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What phenomena occur across every generic extension

Global behavior tends to be independent of the generic: if P is reasonably
homogeneous, then the theory of V [G ] does not depend on G .
On the other hand, individual sets in generic extensions must vary wildly:

Theorem (Solovay)

Suppose G0,G1 are two mutually generics. Then V [G0] ∩ V [G1] = V .

Proof. Take ν[G0] ∈ (V [G0] ∩ V [G1])− V of minimal rank.
Then ν[G0] ⊂ V .
If ν[G0] = µ[G1], then this is forced by some (p, q) ∈ P2.
The set {x ∈ V : ∃r ≤ p(r  x ∈ ν)} is in V , and must equal ν[G0]. �
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Generically presentable structures

Solovay: if a set is in every generic extension by some forcing, it exists
already.

Definition

A generically presentable structure up to ∼= is a pair (ν,P) such that

P “ν is a structure with domain ω” and P2 “ν[G0] ∼= ν[G1]”.

A copy of (ν,P) is a A ∈ V with P “A ∼= ν”. (Maybe dom(A) 6= ω.)

Recently and independently introduced by Kaplan and Shelah.

Question

If (ν,P) is a generically presentable structure, what hypotheses ensure that
it has a copy in V ?
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Looking at the forcing: positive results

Theorem (Knight, Montalbán, S.)

1 If A is generically presentable by a forcing not making ω2 countable,
then A has a copy in V ;

2 If A is generically presentable by a forcing not making ω1 countable,
then that copy is countable.

Independently proved by Kaplan and Shelah.

Proof. For (1), the age of the Morleyization of A lives in V ; by
Delhomme-Pouzet-Sagi-Sauer, Fraisse limits of ages of size ℵ1 exist.

For (2), Scott sentence is in LVω1ω since ωV
1 = ω

V [G ]
1 , and existence of

countable models is absolute. �
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Counterexamples to Vaught’s conjecture

Corollary (Harrington)

Any counterexample to Vaught’s conjecture has models of size ℵ1 with
Scott rank arbitrarily high below ω2.

Independently by Larson, and by Baldwin/S.
Friedman/Koerwien/Laskowski.

Proof. Given α < ω2, collapse ω1 to ω, get B |= T with sr(B) > α. If B
not generically presentable, can get perfect set of such models. So B is
generically presentable, hence has a copy in V since ωV

2 is still
uncountable. �

Remark

Hjorth showed that counterexamples need not have models of size ℵ2.
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Looking at the structure: positive results

Theorem (Knight, Montalbán, S.)

If A is generically presentable and rigid (no nontrivial automorphisms),
then A has a copy in V .

Independently by Paul Larson.

Proof uses amalgamation argument — unique way to amalgamate is even
better than lots of ways to amalgamate. Given p ∈ P presenting A, look
at portion Ap of structure built by p; can glue these together in unique
way, so inside V . �

Theorem (Zapletal, unpublished)

Generically presentable trees have copies.

Kaplan-Shelah, following Zapletal: study when generically presentable
linear orders, models of superstable theories, already exist.
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Looking at the forcing: negative results

Theorem (Knight, Montalbán, S.)

If forcing with P makes ω2 countable, then there is a structure A,
generically presentable by P, which has no copy in the ground model.

Independently by Kaplan-Shelah

Uses construction of Laskowski and Shelah, and later Hjorth: theory with
predicate U and no atomic models if |U| = ℵ2, but countable atomic
model in which U is set of indiscernibles. In generic extension, we can
attach (ω2, <) to indiscernibles of this model; resulting structure has a
copy after making ω2 countable but has no copy in ground model.
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Aside: generically presentable cardinalities

Definition

A generically presentable cardinality is a pair (ν,P) where ν is a P-name
and P×P ν[G0] ≡ ν[G1]. (ν,P) has no copy in V if for no A ∈ V do we
have P A ≡ ν.

Question

Is it consistent with ZF that there are generically presentable cardinalities
with no copies?

