Computability theory and uncountable structures

Noah Schweber

Sets and Computations, April 17 2015

Joint with Greg Igusa, Julia Knight and Antonio Montalbán

Table of Contents

- 2 Computability in generic extensions
- 3 Versions of the reals

2 Computability in generic extensions

3 Versions of the reals

What phenomena occur across every generic extension

Global behavior tends to be independent of the generic: if \mathbb{P} is reasonably homogeneous, then the theory of V[G] does not depend on G. On the other hand, individual sets in generic extensions must vary wildly:

Theorem (Solovay)

Suppose G_0, G_1 are two mutually generics. Then $V[G_0] \cap V[G_1] = V$.

Proof. Take $\nu[G_0] \in (V[G_0] \cap V[G_1]) - V$ of minimal rank. Then $\nu[G_0] \subset V$. If $\nu[G_0] = \mu[G_1]$, then this is forced by some $(p, q) \in \mathbb{P}^2$. The set $\{x \in V : \exists r \leq p(r \Vdash x \in \nu)\}$ is in V, and must equal $\nu[G_0]$. \Box

Generically presentable structures

Solovay: if a set is in every generic extension by some forcing, it exists already.

Definition

A generically presentable structure up to \cong is a pair $(
u,\mathbb{P})$ such that

 $\Vdash_{\mathbb{P}} ``\nu \text{ is a structure with domain } \omega" \quad \text{and} \quad \Vdash_{\mathbb{P}^2} ``\nu[G_0] \cong \nu[G_1]".$

A copy of (ν, \mathbb{P}) is a $\mathcal{A} \in V$ with $\Vdash_{\mathbb{P}}$ " $\mathcal{A} \cong \nu$ ". (Maybe $dom(\mathcal{A}) \neq \omega$.)

Recently and independently introduced by Kaplan and Shelah.

Question

If (ν, \mathbb{P}) is a generically presentable structure, what hypotheses ensure that it has a copy in V?

Looking at the forcing: positive results

Looking at the forcing: positive results

Theorem (Knight, Montalbán, S.)

- If A is generically presentable by a forcing not making ω₂ countable, then A has a copy in V;
- If A is generically presentable by a forcing not making ω₁ countable, then that copy is countable.

Looking at the forcing: positive results

Theorem (Knight, Montalbán, S.)

- If A is generically presentable by a forcing not making ω₂ countable, then A has a copy in V;
- 2 If A is generically presentable by a forcing not making ω_1 countable, then that copy is countable.

Independently proved by Kaplan and Shelah.

Proof. For (1), the age of the Morleyization of \mathcal{A} lives in V; by Delhomme-Pouzet-Sagi-Sauer, Fraisse limits of ages of size \aleph_1 exist. For (2), Scott sentence is in $\mathcal{L}_{\omega_1\omega}^V$ since $\omega_1^V = \omega_1^{V[G]}$, and existence of countable models is absolute. \Box

Counterexamples to Vaught's conjecture

Corollary (Harrington)

Any counterexample to Vaught's conjecture has models of size \aleph_1 with Scott rank arbitrarily high below ω_2 .

Independently by Larson, and by Baldwin/S. Friedman/Koerwien/Laskowski.

Proof. Given $\alpha < \omega_2$, collapse ω_1 to ω , get $B \models T$ with $sr(B) > \alpha$. If B not generically presentable, can get perfect set of such models. So B is generically presentable, hence has a copy in V since ω_2^V is still uncountable. \Box

Remark

Hjorth showed that counterexamples need not have models of size \aleph_2 .

Looking at the structure: positive results

Theorem (Knight, Montalbán, S.)

If A is generically presentable and rigid (no nontrivial automorphisms), then A has a copy in V.

Independently by Paul Larson.

Proof uses amalgamation argument — unique way to amalgamate is even better than lots of ways to amalgamate. Given $p \in \mathbb{P}$ presenting \mathcal{A} , look at portion \mathcal{A}_p of structure built by p; can glue these together in unique way, so inside V. \Box

Looking at the structure: positive results

Theorem (Knight, Montalbán, S.)

