Computable structures on a cone

Matthew Harrison-Trainor

University of California, Berkeley

Sets and Computations, Singapore, April 2014

Overview

Setting: \mathcal{A} a computable structure.

Overview

Setting: A a computable structure.

Suppose that ${\mathcal A}$ is a "natural structure". OR

Consider behaviour on a cone.

Overview

Setting: A a computable structure.

Suppose that \mathcal{A} is a "natural structure". OR

Consider behaviour on a cone.

What are the possible:

- computable dimensions of A? (McCoy)
- degrees of categoricity of A? (Csima, H-T)
- degree spectra of relations on \mathcal{A} ? (H-T)

All of our languages will be computable.

All of our structures will be countable with domain ω .

A structure is computable if its atomic diagram is computable.

Natural structures

What is a "natural structure"?

A "natural structure" is a structure that one would expect to encounter in normal mathematical practice, such as (ω , <), a vector space, or an algebraically closed field.

A "natural structure" is <u>not</u> a structure that has been constructed by a method such as diagonalization to have some computability-theoretic property.

Key observation: Arguments involving natural structures tend to relativize.

Cones and Martin measure

Definition

The cone of Turing degrees above ${\boldsymbol{c}}$ is the set

 $C_{\mathbf{c}} = \{\mathbf{d} : \mathbf{d} \ge \mathbf{c}\}.$

Theorem (Martin 1968, assuming AD)

Every set of Turing degrees either contains a cone, or is disjoint from a cone.

Cones and Martin measure

Definition

The cone of Turing degrees above ${\boldsymbol{c}}$ is the set

 $\mathcal{C}_{\mathbf{c}} = \{\mathbf{d} : \mathbf{d} \ge \mathbf{c}\}.$

Theorem (Martin 1968, assuming AD)

Every set of Turing degrees either contains a cone, or is disjoint from a cone.

Think of sets containing a cone as "large" or "measure one" and sets not containing a cone as "small" or "measure zero."

Note that the intersection of countably many cones contains another cone.

Suppose that P is a property that relativizes. We say that property P holds on a cone if it holds relative to all degrees **d** on a cone.

Definition

 \mathcal{A} is computably categorical if every two computable copies of \mathcal{A} are computably isomorphic.

Suppose that P is a property that relativizes. We say that property P holds on a cone if it holds relative to all degrees **d** on a cone.

Definition

 \mathcal{A} is **d**-computably categorical if every two **d**-computable copies of \mathcal{A} are **d**-computably isomorphic.

Suppose that P is a property that relativizes. We say that property P holds on a cone if it holds relative to all degrees **d** on a cone.

Definition

 \mathcal{A} is **d**-computably categorical if every two **d**-computable copies of \mathcal{A} are **d**-computably isomorphic.

Definition

 \mathcal{A} is computably categorical on a cone if there is a cone C_c such that \mathcal{A} is **d**-computably categorical for all $\mathbf{d} \in C_c$.

Suppose that P is a property that relativizes. We say that property P holds on a cone if it holds relative to all degrees **d** on a cone.

Definition

 \mathcal{A} is **d**-computably categorical if every two **d**-computable copies of \mathcal{A} are **d**-computably isomorphic.

Definition

 \mathcal{A} is computably categorical on a cone if there is a cone C_c such that \mathcal{A} is **d**-computably categorical for all $\mathbf{d} \in C_c$.

Theorem (Goncharov 1975, Montalbán 2015)

The following are equivalent:

- (1) A is computably categorical on a cone,
- (2) A has a Scott family of Σ_1^{in} formulas,
- (3) \mathcal{A} has a Σ_3^{in} Scott family.

Recall that arguments involving natural structures tend to relativize. So a natural structure has some property P if and only if it has property P on a cone.

We can study natural structures by studying all structure relative to a cone. If we prove that all structures have property P on a cone, then natural structures should have property P relative to **0**.

Computable Dimension

Computable dimension

Definition

 \mathcal{A} has computable dimension $n \in \{1, 2, 3, ...\} \cup \{\omega\}$ if \mathcal{A} has n computable copies up to computable isomorphism.

Computable dimension

Definition

 \mathcal{A} has computable dimension $n \in \{1, 2, 3, ...\} \cup \{\omega\}$ if \mathcal{A} has n computable copies up to computable isomorphism.

Theorem (Goncharov 1980)

For each $n \in \{1, 2, 3, ...\} \cup \{\omega\}$ there is a computable structure of computable dimension n.

