{k}^{n}$ implies $\operatorname{RT}_{k}^{n}$ although it looks like a "finite variation".

In fact, we have the following.

Theorem

The following are equivalent over RCA₀.

- 1 $\operatorname{RT}_{k}^{n+}$.
- **2** FinRTⁿ_k.

Each of them is a technical variant of RT_k^n or PH_k^n , but it seems that they are reasonably stable notion.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

RT_k^{n+} vs FinR T_k^n

- Trivially, $\operatorname{Fin} \operatorname{RT}_{k}^{n}$ is a generalization of $\operatorname{PH}_{k}^{n}$.
- On the other hand, FinRTⁿ_k implies RTⁿ_k although it looks like a "finite variation".

In fact, we have the following.

Theorem

The following are equivalent over RCA₀.

1
$$\operatorname{RT}_{k}^{n+}$$

2 FinRTⁿ_k.

Each of them is a technical variant of RT_k^n or PH_k^n , but it seems that they are reasonably stable notion.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

RT_k^{n+} vs FinR T_k^n

- Trivially, $\operatorname{Fin} \operatorname{RT}_{k}^{n}$ is a generalization of $\operatorname{PH}_{k}^{n}$.
- On the other hand, FinRTⁿ_k implies RTⁿ_k although it looks like a "finite variation".

In fact, we have the following.

Theorem

The following are equivalent over RCA₀.

1
$$\operatorname{RT}_{k}^{n+}$$

2 FinRTⁿ_k.

Each of them is a technical variant of RT_k^n or PH_k^n , but it seems that they are reasonably stable notion.

Strengthened Ramsey's theorem Finitary Ramsey's theorem Strengthened vs finitary

RT_k^{n+} vs FinR T_k^n

- Trivially, $\operatorname{Fin} \operatorname{RT}_{k}^{n}$ is a generalization of $\operatorname{PH}_{k}^{n}$.
- On the other hand, FinRTⁿ_k implies RTⁿ_k although it looks like a "finite variation".

In fact, we have the following.

Theorem

The following are equivalent over RCA₀.

- 1 $\operatorname{RT}_{k}^{n+}$.
- 2 FinRTⁿ_k.

Each of them is a technical variant of RT_k^n or PH_k^n , but it seems that they are reasonably stable notion.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Outline

Introduction

2 Strengthened Ramsey and finitary Ramsey

- Strengthened Ramsey's theorem
- Finitary Ramsey's theorem
- Strengthened vs finitary

Iterated versions

- Iterated Paris-Harrington principle
- Iterated finitary vs infinite Ramsey's theorem

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Density notion

We first consider the iterated version of PH introduced by Paris.

Definition (Paris)

- A finite set X is said to be 0-dense(n, k) if X is relatively large,
 i.e., |X| > min X.
- A finite set X is said to be m + 1-dense(n, k) if for any $P : [X]^n \to k$, there exists $Y \subseteq X$ which is *m*-dense(n, k) and *P*-homogeneous.

Note that "X is *m*-dense(*n*, *k*)" can be expressed by a Σ_0^0 -formula.

15/26

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated PH

Using the density notion, we can naturally define the iterated version of PH.

Definition

- mPH_k^n : for any $a \in \mathbb{N}$, there exists an *m*-dense(n, k) set *X* such that min X > a.
- ItPH^{*n*}_{*k*} $\equiv \forall m m PH^n_k$.
- Original Paris's independent statement from PA is ItPH³₂.
- It is equivalent to the full PH and to the Σ₁-soundness of PA.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated PH

Using the density notion, we can naturally define the iterated version of PH.

Definition

- mPH_k^n : for any $a \in \mathbb{N}$, there exists an *m*-dense(n, k) set *X* such that min X > a.
- ItPH^{*n*}_{*k*} $\equiv \forall m \, m \text{PH}^n_k$.
- Original Paris's independent statement from PA is ItPH₂³.
- It is equivalent to the full PH and to the Σ₁-soundness of PA.

Iterated PH and the strength of Ramsey's theorem

Iterated version of PH is useful to understand the strength of infinite Ramsey's theorem.

Theorem (Paris, Bovykin/Weiermann)

The following two theories have the same Π_2^0 -consequences.

- 1 WKL₀ + RTⁿ_k.
- 2 $I\Sigma_1^0 + \{mPH_k^n \mid m \in \omega\}.$

Note that we can even characterize Π_3^0 or Π_4^0 -part of RT_k^n by using some modification of *m*PH.

Iterated PH and the strength of Ramsey's theorem

Iterated version of PH is useful to understand the strength of infinite Ramsey's theorem.

Theorem (Paris, Bovykin/Weiermann)

The following two theories have the same Π_2^0 -consequences.

$$2 I\Sigma_1^0 + \{m PH_k^n \mid m \in \omega\}.$$

Note that we can even characterize Π_3^0 or Π_4^0 -part of RT_k^n by using some modification of *m*PH.

