The left side of Cichoń's Diagram

Martin Goldstern

Vienna University of Technology

http://www.tuwien.ac.at/goldstern

goldstern@tuwien.ac.at

April 8, 2015

Cichoń's Diagram

Martin Goldstern (TU Wien)

・ロト ・日下 ・ 日下

Main result

Theorem

Let $\kappa_{an} < \kappa_{cn} < \kappa < \kappa_{nm} < \kappa_{ct}$ be regular uncountable cardinals with $\kappa^{\aleph_0} = \kappa, \ \kappa_{ct}^{\aleph_0} = \kappa_{ct} \ and \ 2^{\kappa} \ge \kappa_{ct}.$ Assume $\mathfrak{b} = \mathfrak{d} = \kappa.$ Then there is a ccc poset forcing • add(null) = κ_{an} , • cov(null) = κ_{cm} , • $\mathfrak{b} = \kappa$, • non(meager) = κ_{nm} , • cov(meager) = $2^{\aleph_0} = \kappa_{ct}.$

Joint work with Diego Mejía and Saharon Shelah. (See our preprint for a slightly stronger version, available on arXiv.org soon.)

Iterands

Naive strategy:

- To ensure $\operatorname{add}(\operatorname{null}) \geq \kappa_{\operatorname{an}}$, use small subposets of amoeba forcing.
- To ensure $cov(null) \ge \kappa_{cn}$, use small subposets of random forcing.
- To ensure $\mathfrak{b} \geq \kappa_b$, use small subposets of Hechler forcing.
- To ensure non(meager) $\geq \kappa_{nm}$, use small subposets of eventually different forcing \mathbb{E} .

More precisely: In $V^{P_{\alpha}}$, let $Q_{\alpha} := \mathbb{E} \cap V^{P'_{\alpha}}$, for some small $P'_{\alpha} < P_{\alpha}$.

To ensure the converse inequalities, use well-known preservation theorems ($\sigma\text{-centered},\ \mu\text{-centered},$ etc.)

Definition

Eventually different forcing \mathbb{E} is the set of all conditions (s, φ) , where $s \in \omega^{<\omega}$, φ is a slalom with domain $\omega \setminus \text{dom}(s)$ of bounded width: $\exists w \in \omega \ \forall n : \ |\varphi(n)| \leq w$. The condition (s, φ) forces that the generic function $g : \omega \to \omega$ extends sand avoids φ (i.e., $\forall n : g(n) \notin \varphi(n)$).

Definition

Let *D* be an ultrafilter on ω . For any sequence $\overline{A} = (A_k : k \in \omega)$ of subsets of ω we define $\underline{B} := \lim_{D} \overline{A}$ by

$$\forall i \in \omega : \quad i \in \mathbf{B} \iff \{k : i \in A_k\} \in D.$$

- Note that B may be empty. (E.g., $A_k = \{k\}$.)
- Even if all set A_k are finite, B may be infinite. (E.g., A_k = {0,...,k}.)
- However: If ∃w ∈ ω : ∀k |A_k| ≤ w, then also lim Ā is finite.
 (In fact, any uniform bound for the A_n will also be a bound for their limit.)

Ultrafilter limits in ${\ensuremath{\mathbb E}}$

Definition

Let $s \in \omega^{<\omega}$, $w \in \omega$. A condition p obeys (s, w) if p is of the form (s, φ) with $|\varphi(n)| \le w$ for all n.

A sequence $\bar{p} = (p_k : k \in \omega)$ of conditions in \mathbb{E} is called uniform if they all obey the same (s, w).

Definition

Let $\bar{p} = (p_k : k \in \omega)$ be a uniform sequence of conditions, all obeying (s, w). Let $p_k = (s, \varphi_k)$. Let D be an ultrafilter on ω . Then $q = \lim_{D} \bar{p}$ is defined as follows: $q = (s, \psi)$, where

$$\forall i \,\forall n: i \in \psi(n) \Leftrightarrow \{n: i \in \varphi_k(n)\} \in D,$$

i.e., ψ is the pointwise *D*-limit of $(\varphi_k : k \in \omega)$.

Note that q also obeys (s, w).

Martin Goldstern (TU Wien)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lemma (Miller, TAMS 1981: Compactness)

Let D be a nonprincipal ultrafilter. Then there is an \mathbb{E} -name D^{+1} such that:

- $\Vdash_{\mathbb{E}} D^{+1} \supseteq D$ is an ultrafilter.
- For all uniform sequences p
 = (p_k : k ∈ ω) of conditions, their D-limit lim_D p
 forces: {k : p_k ∈ G_E} ∈ D⁺¹.

(This says: Conditions from a uniform sequence are very compatible: infinitely many of them fit into the same generic filter.)

Proof.

Let $\underline{A}_{\overline{p}} := \{k : p_k \in G_{\mathbb{E}}\}$ if $\lim_{D} \overline{p} \in G_{\mathbb{E}}$, and $\underline{A}_{\overline{p}} := \omega$ otherwise. Show that the family of all such $A_{\overline{p}}$ has the finite intersection property.

