Reverse mathematics, well-quasi-orders, and Noetherian spaces

Paul Shafer Universiteit Gent Paul.Shafer@UGent.be http://cage.ugent.be/~pshafer/

> Sets and Computations 2015 Singapore April 20, 2015

Joint work with Emanuele Frittaion, Alberto Marcone, Matt Hendtlass, and Jeroen Van der Meeren.

Paul Shafer - UGent

RM, wqo's, and Noetherian spaces

What is a well-quasi-order?

A quasi-order is a set Q with a reflexive, transitive, binary relation \leq_Q .

A quasi-order is like a partial order, except that you can have $x \leq_Q y$, $y \leq_Q x$, and $x \neq y$ all at the same time.

A quasi-order (Q, \leq_Q) is a well-quasi-order (wqo) if it satisfies any of the following equivalent conditions.

- There are no infinite descending chains and no infinite antichains.
- If $(q_n)_{n \in \mathbb{N}}$ is a sequence from Q, then there are n < m such that $q_n \leq_Q q_m$.
- Every linear extension is a well-order.
- For every $X \subseteq Q$, there is a finite $F \subseteq X$ such that $(\forall q \in X)(\exists r \in F)(r \leq_Q q)$.

Kruskal's tree theorem: The set of finite trees ordered by homeomorphic embedding is a wqo.

Laver's theorem (confirming Fraïssé's conjecture): The set of countable linear orders ordered by embedding is a wqo.

The Robertson-Seymour theorem (i.e., the graph minor theorem): The set of finite, undirected graphs ordered by the graph minor relation is a wqo.

What is a Noetherian space?

A topological space is Noetherian if it satisfies any of the following equivalent conditions.

- Every subspace is compact.
- Every increasing sequence of open sets stabilizes: if

 $G_0 \subseteq G_1 \subseteq G_2 \subseteq \ldots$

then there is an N such that $(\forall n > N)(G_n = G_N)$.

• Every decreasing sequence of closed sets stabilizes: if

$$F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots$$

then there is an N such that $(\forall n>N)(F_n=F_N).$

Where the name comes from:

The Zariski topology on the spectrum of a Noetherian ring is Noetherian.

Paul Shafer - UGent

What do Noetherian spaces have to do with wqo's?

Let (Q, \leq_Q) be a quasi-order. For $E \subseteq Q$, let

$$E\uparrow = \{q \in Q : (\exists p \in E)(p \leq_Q q)\}\$$
$$E\downarrow = \{q \in Q : (\exists p \in E)(q \leq_Q p)\}.$$

We consider two topologies on Q:

- The open sets of the Alexandroff topology (A(Q)) are those of the form E↑ for E ⊆ Q.
- The basic open sets of the Upper topology (U(Q)) are those of the form Q \ (E↓) for E ⊆ Q finite.

Why these two topologies?

In a topological space, say $x \leq y$ if every open set that contains x also contains y. $\mathcal{A}(Q)$ and $\mathcal{U}(Q)$ are the finest and coarsest topologies on Q such that \leq is \leq_Q .

What do Noetherian spaces have to do with wqo's?

Proposition

Let Q be a quasi-order. Then Q is a wqo if and only if $\mathcal{A}(Q)$ is Noetherian.

It is more interesting to consider quasi-orders and topologies on the subsets of a quasi-order Q:

- $\mathcal{P}(Q)$ is the power set of Q. $\mathcal{P}_{\mathrm{f}}(Q)$ is the set of all finite subsets of Q.
- For $A, B \subseteq Q$:
 - $A \leq^{\flat}_{Q} B \Leftrightarrow A \subseteq B \downarrow$.
 - $A \leq^{\sharp}_{Q} B \Leftrightarrow B \subseteq A^{\uparrow}.$
- $\mathcal{P}^{\flat}(Q)$ denotes $(\mathcal{P}(Q), \leq_Q^{\flat})$. $\mathcal{P}_{\mathrm{f}}^{\flat}(Q)$ denotes $(\mathcal{P}_{\mathrm{f}}(Q), \leq_Q^{\flat})$. Similarly with \sharp in place of \flat .
- $\mathcal{P}^{\flat}(Q)$, $\mathcal{P}^{\sharp}(Q)$, $\mathcal{P}^{\flat}_{\mathrm{f}}(Q)$, and $\mathcal{P}^{\sharp}_{\mathrm{f}}(Q)$ are all quasi-orders.

Noetherian spaces as topological generalizations of wqo's

Theorem (Erdős and Rado)

If Q is a wqo, then $\mathcal{P}^{\flat}_{\mathrm{f}}(Q)$ is a wqo.