Iterated PH and the strength of Ramsey's theorem

Iterated version of PH also characterize the consistency strength of $\operatorname{RT}_{k}^{n}$. The following is a generalization of the original Paris/Harrington's result.

Theorem

The following are equivalent over $I\Sigma_1^0$.

- 1 ItPH $_k^n$.
- 2 Σ_1 -soundness of WKL₀ + RTⁿ_k.

Thus, we cannot prove $ItPH_k^n$ from RT_k^n .

Question

What is needed to prove $ItPH_k^n$?

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Density notion

We can naturally consider the iterated version of finitary Ramsey's theorem.

Definition

- A finite set X is said to be 0-dense(n, k, F) if X is F-large, *i.e.*, |X| > F(X).
- A finite set X is said to be m + 1-dense(n, k, F) if for any P : [X]ⁿ → k, there exists Y ⊆ X which is m-dense(n, k, F) and P-homogeneous.

Note that "X is *m*-dense(n, k, F)" can be expressed by a Σ_0^0 -formula.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated FinRT

Definition

- $m PH_k^{n,F}$: there exists an *m*-dense(*n*, *k*, *F*) set.
- ItPH_k^{*n*,*F*} = $\forall m \, m \text{PH}_k^{n,F}$.
- ItFinRT^{*n*}_{*k*} $\equiv \forall F \in AS$ ItPH^{*n*,*F*}_{*k*}

Since ItFinRT^{*n*} proves the consistency of RT^{*n*}_{*k*}, it is strictly stronger than RT^{*n*}_{*k*}.

Question

What is the strength of $ItFinRT_k^n$?

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated FinRT

Definition

- $m PH_k^{n,F}$: there exists an *m*-dense(*n*, *k*, *F*) set.
- ItPH_k^{*n*,*F*} = $\forall m \, m \text{PH}_k^{n,F}$.
- ItFinRT^{*n*}_{*k*} $\equiv \forall F \in AS$ ItPH^{*n*,*F*}_{*k*}

Since ItFinRT^{*n*}_{*k*} proves the consistency of RT^{*n*}_{*k*}, it is strictly stronger than RT^{*n*}_{*k*}.

Question

What is the strength of $ItFinRT_k^n$?

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite Ramsey

A naive approach: does multiple applications of RT_k^n imply the iterated versions of PH_k^n or $FinRT_k^n$?

Definition

- mRTⁿ_k: for any finite sequence (P_i : [ℕ]ⁿ → k | i < m), there exists an infinite set H ⊆ ℕ such that H is homogeneous for any P_i.
- ItRT^{*n*}_{*k*} $\equiv \forall m m RT^n_k$.

However, ItRT^{*n*}_{*k*} is just equivalent to $RT^n_{<\infty}$, thus, it cannot prove ItPH^{*n*}_{*k*} in general.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite Ramsey

A naive approach: does multiple applications of RT^n_{μ} imply the iterated versions of PH_{k}^{n} or $FinRT_{k}^{n}$?

Definition

• $m \operatorname{RT}_{k}^{n}$: for any finite sequence $\langle P_{i} : [\mathbb{N}]^{n} \to k \mid i < m \rangle$, there exists an infinite set $H \subseteq \mathbb{N}$ such that H is homogeneous for any P_i .

• ItRT^{*n*}_{*k*}
$$\equiv \forall m m RT^n_k$$
.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite Ramsey

A naive approach: does multiple applications of RT_k^n imply the iterated versions of PH_k^n or $FinRT_k^n$?

Definition

mRTⁿ_k: for any finite sequence ⟨P_i : [ℕ]ⁿ → k | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any P_i.

• ItRT^{*n*}_{*k*}
$$\equiv \forall m m RT^n_k$$
.

However, ItRT_{k}^{n} is just equivalent to $\text{RT}_{<\infty}^{n}$, thus, it cannot prove ItPH_{k}^{n} in general.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite Ramsey

Next approach: does multiple applications of RT_k^{n+} imply the iterated versions of PH_k^n or $FinRT_k^n$?

Definition

mRTⁿ⁺_k: for any finite sequence of (n, k)-coloring families
 ⟨𝒫_i | i < m⟩, there exists an infinite set H ⊆ N such that H is homogeneous for any 𝒫_i.

• ItRT^{$$n+$$} $\equiv \forall m m RT^{n+}_k$.

Note that one can easily show by induction (outside of the system) that $\operatorname{RT}_{k}^{n+}$ implies $m\operatorname{RT}_{k}^{n+}$ for any $m \in \omega$ over RCA_{0} .

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite Ramsey

Next approach: does multiple applications of RT_k^{n+} imply the iterated versions of PH_k^n or $FinRT_k^n$?

Definition

mRTⁿ⁺_k: for any finite sequence of (n, k)-coloring families
 ⟨𝒫_i | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any 𝒫_i.