If A is generically presentable and rigid (no nontrivial automorphisms), then A has a copy in V.

Independently by Paul Larson.

Proof uses amalgamation argument — unique way to amalgamate is even better than lots of ways to amalgamate. Given $p \in \mathbb{P}$ presenting \mathcal{A} , look at portion \mathcal{A}_p of structure built by p; can glue these together in unique way, so inside V. \Box

Theorem (Zapletal, unpublished)

Generically presentable trees have copies.

Kaplan-Shelah, following Zapletal: study when generically presentable linear orders, models of superstable theories, already exist.

Looking at the forcing: negative results

Looking at the forcing: negative results

Theorem (Knight, Montalbán, S.)

If forcing with \mathbb{P} makes ω_2 countable, then there is a structure \mathcal{A} , generically presentable by \mathbb{P} , which has no copy in the ground model.

Looking at the forcing: negative results

Theorem (Knight, Montalbán, S.)

If forcing with \mathbb{P} makes ω_2 countable, then there is a structure \mathcal{A} , generically presentable by \mathbb{P} , which has no copy in the ground model.

Independently by Kaplan-Shelah

Uses construction of Laskowski and Shelah, and later Hjorth: theory with predicate U and no atomic models if $|U| = \aleph_2$, but countable atomic model in which U is set of indiscernibles. In generic extension, we can attach (ω_2 , <) to indiscernibles of this model; resulting structure has a copy after making ω_2 countable but has no copy in ground model.

Aside: generically presentable cardinalities

Definition

A generically presentable cardinality is a pair (ν, \mathbb{P}) where ν is a \mathbb{P} -name and $\Vdash_{\mathbb{P}\times\mathbb{P}} \nu[G_0] \equiv \nu[G_1]$. (ν, \mathbb{P}) has no copy in V if for no $A \in V$ do we have $\Vdash_{\mathbb{P}} A \equiv \nu$.

Question

Is it consistent with ZF that there are generically presentable cardinalities with no copies?

Note that forcing over ZF-models can add new cardinalities (Ex: Truss ????)

Question (Zapletal)

Is it consistent with ZF that there is a generically presentable cardinality (ν, \mathbb{P}) with no copy in V, such that ν is a name for a set of reals?

Generically presentable structures

2 Computability in generic extensions

3 Versions of the reals

Classical computable structure theory

We study the complexity of a structure by looking at its *copies*: for a countable structure S, a *copy* of S is a structure S with domain ω isomorphic to S.

Throughout, structures have finite signature.

If \mathcal{A} is a countable structure, a *copy* of \mathcal{A} is a structure which is isomorphic to \mathcal{A} and has domain ω ; we identify copies with the reals coding them.

Definition (Muchnik reducibility)

If \mathcal{A} , \mathcal{B} are structures, \mathcal{A} is *Muchnik reducible to* \mathcal{B} if (nonuniformly) every copy of \mathcal{B} computes a copy of \mathcal{A} ; we write $\mathcal{A} \leq_w \mathcal{B}$.

Classical computable structure theory

We study the complexity of a structure by looking at its *copies*: for a countable structure S, a *copy* of S is a structure S with domain ω isomorphic to S.

Throughout, structures have finite signature.

If \mathcal{A} is a countable structure, a *copy* of \mathcal{A} is a structure which is isomorphic to \mathcal{A} and has domain ω ; we identify copies with the reals coding them.

Definition (Muchnik reducibility)

If \mathcal{A} , \mathcal{B} are structures, \mathcal{A} is *Muchnik reducible to* \mathcal{B} if (nonuniformly) every copy of \mathcal{B} computes a copy of \mathcal{A} ; we write $\mathcal{A} \leq_{w} \mathcal{B}$.