Computable dimension 1 or $\boldsymbol{\omega}$

The	orem		
The following structures have computable dimension 1 or ω :			
1	computable linear orders,	[Remn	nel 81, Dzgoev and Goncharov 80]
2	Boolean algebras,	[Goncharov 73, Laroc	he 77, Dzgoev and Goncharov 80]
3	abelian groups,		[Goncharov 80]
4	algebraically closed fields,	[Nurta	zin 74, Metakides and Nerode 79]
5	vector spaces,		[ibid.]
6	real closed fields,		[ibid.]
0	Archimedean ordered abel	an groups [0	Soncharov, Lempp, Solomon 2000]
8	differentially closed fields,		[H-T, Melnikov, Montalbán 2014]
9	difference closed fields.		[ibid.]

Computable dimension relative to a cone

Definition

The computable dimension of \mathcal{A} relative to **d** is the number **d**-computable copies of \mathcal{A} up to **d**-computable isomorphism.

Computable dimension relative to a cone

Definition

The computable dimension of \mathcal{A} relative to **d** is the number **d**-computable copies of \mathcal{A} up to **d**-computable isomorphism.

Definition

The computable dimension of A on a cone is the *n* such that the computable dimension of A is *n* for all **d** on a cone.

The computable dimension of \mathcal{A} on a cone is well-defined.

Theorem on computable dimension

Let \mathcal{A} be a computable structure.

Theorem (McCoy 2002)

If for all **d**, A has computable dimension $\leq n \in \omega$, then for all **d**, A has computable dimension one.

Theorem on computable dimension

Let ${\mathcal A}$ be a computable structure.

Theorem (McCoy 2002)

If for all **d**, A has computable dimension $\leq n \in \omega$, then for all **d**, A has computable dimension one.

Let \mathcal{A} be a countable structure.

Corollary Relative to a cone:

 \mathcal{A} has computable dimension 1 or ω .

Degrees of Categoricity

Degrees of categoricity

Definition

 \mathcal{A} is **d**-computably categorical if

 \boldsymbol{d} computes an isomorphism between $\mathcal A$ and any computable copy of $\mathcal A.$

Degrees of categoricity

Definition

 ${\mathcal A}$ is $d\mbox{-}computably categorical if$

 \boldsymbol{d} computes an isomorphism between $\mathcal A$ and any computable copy of $\mathcal A.$

Definition

- ${\cal A}$ has degree of categoricity ${\boldsymbol d}$ if:
- (1) ${\mathcal A}$ is d-computably categorical and
- (2) if \mathcal{A} is **e**-computably categorical, then $\mathbf{e} \geq \mathbf{d}$.

Equivalently: **d** is the least degree such that \mathcal{A} is **d**-computably categorical.

Degrees of categoricity

Definition

 ${\mathcal A}$ is $d\mbox{-}computably categorical if$

 \boldsymbol{d} computes an isomorphism between $\mathcal A$ and any computable copy of $\mathcal A.$

Definition

- ${\cal A}$ has degree of categoricity ${\boldsymbol d}$ if:
- (1) \mathcal{A} is **d**-computably categorical and
- (2) if \mathcal{A} is **e**-computably categorical, then $\mathbf{e} \geq \mathbf{d}$.

Equivalently: **d** is the least degree such that \mathcal{A} is **d**-computably categorical.

Example

 $(\mathbb{N},<)$ has degree of categoricity 0'.

Which degrees are degrees of categoricity?

Theorem (Fokina, Kalimullin, Miller 2010; Csima, Franklin, Shore 2013)

If α is a computable ordinal then $0^{(\alpha)}$ is a degree of categoricity.

If α is a computable successor ordinal and **d** is d.c.e. in and above $0^{(\alpha)}$, then **d** is a degree of categoricity.

Which degrees are degrees of categoricity?

Theorem (Fokina, Kalimullin, Miller 2010; Csima, Franklin, Shore 2013)

If α is a computable ordinal then $0^{(\alpha)}$ is a degree of categoricity.

If α is a computable successor ordinal and **d** is d.c.e. in and above $0^{(\alpha)}$, then **d** is a degree of categoricity.

Theorem (Anderson, Csima 2014)

- (1) There is a Σ_2^0 degree **d** which is not a degree of categoricity.
- (2) Every non-computable hyperimmune-free degree is not a degree of categoricity.

Which degrees are degrees of categoricity?

Theorem (Fokina, Kalimullin, Miller 2010; Csima, Franklin, Shore 2013)

If α is a computable ordinal then $0^{(\alpha)}$ is a degree of categoricity.

If α is a computable successor ordinal and **d** is d.c.e. in and above $0^{(\alpha)}$, then **d** is a degree of categoricity.