However, if Q is a wqo, then $\mathcal{P}^{\flat}(Q)$, $\mathcal{P}^{\sharp}(Q)$, and $\mathcal{P}_{\mathrm{f}}^{\sharp}(Q)$ are **not** necessarily wqo's.

Nevertheless, moving from Q to $\mathcal{P}(Q)$ preserves well-foundedness in a topological sense:

Theorem (Goubault-Larrecq)

If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\flat}(Q))$, $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$, $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$, and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$ are Noetherian.

The strength of Goubault-Larrecq's theorem

We analyzed the logical strength of Goubault-Larrecq's theorem. Here is our theorem:

Theorem (F H M S VdM)

The following are equivalent over RCA_0 .

(i) ACA₀.

(ii) If Q is a wqo, then $\mathcal{A}(\mathcal{P}^{\flat}_{f}(Q))$ is Noetherian.

- (iii) If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ is Noetherian.
- (iv) If Q is a wqo, then $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^{\sharp}(Q))$ is Noetherian.
- (v) If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ is Noetherian.
- (vi) If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$ is Noetherian.

Why bother determining the logical strength of Goubault-Larrecq's theorem?

- It contributes to the reverse mathematics of wqo theory and strengthens/generalizes a few previous results.
- It is an example of something that can be done with non-metric topologies in second-order arithmetic.

Reverse mathematics refresher: RCA₀ and ACA₀

Reverse mathematics is a program designed to answer the question *How strong is my theorem relative to some pre-specified base theory?*

The typical situation in reverse mathematics is:

- Consider two sentences φ and ψ in the language of second-order arithmetic (often expressing two well-known theorems).
- Does $\mathsf{RCA}_0 \vdash \varphi \rightarrow \psi$?

 RCA_0 is a system that says that sets computable from existing sets exist. Formally, Δ_1^0 comprehension. Warning: induction is allowed, but only for Σ_1^0 formulas.

 ACA_0 is a system that says that every arithmetical formula defines a set (plus induction for arithmetical formulas).

Intuition: ACA_0 can earn an **undergraduate degree in mathematics**.

Wqo's in second-order arithmetic

There are several characterizations of wqo. In RCA_0 , we use the **no bad** sequences definition.

Definition (RCA₀)

A quasi-order Q is a wqo if for every sequence $(q_n)_{n\in\mathbb{N}}$ from Q there are n < m such that $q_n \leq_Q q_m$.

A sequence $(q_n)_{n \in \mathbb{N}}$ such that $\forall n \forall m (n < m \rightarrow q_n \nleq Q q_m)$ is called a bad sequence.

A quasi-order Q is a wqo if and only if there are no bad sequences.

Inequivalence of definitions

Warning!

The equivalent characterizations of wqo are **not** equivalent over RCA_0 .

For example:

- Let wqo(Q) be the statement "Q has no bad sequences."
- Let $\mathrm{wqoAnti}(Q)$ be the statement "Q has no infinite descending chains and no infinite antichains."

Theorem (M & Simpson/Cholak, M & Solomon/F)

- $\mathsf{RCA}_0 \vdash (\forall \text{ quasi-orders } Q)(\operatorname{wqo}(Q) \rightarrow \operatorname{wqoAnti}(Q)).$
- $\mathsf{RCA}_0 \vdash \mathsf{CAC} \to (\forall \text{ quasi-orders } Q)(\mathrm{wqoAnti}(Q) \to \mathrm{wqo}(Q)).$
- $\mathsf{RCA}_0 \vdash (\forall \text{ quasi-orders } Q)(\operatorname{wqoAnti}(Q) \to \operatorname{wqo}(Q)) \to \mathsf{CAC}.$

Countable second-countable spaces in RCA₀

François Dorais developed a very nice framework for working with countable second-countable spaces in RCA_0 .

Definition (RCA₀)

A base for a topology on a set X consists of a sequence $\mathcal{U} = (U_i)_{i \in I}$ of subsets of X and a function $k \colon X \times I \times I \to I$ such that

- if $x \in X$, then $x \in U_i$ for some $i \in I$;
- if $x \in U_i \cap U_j$, then $x \in U_{k(x,i,j)} \subseteq U_i \cap U_j$.

Definition (RCA₀)

A countable second-countable space is a triple (X, \mathcal{U}, k) where $\mathcal{U} = (U_i)_{i \in I}$ and $k: X \times I \times I \to I$ form a base for a topology on X.

Effectively open sets and effectively closed sets

Let (X, \mathcal{U}, k) be a countable second-countable space, where $\mathcal{U} = (U_i)_{i \in I}$.

Every $h \colon \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ codes . . .