- \mathcal{A} is computably presentable $\implies \mathcal{A} \leq_w \mathcal{B}$
- For $X \subseteq \mathcal{A}$ finite, the substructure generated by X is $\leq_w \mathcal{A}$
- $\mathcal{L}, \mathcal{L}_0, \mathcal{L}_1$ linear orders $\implies \mathcal{L} \leq_w \mathcal{L}_0 + 1 + \mathcal{L} + 1 + \mathcal{L}_1$
- If $\mathcal{L} \prec \hat{\mathcal{L}}$ are linear orders, need not have $\mathcal{L} \leq_{w} \hat{\mathcal{L}}$ (Harrison order)

Uncountable computable structure theory

For \mathcal{A} uncountable, \mathcal{A} has no copies whatsoever, so \leq_w is not useful. There are many ways one might generalize computability structure theory to uncountable settings.

Today: want notion which agrees with \leq_w on countable structures, and is generally not contingent on set-theoretic axioms.

Uncountable computable structure theory

For \mathcal{A} uncountable, \mathcal{A} has no copies whatsoever, so \leq_w is not useful. There are many ways one might generalize computability structure theory to uncountable settings.

Today: want notion which agrees with \leq_w on countable structures, and is generally not contingent on set-theoretic axioms.

We ask, "what would the complexity of \mathcal{A} be **if** \mathcal{A} were countable?"

Definition (Generic Muchnik reducibility (S.))

For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, we write $\mathcal{A} \leq_w^* \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension of the universe in which both are countable.

Can similarly study other computability-theoretic reductions between uncountable structures

Absoluteness

Definition (Generic Muchnik reducibility (S.))

For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, $\mathcal{A} \leq_w^* \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension in which both are countable.

Absoluteness

Definition (Generic Muchnik reducibility (S.))

For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, $\mathcal{A} \leq_w^* \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension in which both are countable.

Theorem (Shoenfield Absoluteness)

If φ is Π_2^1 with parameters from \mathbb{R} , we have:

$$V[G] \models \varphi \iff V \models \varphi.$$

Corollary

- We can replace "every generic extension" by "some generic extension" in definition of generic Muchnik reducibility.
- For \mathcal{A}, \mathcal{B} countable, $\mathcal{A} \leq^*_w \mathcal{B} \iff \mathcal{A} \leq_w \mathcal{B}$.

Back to generic presentability

Theorem (Knight, Montalbán, S.)

If \mathcal{A} is generically presentable, and is generically Muchnik reducible to a structure $\mathcal{B} \in V$ with $|\mathcal{B}| \leq \aleph_1$, then \mathcal{A} has a copy in V.

Proof.

In V[G] with $\omega = |\omega_1^V| < |\omega_2^V|$, let $B \cong \mathcal{B}$ with domain ω . Let V[G][H] be further extension in which \mathcal{A} has a copy. $\exists e$ such that $V[G][H] \models "\Phi_e^B \cong \mathcal{A}"$. In V[G], Φ_e^B satisfies Scott sentence of \mathcal{A} . Existence of countable models of $\mathcal{L}_{\omega_1\omega}$ -sentences is absolute. So \mathcal{A} has a copy in V[G], and hence in V.

Proposition (Knight, Montalban, S.)

Counterexample to "Shoenfield for structures" is $\leq_{w}^{*} (\omega_2, <)$.

Proof. Theory of Laskowski-Shelah has computable atomic model. \Box

Noah Schweber

Computability theory and uncountable structures

Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

$$\mathcal{C} = (\mathbb{C}; +, \times), \qquad \mathcal{W} = (\omega, \mathcal{P}(\omega); \mathit{Succ}, \in), \qquad \mathcal{R} = (\mathbb{R}; +, \times)$$

Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

$$\mathcal{C} = (\mathbb{C}; +, imes), \qquad \mathcal{W} = (\omega, \mathcal{P}(\omega); \mathit{Succ}, \in), \qquad \mathcal{R} = (\mathbb{R}; +, imes)$$

Observation

C is "generically computably presentable:" C has a computable copy in every generic extension in which it is countable.

Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

$$\mathcal{C} = (\mathbb{C}; +, imes), \qquad \mathcal{W} = (\omega, \mathcal{P}(\omega); \mathit{Succ}, \in), \qquad \mathcal{R} = (\mathbb{R}; +, imes)$$

Observation

C is "generically computably presentable:" C has a computable copy in every generic extension in which it is countable.