Theorem (Anderson, Csima 2014)

- (1) There is a Σ_2^0 degree **d** which is not a degree of categoricity.
- (2) Every non-computable hyperimmune-free degree is not a degree of categoricity.

Question (Fokina, Kalimullin, Miller 2010)

Which degrees are a degree of categoricity?

Strong degrees of categoricity

Definition

\boldsymbol{d} is a strong degree of categoricity for $\mathcal A$ if

- (1) \mathcal{A} is **d**-computably categorical and
- (2) there are computable copies \mathcal{A}_1 and \mathcal{A}_2 of \mathcal{A} such every isomorphism
 - $f: \mathcal{A}_1 \to \mathcal{A}_2 \text{ computes } \mathbf{d}.$

Strong degrees of categoricity



Every known example of a degree of categoricity is a strong degree of categoricity.

Question (Fokina, Kalimullin, Miller 2010)

Is every degree of categoricity a strong degree of categoricity?

Relative notions of categoricity

Definition

 \mathcal{A} is **d**-computably categorical <u>relative to c</u> if **d** computes an isomorphism between \mathcal{A} and any <u>c</u>-computable copy of \mathcal{A} .

Definition

 ${\cal A}$ has degree of categoricity ${\bf d}$ relative to ${\bf c}$ if:

 $\ \underline{\mathbf{d} \geq \mathbf{c}},$

2 \mathcal{A} is **d**-computably categorical <u>relative to **c**</u> and

(3) if A is **e**-computably categorical <u>relative to **c**</u>, then **e** \geq **d**.

Equivalently: **d** is the least degree above \underline{c} such that \mathcal{A} is **d**-computably categorical <u>relative to c</u>.

Theorem on degrees of categoricity

Let $\ensuremath{\mathcal{A}}$ be a countable structure.

```
Theorem (Csima, H-T 2015)
```

Relative to a cone:

 \mathcal{A} has strong degree of categoricity $0^{(\alpha)}$ for some ordinal α .

More precisely:

Theorem (precisely stated)

There is an ordinal α such that for all degrees **c** on a cone, \mathcal{A} has strong degree of categoricity $\mathbf{c}^{(\alpha)}$ relative to **c**.

```
\alpha is the Scott rank of \mathcal{A}:
it is the least \alpha such that \mathcal{A} has a \Sigma_{\alpha+2}^{in} Scott sentence.
```

Degree Spectra of Relations

Degree spectra

Let \mathcal{A} be a (computable) structure and R an automorphism-invariant relation on \mathcal{A} .

Definition (Harizanov 1987)

The degree spectrum of R is

 $dgSp(R) = \{d(R^{\mathcal{B}}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}$

Degree spectra

Let \mathcal{A} be a (computable) structure and R an automorphism-invariant relation on A.

Definition (Harizanov 1987)

The degree spectrum of R is

 $dgSp(R) = \{d(R^{\mathcal{B}}) : \mathcal{B} \text{ is a computable copy of } \mathcal{A}\}$

Many pathological examples have been constructed:

- $\{0, \mathbf{d}\}, \mathbf{d}$ is Δ_3^0 but not Δ_2^0 degree.
- the degrees below a given c.e. degree.
- {0, **d**}, **d** is a c.e. degree.

[Harizanov 1991]

[Hirschfeldt 2001]

[Hirschfeldt 2001]

Degree spectra of linear orders

For particular relations and structures, degree spectra are often nicely behaved.

Theorem (Mal'cev 1962)

Let R be the relation of linear dependence of n-tuples in an infinite-dimensional \mathbb{Q} -vector space. Then

dgSp(R) = c.e. degrees.

Degree spectra of linear orders

For particular relations and structures, degree spectra are often nicely behaved.

Theorem (Mal'cev 1962)

Let R be the relation of linear dependence of n-tuples in an infinite-dimensional \mathbb{Q} -vector space. Then

dgSp(R) = c.e. degrees.

Theorem (Knoll 2009; Wright 2013)

Let R be a unary relation on $(\omega, <)$. Then

$$dgSp(\omega, R) = \Delta_1^0 \text{ or } dgSp(\omega, R) = \Delta_2^0.$$

Degree spectra of c.e. relations

Theorem (Harizanov 1991)

Suppose that R is computable. Suppose moreover that the property (*) holds of A and R. Then

 $dgSp(R) \neq {\mathbf{0}} \Rightarrow dgSp(R) \supseteq c.e.$ degrees.

(*) For every \bar{a} , we can computably find $a \in R$ such that for all \bar{b} and quantifier-free formulas $\theta(\bar{z}, x, \bar{y})$ such that $\mathcal{A} \models \theta(\bar{a}, a, \bar{b})$, there are $a' \notin R$ and \bar{b}' such that $\mathcal{A} \models \theta(\bar{a}, a', \bar{b}')$.