• ItRT_kⁿ⁺
$$\equiv \forall m m RT_k^{n+}$$
.

Note that one can easily show by induction (outside of the system) that $\operatorname{RT}_{k}^{n+}$ implies $m\operatorname{RT}_{k}^{n+}$ for any $m \in \omega$ over RCA_{0} .

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite vs finitary Ramsey

This time, mRT_k^{n+} naturally implies mPH_k^n , and in fact, we have the following.

Theorem

Over RCA₀, we have

```
\forall m(mRT_k^{n+} \leftrightarrow mFinRT_k^n).
```

We can lift up several known results for PH via this equivalence.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite vs finitary Ramsey

This time, mRT_k^{n+} naturally implies mPH_k^n , and in fact, we have the following.

Theorem

Over RCA₀, we have

```
\forall m(mRT_k^{n+} \leftrightarrow mFinRT_k^n).
```

We can lift up several known results for PH via this equivalence.

Iterated Paris-Harrington principle Iterated finitary vs infinite Ramsey's theorem

Iterated infinite vs finitary Ramsey

Recall that $ItPH_2^3 \Leftrightarrow PH \Leftrightarrow \Sigma_1$ -soundness of PA over $I\Sigma_1^0$.

Theorem

For $n \ge 3$ and $k \ge 2$, the following are equivalent over RCA₀.

- 1 ItRT $_k^{n+}$.
- 2 ItFinRTⁿ_k.
- 3 RT.

4 A restricted version of Σ_1^1 -soundness of ACA₀ (???).

Conjecture

The following are equivalent over RCA₀.

- 1 ItFinRTⁿ_k.
- **2** A restricted version of Σ_1^1 -soundness of RT_k^{n+} .

Questions

The situation around RT_2^2 is left open.

Question

• Does RT_2^2 imply $m\operatorname{PH}_2^2$ for $m \in \omega$?

Question

- We have $RT_2^2 \le RT_2^{2+} \equiv FinRT_2^2 \le RT_2^2 + WKL$.
 - Which of the above is/are strict?

Question

We have $RT_2^2 \le RT_{<\infty}^2 \le ItFinRT_2^2 \le ItFinRT_{<\infty}^2$.

- Which of the above is/are strict?
- Especially, does $RT^2_{<\infty}$ imply $ItPH^2_2$?

Questions

The situation around RT_2^2 is left open.

Question

• Does RT_2^2 imply $m\operatorname{PH}_2^2$ for $m \in \omega$?

Question

We have $RT_2^2 \le RT_2^{2+} \equiv FinRT_2^2 \le RT_2^2 + WKL$.

Which of the above is/are strict?

Question

We have $RT_2^2 \le RT_{<\infty}^2 \le ItFinRT_2^2 \le ItFinRT_{<\infty}^2$.

- Which of the above is/are strict?
- Especially, does $RT^2_{<\infty}$ imply $ItPH^2_2$?

Questions

The situation around RT_2^2 is left open.

Question

• Does RT_2^2 imply $m\operatorname{PH}_2^2$ for $m \in \omega$?

Question

We have
$$RT_2^2 \le RT_2^{2+} \equiv FinRT_2^2 \le RT_2^2 + WKL$$
.

• Which of the above is/are strict?

Question

We have $RT_2^2 \le RT_{<\infty}^2 \le ItFinRT_2^2 \le ItFinRT_{<\infty}^2$.

- Which of the above is/are strict?
- Especially, does $RT^2_{<\infty}$ imply $ItPH^2_2$?

Questions

The situation around RT_2^2 is left open.

Question

• Does RT_2^2 imply $m\operatorname{PH}_2^2$ for $m \in \omega$?

Question

We have
$$RT_2^2 \le RT_2^{2+} \equiv FinRT_2^2 \le RT_2^2 + WKL$$
.

• Which of the above is/are strict?

Question

We have $RT_2^2 \le RT_{<\infty}^2 \le ItFinRT_2^2 \le ItFinRT_{<\infty}^2$.

- Which of the above is/are strict?
- Especially, does $RT^2_{<\infty}$ imply $ItPH^2_2$?

References

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(1):1–55, 2001.
- Jaime Gaspar and Ulrich Kohlenbach. On Tao's "finitary "infinite pigeonhole principle. Journal of Symbolic Logic 75(1), 355–371, 2010.
- Stephen Flood. Reverse mathematics and a Ramsey-type König's Lemma. Journal of Symbolic Logic, 77(4):1272–1280, 2012.
- J. Paris and Leo A. Harrington. A mathematical incompleteness in Peano arithmetic. In Jon Barwise, editor, Handbook of Mathematical Logic, pages 1133–1142.
- J. B. Paris. Some independence results for Peano Arithmetic. Journal of Symbolic Logic, 43(4):725–731, 1978.
- Y. A strengthened version of Ramsey's theorem and its finite iteration, draft.