Observation

Every countable structure is generically Muchnik reducible to \mathcal{W} and to \mathcal{R} .

Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

$$\mathcal{C} = (\mathbb{C}; +, imes), \qquad \mathcal{W} = (\omega, \mathcal{P}(\omega); \mathit{Succ}, \in), \qquad \mathcal{R} = (\mathbb{R}; +, imes)$$

Observation

C is "generically computably presentable:" C has a computable copy in every generic extension in which it is countable.

Observation

Every countable structure is generically Muchnik reducible to W and to \mathcal{R} .

Theorem (Igusa, Knight)

 \mathcal{W} is strictly less complicated than \mathcal{R} : $\mathcal{W} <^*_w \mathcal{R}$.

Independently by Downey, Greenberg, J. Miller (unpublished).

Some examples, II/III: ω_1

Some examples, II/III: ω_1

Proposition

For \mathcal{A} countable:

$$\mathcal{A} \leq^*_w (\omega_1, <) \iff \exists \text{ countable ordinal } \alpha \text{ with } \mathcal{A} \leq^*_w (\alpha, <).$$

Proof. Suppose $\mathcal{A} \leq_{w}^{*} (\omega_{1}, <)$. Let V[G] be generic extension in which ω_{1} is countable. Then we have

 $V[G] \models$ " $\mathcal{A} \leq_w (\alpha, <)$ for some countable ordinal α ."

This is a Σ_2^1 sentence with a real parameter (since \mathcal{A} is countable), so already true in V. \Box

Question

What families of countable structures are captured by some single uncountable structure?

Some examples, III/III: ω_1 and $\mathbb R$

Proposition (Richter)

If a real X is computable in every copy of a linear order \mathcal{L} , then X is computable.

Corollary

 $(\omega_1, <) \not\geq^*_w \mathcal{W}.$

Proposition (Ash, Knight)

If X' computes a copy of a linear order \mathcal{L} , then X computes a copy of $\omega \cdot \mathcal{L}$.

Corollary

 $(\omega_1, <) <^*_w \mathcal{W}.$

2 Computability in generic extensions

Versions of the reals

$$\mathcal{W} = (\omega \sqcup 2^{\omega}; \textit{Succ}, \in), \quad \mathcal{B} = (\omega \sqcup \omega^{\omega}; \textit{Succ}, \circ)$$

$$\mathcal{R} = (\mathbb{R}; +, imes)$$

 $\mathcal{R}^* = \omega_1$ -saturated real closed field realizing all types in V

$$\mathcal{R}_f = (\mathbb{R}; +, imes, f), \quad \mathcal{R}^+ = (\mathbb{R}; +)$$

Versions of the reals

$$\mathcal{W} = (\omega \sqcup 2^{\omega}; \textit{Succ}, \in), \quad \mathcal{B} = (\omega \sqcup \omega^{\omega}; \textit{Succ}, \circ)$$

$$\mathcal{R} = (\mathbb{R}; +, imes)$$

 $\mathcal{R}^*=~\omega_1$ -saturated real closed field realizing all types in V

$$\mathcal{R}_f = (\mathbb{R}; +, \times, f), \quad \mathcal{R}^+ = (\mathbb{R}; +)$$

There seem to be two levels of complexity:

$$\mathcal{W} \equiv^*_w \mathcal{B} \overset{*}{\overset{*}{\scriptstyle w}} \mathcal{R}^+ \equiv^*_w \mathcal{R} \equiv^*_w \mathcal{R}_f \quad (f \text{ analytic})$$

Simple reductions

Proposition (Igusa, Knight)

 $\mathcal{R}^* \geq^*_w \mathcal{B} \geq^*_w \mathcal{W}.$

Proposition (Igusa, Knight)

 $\mathcal{W} \equiv^*_{w} \mathcal{R}^*.$

Simple reductions

Proposition (Igusa, Knight)

 $\mathcal{R}^* \geq^*_w \mathcal{B} \geq^*_w \mathcal{W}.$

Proposition (Igusa, Knight)

 $\mathcal{W} \equiv^*_{w} \mathcal{R}^*.$

Theorem (Macintyre-Marker)

If S is a Scott set and $T \in S$ is a consistent theory, any enumeration of S computes the complete diagram of a recursively saturated model of T realizing exactly the types in S.