On a cone, the effectiveness condition holds.

Degree spectra relative to a cone

Definition

The degree spectrum of R below the degree **d** is

$$\mathsf{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} = \{ d(R^\mathcal{B}) \oplus \mathbf{d} : \mathcal{B} \cong \mathcal{A} ext{ and } \mathcal{B} \leq_\mathcal{T} \mathbf{d} \}$$

Degree spectra relative to a cone

Definition

The degree spectrum of R below the degree **d** is

$$\mathsf{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} = \{ d(R^\mathcal{B}) \oplus \mathbf{d} : \mathcal{B} \cong \mathcal{A} ext{ and } \mathcal{B} \leq_\mathcal{T} \mathbf{d} \}$$

Corollary (Harizanov)

One of the following is true for all degrees **d** on a cone:

• dgSp
$$(\mathcal{A}, R)_{\leq \mathbf{d}} = \{\mathbf{d}\}, or$$

2 dgSp
$$(\mathcal{A}, R) \leq \mathbf{d} \supseteq$$
 degrees c.e. in and above **d**.

Relativised degree spectra

For any degree **d**, either:

- (1) $dgSp(\mathcal{A}, R)_{\leq d} = dgSp(\mathcal{B}, S)_{\leq d}$,
- (2) $dgSp(\mathcal{A}, R)_{\leq d} \subsetneq dgSp(\mathcal{B}, S)_{\leq d}$,
- (3) $\mathsf{dgSp}(\mathcal{A}, R)_{\leq \mathbf{d}} \supsetneq \mathsf{dgSp}(\mathcal{B}, S)_{\leq \mathbf{d}}$, or
- (4) none of the above.

By Borel determinacy, exactly one of these four options happens on a cone.

Definition (Montalbán)

The degree spectrum of (\mathcal{A}, R) on a cone is equal to that of (\mathcal{B}, S) if we have equality on a cone, and similarly for containment and incomparability.

Two classes of degrees

Definition

A set A is d.c.e. if it is of the form B - C for some c.e. sets B and C.

A set is n-c.e. if it has a computable approximation which is allowed n alternations.

We omit the definition of α -c.e.

Two classes of degrees

Definition

A set A is d.c.e. if it is of the form B - C for some c.e. sets B and C.

A set is n-c.e. if it has a computable approximation which is allowed n alternations.

We omit the definition of $\alpha\text{-c.e.}$

Definition

A set A is CEA in B if A is c.e. in B and $A \ge_T B$.

A is *n*-CEA if there are sets $A_1, A_2, \ldots, A_n = A$ such that A_1 is c.e., A_2 is CEA in A_1 , and so on.

We omit the definition of $\alpha\text{-CEA}.$

Natural classes of degrees

Let Γ be a natural class of degrees which relativises. For example the Δ^0_{α} , Σ^0_{α} , Π^0_{α} , α -c.e., or α -CEA degrees.

For any of these classes Γ of degrees, there is a structure $\mathcal A$ and a relation R such that, for each degree $\mathbf d,$

$$\mathsf{dgSp}_{\leq \mathbf{d}}(\mathcal{A}, R) = \mathsf{\Gamma}(\mathbf{d}) \oplus \mathbf{d}.$$

So we may talk, for example, about a degree spectrum being equal to the Σ_α degrees on a cone.

Main question about degree spectra

Harizanov's result earlier showed that degree spectra on a cone behave nicely with respect to c.e. degrees.

Corollary (Harizanov)

Any degree spectrum on a cone is either equal to Δ_1^0 or contains Σ_1^0 .

Main question about degree spectra

Harizanov's result earlier showed that degree spectra on a cone behave nicely with respect to c.e. degrees.

Corollary (Harizanov)

Any degree spectrum on a cone is either equal to Δ_1^0 or contains Σ_1^0 .

Question

What are the possible degree spectra on a cone?

D.c.e. relations

Theorem (H-T 2014)

There is are computable structures A and B with relatively intrinsically d.c.e. relations R and S on A and B respectively with the following property:

for any degree **d**, $dgSp(\mathcal{A}, R)_{\leq d}$ and $dgSp(\mathcal{B}, S)_{\leq d}$ are incomparable.