Note that forcing over ZF-models can add new cardinalities (Ex: Truss
????)

Question (Zapletal)

Is it consistent with ZF that there is a generically presentable cardinality
(ν,P) with no copy in V , such that ν is a name for a set of reals?
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Classical computable structure theory

We study the complexity of a structure by looking at its copies: for a
countable structure S, a copy of S is a structure S with domain ω
isomorphic to S.

Throughout, structures have finite signature.

If A is a countable structure, a copy of A is a structure which is isomorphic
to A and has domain ω; we identify copies with the reals coding them.

Definition (Muchnik reducibility)

If A, B are structures, A is Muchnik reducible to B if (nonuniformly)
every copy of B computes a copy of A; we write A ≤w B.

A is computably presentable =⇒ A ≤w B
For X ⊆ A finite, the substructure generated by X is ≤w A
L,L0,L1 linear orders =⇒ L ≤w L0 + 1 + L+ 1 + L1
If L ≺ L̂ are linear orders, need not have L ≤w L̂ (Harrison order)
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Uncountable computable structure theory

For A uncountable, A has no copies whatsoever, so ≤w is not useful.
There are many ways one might generalize computability structure theory
to uncountable settings.
Today: want notion which agrees with ≤w on countable structures, and is
generally not contingent on set-theoretic axioms.

We ask, “what would the complexity of A be if A were countable?”

Definition (Generic Muchnik reducibility (S.))

For A,B structures of arbitrary cardinality, we write A ≤∗w B if A ≤w B in
every generic extension of the universe in which both are countable.

Can similarly study other computability-theoretic reductions between
uncountable structures
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Absoluteness

Definition (Generic Muchnik reducibility (S.))

For A,B structures of arbitrary cardinality, A ≤∗w B if A ≤w B in every
generic extension in which both are countable.

Theorem (Shoenfield Absoluteness)

If ϕ is Π1
2 with parameters from R, we have:

V [G ] |= ϕ ⇐⇒ V |= ϕ.

Corollary

We can replace “every generic extension” by “some generic
extension” in definition of generic Muchnik reducibility.

For A,B countable, A ≤∗w B ⇐⇒ A ≤w B.
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Back to generic presentability

Theorem (Knight, Montalbán, S.)

If A is generically presentable, and is generically Muchnik reducible to a
structure B ∈ V with |B| ≤ ℵ1, then A has a copy in V .

Proof.
In V [G ] with ω = |ωV

1 | < |ωV
2 |, let B ∼= B with domain ω.

Let V [G ][H] be further extension in which A has a copy.
∃e such that V [G ][H] |= “ΦB

e
∼= A”.

In V [G ], ΦB
e satisfies Scott sentence of A.

Existence of countable models of Lω1ω-sentences is absolute.

So A has a copy in V [G ], and hence in V .

Proposition (Knight, Montalban, S.)

Counterexample to “Shoenfield for structures” is ≤∗w (ω2, <).

Proof. Theory of Laskowski-Shelah has computable atomic model. �
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Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

C = (C; +,×), W = (ω,P(ω); Succ,∈), R = (R; +,×)

Observation

C is “generically computably presentable:” C has a computable copy in
every generic extension in which it is countable.

Observation

Every countable structure is generically Muchnik reducible to W and to R.

Theorem (Igusa, Knight)

W is strictly less complicated than R: W <∗w R.

Independently by Downey, Greenberg, J. Miller (unpublished).
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Some examples, II/III: ω1

Proposition

For A countable:

A ≤∗w (ω1, <) ⇐⇒ ∃ countable ordinal α with A ≤∗w (α,<).

Proof. Suppose A ≤∗w (ω1, <). Let V [G ] be generic extension in which
ω1 is countable. Then we have

V [G ] |= “A ≤w (α,<) for some countable ordinal α.”

This is a Σ1
2 sentence with a real parameter (since A is countable), so

already true in V . �

Question

What families of countable structures are captured by some single
uncountable structure?