Proof of Prop. After collapse, \mathcal{W} is still a Scott set, and each ground real — including $Th(\mathcal{R})$ — appears in \mathcal{W} ; apply Macintyre-Marker. \Box

$\mathcal{R}^* <^*_w \mathcal{R}$, I/II

Definition

- If K is a real closed field:
 - *K* is Archimedean if every element of *K* is below some $q \in \mathbb{Q}$.
 - The *residue field* Res(K) of K be the quotient of the finite elements by the infinitesimal elements.
 - A residue field section of K is a subfield of K isomorphic to Res(K).
 - FT(K) ("finite transcendental") is the set of finite elements not infinitesimally close to an algebraic element.

$\mathcal{R}^* <^*_w \mathcal{R}$, I/II

Definition

- If K is a real closed field:
 - *K* is Archimedean if every element of *K* is below some $q \in \mathbb{Q}$.
 - The *residue field* Res(K) of K be the quotient of the finite elements by the infinitesimal elements.
 - A residue field section of K is a subfield of K isomorphic to Res(K).
 - FT(K) ("finite transcendental") is the set of finite elements not infinitesimally close to an algebraic element.

Lemma

If K is a real closed field with domain ω , then:

- If $\operatorname{Res}(K)$ has a $\Sigma^0_2(K)$ copy, then $\operatorname{FT}(K)$ is $\Sigma^0_2(K)$. . .
- . . . And so K has a residue field section which is $\Sigma_2^0(K)$.

$\mathcal{R}^* <^*_w \mathcal{R}$, II/II

Lemma

If K is a real closed field with domain ω , then:

- If $\operatorname{Res}(K)$ has a $\Sigma_2^0(K)$ copy, then FT(K) is $\Sigma_2^0(K)$. . .
- . . . And so K has a residue field section which is $\Sigma_2^0(K)$.

$\mathcal{R}^* <^*_w \mathcal{R}$, II/II

Lemma

If K is a real closed field with domain ω , then:

- If $\operatorname{Res}(K)$ has a $\Sigma^0_2(K)$ copy, then $\operatorname{FT}(K)$ is $\Sigma^0_2(K)$. . .
- . . . And so K has a residue field section which is $\Sigma_2^0(K)$.

Theorem (Igusa, Knight)

- (Reduction) If $\operatorname{Res}(K) \leq_w^* K$, then FT(K) is Σ_2^c -definable in K.
- (Undefinability) If K is a recursively saturated real closed field, the set FT(K) is not Σ^c₂-definable in K.

Since "recursively saturated" is absolute, this gives:

Theorem (Igusa, Knight.)

 $\mathcal{R}^* <^*_w \mathcal{R}.$

Expansions of $\mathcal{R},\,\mathsf{I}/\mathsf{II}$

What happens if we add expressive power to \mathbb{R} ?

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is *trivial* if, in any V[G] where \mathbb{R} is countable, we have: Any copy \mathcal{A} of $\mathcal{R} = (\mathbb{R}^{V}; +, \times)$ with domain ω computes a copy \mathcal{B} of $\mathcal{R}_{f} = (\mathbb{R}^{V}; +, \times, f)$ with $\mathcal{B} \upharpoonright \{+, \times\} = \mathcal{A}$.

This is stronger than $\mathcal{R} \equiv^*_w \mathcal{R}_f$.

Expansions of $\mathcal{R},\,I/II$

What happens if we add expressive power to \mathbb{R} ?