Theorem (Miller 1981)

Let $\overline{f} := (f_i : i < \kappa)$ be a strongly unbounded sequence in ω^{ω} . (I.e., $(f_i : i \in S)$ unbounded for all $S \in [\kappa]^{\kappa}$.) Then \overline{f} is still unbounded in $V^{\mathbb{E}}$.

Proof.

Assume g is a bound for \overline{f} . Fix $D \in V$, $D^{+1} \in V^{\mathbb{E}}$ as in the theorem. Find $(n_i : i \in \kappa)$ and $(p_i : i \in \kappa)$ such that $p_i \Vdash \forall n \ge n_i : f_i(n) \le g(n)$. For some $S \in [\kappa]^{\kappa}$ we get that $(n_i : i \in S)$ is constant, say with value 0, and that $(p_i : i \in S)$ is uniform. (Same stem, bounded width.) Wlog $\{f_i(0) : i \in S\}$ is unbounded. Thin out to a uniform sequence $\overline{p} = (p_{i_k} : k \in \omega)$ such that $(f_{i_k}(0) : k \in \omega)$ is strictly increasing. Let $q := \lim_{D} \overline{p}$. Then q forces that g(0) bounds "almost all" $f_{i_k}(0)$.

イロト イヨト イヨト イヨト

What can go wrong

Let $\mathbb{E}'\subseteq\mathbb{E}$ be a small subforcing. To show that \mathbb{E}' does not destroy any unbounded family, we would like to have:

Lemma (Wishful thinking)

Whenever $\bar{p} = (p_k : k \in \omega)$ is a uniform sequence of conditions in \mathbb{E}' , then there is a name D^{+1} of an ultrafilter extending an ultrafilter D in the ground model such that $\lim_{D} \bar{p} \Vdash \{k : p_k \in G_{\mathbb{E}'}\} \in D^{+1}$.

This MAY NOT WORK for certain \mathbb{E}' , because $\lim_{D} \bar{p}$ may be in $\mathbb{E} \setminus \mathbb{E}'$. We will have to choose \mathbb{E}' appropriately, see below. Note that this CANNOT WORK for all \mathbb{E}' , because:

Theorem (Pawlikowski 1992)

There may be (nice) subposets $\mathbb{E}' \subseteq \mathbb{E}$ which add a dominating real. For example, if \mathbb{I} is the "infinitely often equal" forcing, then \mathbb{I} forces that $\mathbb{E} \cap V$ adds a dominating real.

Martin Goldstern (TU Wien)

< 67 ▶

Setup

Let $\delta < (2^{\kappa})^+$, and let $\delta = \mathbf{S} \cup \mathbf{E}$ be a partition into two unbounded sets. Let $\overline{P} = (P_{\alpha}, Q_{\alpha} : \alpha < \delta)$ be a finite support iteration with FS limit P_{δ} , of length $\delta < (2^{\kappa})^+$ with FS limit P_{δ} , where:

- For all $\alpha \in S$ the forcing Q_{α} is forced to have universe $\lambda_{\alpha} < \kappa$ ("small" forcing);
- For all $\alpha \in E$ the forcing Q_{α} is forced to be of the form $Q_{\alpha} = \mathbb{E} \cap V^{P'_{\alpha}}$ for an appropriate (see below) $P'_{\alpha} < P_{\alpha}$. of size $< \kappa_{nm}$.

Main Goal

Such iterations will not destroy any strongly unbounded family.

Without loss of generality we will only consider the dense subset of all conditions p which have a "shadow" s = shadow(p) such that

- s is a finite partial function with dom(s) = dom(p).
- For all $\alpha \in \text{supp}(p) \cap S : s(\alpha) \in \lambda_{\alpha} \text{ and } p \upharpoonright \alpha \Vdash p(\alpha) = s(\alpha).$
- For all $\alpha \in \operatorname{supp}(p) \cap E$: $s(\alpha) \in \omega \times \omega^{<\omega}$ and $p \upharpoonright \alpha \Vdash p(\alpha) || s(\alpha)$.

(i.e., $s(\alpha) \in V$ determines the stem and the width of $p(\alpha)$.

Let $\delta \leq 2^{\kappa}$ (or even $\delta < (2^{\kappa})^+$), $\delta = S \cup E$. We consider an iteration $\overline{P} = (P_{\alpha}, Q_{\alpha} : \alpha < \delta)$ where we use small forcings $\alpha \in S$, and subposets of \mathbb{E} for $\alpha \in E$.

Subgoal

Whenever $\bar{p} = (p_k : k \in \omega)$ is a sufficiently nice family of conditions, then there exists a sequence $\bar{D} = (D^{\alpha} : \alpha \leq \delta)$ of ultrafilter names $(D^{\alpha} = P_{\alpha} - name)$ such that:

- Some kind of \overline{D} -limit of \overline{p} is defined, and:
- (lim_{D̄} p̄) ⊢ almost all p_k (with respect to D_δ) are in G_{Pδ}.
 ("infinitely many" is good enough)

To get from the subgoal to the goal is left as an exercise. What does "sufficiently nice" mean?