D.c.e. relations

Theorem (H-T 2014)

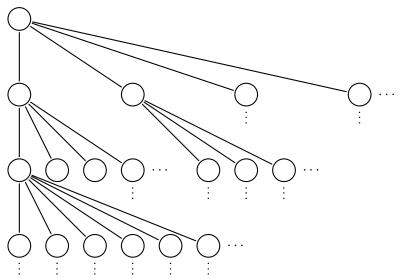
There is are computable structures A and B with relatively intrinsically d.c.e. relations R and S on A and B respectively with the following property:

for any degree **d**, $dgSp(\mathcal{A}, R)_{\leq d}$ and $dgSp(\mathcal{B}, S)_{\leq d}$ are incomparable.

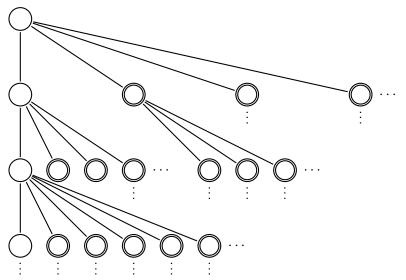
Corollary (H-T 2014)

There are two degree spectra on a cone which are incomparable, each contained within the d.c.e. degrees and containing the c.e. degrees.

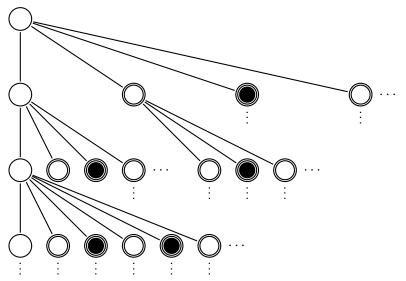
 \mathcal{A} is a tree with a successor relation.



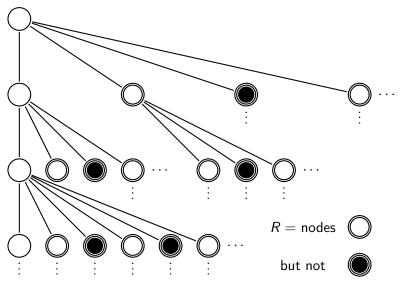
 \mathcal{A} is a tree with a successor relation.



 \mathcal{A} is a tree with a successor relation.

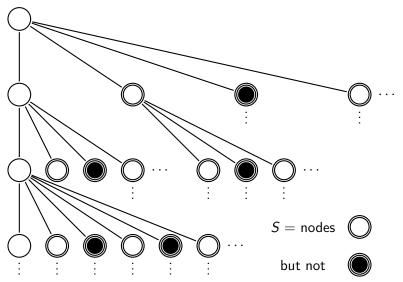


 ${\cal A}$ is a tree with a successor relation.



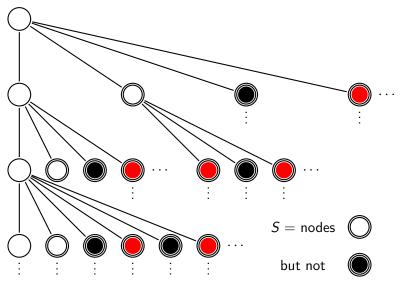
The structure $\ensuremath{\mathcal{B}}$

 \mathcal{B} is a tree with a tree-order.



The structure $\ensuremath{\mathcal{B}}$

 \mathcal{B} is a tree with a tree-order.



A question of Ash and Knight

Question (Ash, Knight 1997)

(Assuming some effectiveness condition):

Is any relation which is not intrinsically Δ^0_{α} realizes every α -CEA degree?

Stated in terms of degree spectra on a cone:

Does any degree spectrum on a cone which is not contained in Δ^0_{α} contain α -CEA?

Ash and Knight [1995] showed that we cannot replace α -CEA with Σ_{α}^{0} .

A question of Ash and Knight

Ash and Knight gave a result which goes towards answering this question.

Theorem (Ash, Knight 1997)

Let A be a computable structure with an additional computable relation R. Suppose that R is not relatively intrinsically Δ^0_{α} .

Moreover, suppose that A is α -friendly and that for all \bar{c} , we can find a $\notin R$ which is α -free over \bar{c} .

Then for any Σ^0_{α} set C, there is a computable copy $\mathcal B$ of $\mathcal A$ such that

$$R^{\mathcal{B}} \oplus \Delta^{0}_{\alpha} \equiv_{\mathcal{T}} C \oplus \Delta^{0}_{\alpha}$$

where Δ_{α}^{0} is a Δ_{α}^{0} -complete set.

For the case of 2-CEA, we can answer this question:

Theorem (H-T 2014)

Let A be a structure and R a relation on A. Then one of the following is true relative to all degrees on a cone:

• dgSp
$$(\mathcal{A}, R) \subseteq \Delta_2^0$$
, or

2
$$-CEA \subseteq dgSp(\mathcal{A}, R).$$

The picture so far