Noah Schweber Computability theory and uncountable structures



Generically presentable structures
Computability in generic extensions

Versions of the reals

Some examples, II/III: ω1

Proposition

For A countable:

A ≤∗w (ω1, <) ⇐⇒ ∃ countable ordinal α with A ≤∗w (α,<).

Proof. Suppose A ≤∗w (ω1, <). Let V [G ] be generic extension in which
ω1 is countable. Then we have

V [G ] |= “A ≤w (α,<) for some countable ordinal α.”

This is a Σ1
2 sentence with a real parameter (since A is countable), so

already true in V . �

Question

What families of countable structures are captured by some single
uncountable structure?

Noah Schweber Computability theory and uncountable structures



Generically presentable structures
Computability in generic extensions

Versions of the reals

Some examples, III/III: ω1 and R

Proposition (Richter)

If a real X is computable in every copy of a linear order L, then X is
computable.

Corollary

(ω1, <) 6≥∗w W.

Proposition (Ash, Knight)

If X ′ computes a copy of a linear order L, then X computes a copy of ω ·L.

Corollary

(ω1, <) <∗w W.
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W = (ω t 2ω; Succ,∈), B = (ω t ωω; Succ , ◦)

R = (R; +,×)

R∗ = ω1-saturated real closed field realizing all types in V

Rf = (R; +,×, f ), R+ = (R; +)

There seem to be two levels of complexity:

W ≡∗w B<∗w R+ ≡∗w R ≡∗w Rf (f analytic)
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Simple reductions

Proposition (Igusa, Knight)

R∗ ≥∗w B ≥∗w W.

Proposition (Igusa, Knight)

W ≡∗w R∗.

Theorem (Macintyre-Marker)

If S is a Scott set and T ∈ S is a consistent theory, any enumeration of S
computes the complete diagram of a recursively saturated model of T
realizing exactly the types in S.

Proof of Prop. After collapse, W is still a Scott set, and each ground real
— including Th(R) — appears in W; apply Macintyre-Marker. �
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R∗ <∗w R, I/II

Definition

If K is a real closed field:

K is Archimedean if every element of K is below some q ∈ Q.

The residue field Res(K ) of K be the quotient of the finite elements
by the infinitesimal elements.

A residue field section of K is a subfield of K isomorphic to Res(K ).

FT (K ) (“finite transcendental”) is the set of finite elements not
infinitesimally close to an algebraic element.

Lemma

If K is a real closed field with domain ω, then:

If Res(K ) has a Σ0
2(K ) copy, then FT (K ) is Σ0

2(K ) . . .

. . . And so K has a residue field section which is Σ0
2(K ).
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R∗ <∗w R, II/II

Lemma

If K is a real closed field with domain ω, then:

If Res(K ) has a Σ0
2(K ) copy, then FT (K ) is Σ0

2(K ) . . .

. . . And so K has a residue field section which is Σ0
2(K ).

Theorem (Igusa, Knight)

(Reduction) If Res(K ) ≤∗w K , then FT (K ) is Σc
2-definable in K .

(Undefinability) If K is a recursively saturated real closed field, the set
FT (K ) is not Σc

2-definable in K.

Since “recursively saturated” is absolute, this gives:

Theorem (Igusa, Knight.)

R∗ <∗w R.

Noah Schweber Computability theory and uncountable structures



Generically presentable structures
Computability in generic extensions

Versions of the reals

R∗ <∗w R, II/II

Lemma

If K is a real closed field with domain ω, then:

If Res(K ) has a Σ0
2(K ) copy, then FT (K ) is Σ0

2(K ) . . .

. . . And so K has a residue field section which is Σ0
2(K ).

Theorem (Igusa, Knight)

(Reduction) If Res(K ) ≤∗w K , then FT (K ) is Σc
2-definable in K .

(Undefinability) If K is a recursively saturated real closed field, the set
FT (K ) is not Σc

2-definable in K.