Definition

A family $(p_i : i \in I)$ of conditions is called a uniform Δ -system, if:

- The supports $(\text{supp}(p_i) : i \in I)$ form a Δ -system.
- The shadows agree on the root.

Let $\delta \leq 2^{\kappa}$ (or even $\delta < (2^{\kappa})^+$), $\delta = S \cup E$. We consider an iteration $\overline{P} = (P_{\alpha}, Q_{\alpha} : \alpha < \delta)$ where we use small forcings $\alpha \in S$, and subposets of \mathbb{E} for $\alpha \in E$.

Definition

Let \overline{P} be an iteration as above. A guardrail for \overline{P} is a "shadow with full support", that is: a sequence $(h(\alpha) : \alpha < \delta)$ where each $h(\alpha)$ is

• if $\alpha \in S$: an ordinal $< \lambda_{\alpha}$, i.e., a standard name for a condition in Q_{α} .

• if
$$\alpha \in \delta \setminus S$$
: a pair (s, w) with $s \in \omega^{<\omega}$, $w \in \omega$.

A condition $p \in P_{\delta}$ is compatible with *h* if *h* extends the shadow of *p*.

Note:

- Shadows have finite support. ("basic neighborhood in product space")
- Guardrails have full support. ("element of product space")
- For every guardrail h, the set P_h := {p ∈ P_δ : shadow(p) ⊆ h} is centered.

Let $\delta \leq 2^{\kappa}$ (or even $\delta < (2^{\kappa})^+$), $\delta = S \cup E$. We consider an iteration $\overline{P} = (P_{\alpha}, Q_{\alpha} : \alpha < \delta)$ where we use small forcings $\alpha \in S$, and subposets of \mathbb{E} for $\alpha \in E$.

Definition

A family $(p_i : i \in I)$ of conditions is called a uniform Δ -system, if:

- The supports $(\text{supp}(p_i) : i \in I)$ form a Δ -system.
- The shadows agree on the root.

Each countable uniform Δ -system \overline{p} defines a basic open set in the σ -box product topology

Lemma (Engelking-Karłowicz 1965)

Assume $\delta < (2^{\kappa})^+$, $\kappa = \kappa^{\aleph_0}$. Then there is a family $(h_{\epsilon} : \epsilon < \kappa)$ of guardrails such that for every countable uniform Δ -system $\bar{p} = (p_k : k \in \omega)$ there is some ϵ such that h_{ϵ} witnesses the uniformity of \bar{p} .

The σ -box product is κ -separable.

(二)、

Recall that we have a "dense" family $(h_{\epsilon} : \epsilon < \kappa)$ of guardrails. Every countable uniform Δ -system follows one of these guardrails. Fix $\epsilon < \kappa$ and consider h_{ϵ} .

Subsubgoal

Whenever $\bar{p} = (p_k : k \in \omega)$ is a Δ -system of conditions, all compatible with h_{ϵ} , then there exists a sequence $\bar{D} = \bar{D}^{\epsilon} = (D_{\alpha}^{\epsilon} : \alpha \leq \delta)$ of ultrafilter names $(D_{\alpha}^{\epsilon} a P_{\alpha}\text{-name})$ such that: $\lim_{\bar{D}^{\epsilon}} \bar{p}$ is defined, and:

• $(\lim_{\overline{D}^{\epsilon}} \overline{p}) \Vdash \text{ almost all } p_k \text{ (with respect to } D^{\epsilon}_{\delta}) \text{ are in } G_{P_{\delta}}.$

It is easy to achieve this goal. The support of $q := \lim \bar{p}$ will be the root Δ of \bar{p} . For $\alpha \in E \cap \Delta$ we let $q(\alpha) = \lim_{D_{\alpha}} (p_k(\alpha) : k \in \omega)$. We have to make sure that $q(\alpha)$ will be in Q_{α} , which was defined as $\mathbb{E} \cap V^{P'_{\alpha}}$ for appropriate $P'_{\alpha} < P_{\alpha}$ of size $< \kappa_{nm}$. When defining $\bar{P} = (P_{\alpha}, Q_{\alpha} : \alpha < \delta)$, we will also define a sequence $(D_{\alpha}^{\epsilon} : \alpha < \delta)$. For $\alpha \in E$, we have to ensure that $D_{\alpha}^{\epsilon} \cap V^{P'_{\alpha}}$ is an element of $V^{P'_{\alpha}}$.

Since there are only κ many ϵ , we can do this for all ϵ .

Given a strongly unbounded family \overline{F} of size κ and $\kappa \leq \kappa_{nm} \leq \kappa_{ct} \leq 2^{\kappa}$, we can construct a finite support iteration ($P_{\alpha}, Q_{\alpha} : \alpha < \kappa_{ct}$), mixing

- arbitrary ccc forcings Q_{lpha} of size $<\kappa$
- forcings Q_{α} of the form $\mathbb{E} \cap V^{P'_{\alpha}}$ for "sufficiently closed" $P'_{\alpha} < P_{\alpha}$ of size $< \kappa_{nm}$

which will preserve the unboundedness of \overline{F} .