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is *trivial* if, in any V[G] where \mathbb{R} is countable, we have: Any copy \mathcal{A} of $\mathcal{R} = (\mathbb{R}^{V}; +, \times)$ with domain ω computes a copy \mathcal{B} of $\mathcal{R}_{f} = (\mathbb{R}^{V}; +, \times, f)$ with $\mathcal{B} \upharpoonright \{+, \times\} = \mathcal{A}$.

This is stronger than $\mathcal{R} \equiv^*_w \mathcal{R}_f$.

Proposition

A function f is trivial iff it is piecewise algebraic.

Proof. Right-to-left is immediate. For left-to-right, build (in V[G]) a sufficiently generic copy of $\mathcal{R} = (\mathbb{R}; +, \times)$ by forcing with $\mathcal{R}^{<\omega}$. Can diagonalize against Φ_e unless "f(x) = y" determined by finitely many $\{+, \times\}$ -atomic formulas. \Box

Interlude: O-minimality and bases

Definition

An ordered structure A is *o-minimal* if every definable subset of A is a union of finitely many intervals.

Theorem (Macintyre)

The structure $\mathcal{R}_{exp} = (\mathbb{R}; +, \times, exp)$ is o-minimal

Definition

A *basis* for \mathcal{R}_{exp} is a set $U \subset \mathbb{R}$ such that

- Every real is definable over some tuple from U.
- No element of U is definable over any disjoint tuple from U.

A tuple is *independent* if it can be extended to a basis.

Expansions of \mathcal{R} , II/II

Definition

We let $IND_n(\mathcal{R}_{exp})$ be the set of independent *n*-tuples of \mathbb{R} .

Lemma

The sets $IND_n(\mathcal{R}_{exp})$ of independent n-tuples are $\Delta_2^{c,Th(\mathcal{R}_{exp})}$ in any copy of \mathcal{R} .

Proof. \overline{a} is independent iff there is an assignment of open boxes around \overline{a} to formulas such that the formula holds of \overline{a} iff it holds in whole box. \Box

Theorem (Igusa, Knight, S.)

 \mathcal{R}_{exp} is generically Muchnik equivalent to \mathcal{R} .

Proof. We use lemma to get Δ_2^0 -approximation to a basis for \mathcal{R}_f , and build the "term" model generated by this basis. \Box

Since $|\mathbb{R}^{\mathbb{R}}| > \mathbb{R}$, there are functions in V which add information.

Question

Is there a "reasonably definable" f which adds information?

Question

Is there a continuous function f adds information?

Conjecture (Igusa, Knight, S.)

Martin-Lof Brownian motion adds information.

Further versions of the reals

Theorem (Igusa, Knight, S.)

 $\mathcal{R}_f \equiv^*_w \mathcal{R}$ for f analytic.

Uses Wilkie: \mathcal{R} adjoined with analytic functions on compact intervals is *o*-minimal.

Theorem (Igusa, Knight, S.)

The field $(\mathbb{R}; +, \times)$ is generically Muchnik reducible to the group $(\mathbb{R}; +)$.

Theorem (Igusa, Knight, S.)

For $\langle a_i : i \in \omega \rangle \in \mathbb{R}^V$, the expansion $(\mathbb{R}; +, \times, a_0, a_1, ...)$ is generically Muchnik reducible to \mathcal{R} .

Proof. In each case, we show that the independence relation over the larger language is Σ_2^c in the smaller language.

Thanks!

- Baldwin, S.-D. Friedman, Koerwien, Laskowski. "Three red herrings around Vaught's conjecture." *submitted*, on Baldwin's webpage
- Hjorth. "A note on counterexamples to the Vaught conjecture." Notre Dame Journal of Formal Logic 2007
- Knight, Igusa. "Comparing different versions of the reals." Submitted.
- Knight, Igusa, S. In preparation.
- Kaplan, Shelah. "Forcing a countable structure to belong to the ground model." on arXiv
- Knight, Montalbán, S. "Computable structures in generic extensions." submitted, on arXiv
- Larson. "Scott processes." On the arXiv.
- Laskowski, Shelah. "On the existence of atomic models." *Journal of Symbolic Logic 1993*