Since “recursively saturated” is absolute, this gives:

Theorem (Igusa, Knight.)

R∗ <∗w R.

Noah Schweber Computability theory and uncountable structures



Generically presentable structures
Computability in generic extensions

Versions of the reals

Expansions of R, I/II

What happens if we add expressive power to R?

Definition

A function f : R→ R is trivial if, in any V [G ] where R is countable, we
have: Any copy A of R = (RV ; +,×) with domain ω computes a copy B
of Rf = (RV ; +,×, f ) with B � {+,×} = A.

This is stronger than R ≡∗w Rf .

Proposition

A function f is trivial iff it is piecewise algebraic.

Proof. Right-to-left is immediate. For left-to-right, build (in V [G ]) a
sufficiently generic copy of R = (R; +,×) by forcing with R<ω. Can
diagonalize against Φe unless “f (x) = y” determined by finitely many
{+,×}-atomic formulas. �
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Interlude: O-minimality and bases

Definition

An ordered structure A is o-minimal if every definable subset of A is a
union of finitely many intervals.

Theorem (Macintyre)

The structure Rexp = (R; +,×, exp) is o-minimal

Definition

A basis for Rexp is a set U ⊂ R such that

Every real is definable over some tuple from U.

No element of U is definable over any disjoint tuple from U.

A tuple is independent if it can be extended to a basis.
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Expansions of R, II/II

Definition

We let INDn(Rexp) be the set of independent n-tuples of R.

Lemma

The sets INDn(Rexp) of independent n-tuples are ∆
c,Th(Rexp)
2 in any copy

of R.

Proof. a is independent iff there is an assignment of open boxes around a
to formulas such that the formula holds of a iff it holds in whole box. �

Theorem (Igusa, Knight, S.)

Rexp is generically Muchnik equivalent to R.

Proof. We use lemma to get ∆0
2-approximation to a basis for Rf , and

build the “term” model generated by this basis. �
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Since |RR| > R, there are functions in V which add information.

Question

Is there a “reasonably definable” f which adds information?

Question

Is there a continuous function f adds information?

Conjecture (Igusa, Knight, S.)

Martin-Lof Brownian motion adds information.
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Further versions of the reals

Theorem (Igusa, Knight, S.)

Rf ≡∗w R for f analytic.

Uses Wilkie: R adjoined with analytic functions on compact intervals is
o-minimal.

Theorem (Igusa, Knight, S.)

The field (R; +,×) is generically Muchnik reducible to the group (R; +).

Theorem (Igusa, Knight, S.)

For 〈ai : i ∈ ω〉 ∈ RV , the expansion (R; +,×, a0, a1, ...) is generically
Muchnik reducible to R.

Proof. In each case, we show that the independence relation over the
larger language is Σc

2 in the smaller language.

Question

What about other versions of the reals, and their reducts/expansions?

Specific interesting examples: p-adics and related fields; expansions of C
Scott:

∏
N/U ; reals equipped with a measure

Noah Schweber Computability theory and uncountable structures



Generically presentable structures
Computability in generic extensions

Versions of the reals

Thanks!

Baldwin, S.-D. Friedman, Koerwien, Laskowski. “Three red herrings
around Vaught’s conjecture.” submitted, on Baldwin’s webpage

Hjorth. “A note on counterexamples to the Vaught conjecture.”
Notre Dame Journal of Formal Logic 2007

Knight, Igusa. “Comparing different versions of the reals.” Submitted.

Knight, Igusa, S. In preparation.

Kaplan, Shelah. “Forcing a countable structure to belong to the
ground model.” on arXiv

Knight, Montalbán, S. “Computable structures in generic extensions.”
submitted, on arXiv

Larson. “Scott processes.” On the arXiv.

Laskowski, Shelah. “On the existence of atomic models.” Journal of
Symbolic Logic 1993

Noah Schweber Computability theory and uncountable structures


	Generically presentable structures
	Computability in generic extensions
	Versions of the reals