- the effectively open set $G_h = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in h(n)} U_i$ and
- the effectively closed set $F_h = \bigcap_{n \in \mathbb{N}} \bigcap_{i \in h(n)} X \setminus U_i$.

 RCA_0 need not prove that G_h and F_h actually exist as sets. So

- $x \in G_h$ abbreviates the formula $(\exists n)(\exists i \in h(n))(x \in U_i)$, and
- $x \in F_h$ abbreviates the formula $(\forall n)(\forall i \in h(n))(x \notin U_i)$.

Moreover, every $g \colon \mathbb{N} \times \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ codes . . .

- a sequence of effectively open sets $(G_n)_{n\in\mathbb{N}}$, where each G_n is $G_{g(n,\cdot)} = \bigcup_{m\in\mathbb{N}} \bigcup_{i\in g(n,m)} U_i$ and
- a sequence of effectively closed sets $(F_n)_{n\in\mathbb{N}}$, where each F_n is $F_{g(n,\cdot)} = \bigcap_{m\in\mathbb{N}} \bigcap_{i\in g(n,m)} X \setminus U_i$.

Subspaces and compactness

Let (X, \mathcal{U}, k) be a countable second-countable space, where $\mathcal{U} = (U_i)_{i \in I}$.

Definition (RCA₀)

If $X' \subseteq X$, then the corresponding subspace (X', \mathcal{U}', k') is defined by $U'_i = U_i \cap X'$ for all $i \in I$ and $k' = k \upharpoonright (X' \times I \times I)$.

Definition (RCA₀)

$$(X, \mathcal{U}, k)$$
 is compact if for every $h \colon \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ such that $X = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in h(n)} U_i$, there is an $N \in \mathbb{N}$ such that $X = \bigcup_{n < N} \bigcup_{i \in h(n)} U_i$.

Noetherian countable second-countable spaces

The equivalent characterizations of Noetherian are equivalent in RCA₀.

Proposition (RCA₀; F H M S VdM)

For a countable second-countable space, the following are equivalent.

- (i) Every effectively open set is compact.
- (ii) For every effectively open set G_h , there is an $N \in \mathbb{N}$ such that $G_h = \bigcup_{n < N} \bigcup_{i \in h(n)} U_i$.
- (iii) Every subspace is compact.
- (iv) For every sequence $(G_n)_{n \in \mathbb{N}}$ of effectively open sets such that $\forall n(G_n \subseteq G_{n+1})$, there is an N such that $(\forall n > N)(G_n = G_N)$.
- (v) For every sequence $(F_n)_{n \in \mathbb{N}}$ of effectively closed sets such that $\forall n(F_n \supseteq F_{n+1})$, there is an N such that $(\forall n > N)(F_n = F_N)$.

$\mathcal{P}^{lat}_{\mathrm{f}}(Q)$ and $\mathcal{P}^{\sharp}_{\mathrm{f}}(Q)$ in RCA_0

If Q is a countable quasi-order, then $\mathcal{P}^\flat_\mathrm{f}(Q)$ and $\mathcal{P}^\sharp_\mathrm{f}(Q)$ are also countable quasi-orders.

Thus $\mathcal{P}^{\flat}_{\mathrm{f}}(Q)$ and $\mathcal{P}^{\sharp}_{\mathrm{f}}(Q)$ fit nicely into Dorais's framework, so we discuss these cases first.

Definition (RCA₀)

Let Q be a quasi-order.

- A base for the Alexandroff topology on Q is given by $\mathcal{U} = (U_q)_{q \in Q}$, where $U_q = q \uparrow$ for each $q \in Q$, and k(q, p, r) = q.
- A base for the upper topology on Q is given by $\mathcal{V} = (V_i)_{i \in \mathcal{P}_f(Q)}$, where $V_i = Q \setminus (i\downarrow)$ for each $i \in \mathcal{P}_f(Q)$, and $\ell(q, i, j) = i \cup j$.

$\mathcal{P}^{\flat}_{\mathrm{f}}(Q)$ in ACA $_0$

Proposition (RCA₀; F H M S VdM)

Let Q be a quasi-order.

- If $\mathcal{A}(Q)$ Noetherian, then $\mathcal{U}(Q)$ Noetherian.
- Q is a wqo if and only if $\mathcal{A}(Q)$ is Noetherian.

Theorem (M)

The statement "if Q is a wqo, then $\mathcal{P}_{f}^{\flat}(Q)$ is a wqo" is equivalent to ACA_{0} over $RCA_{0} + RT_{2}^{2}$.

(We improved this theorem by removing RT_{2}^{2} .)

So ACA₀ proves that if Q is a wqo, then $\mathcal{A}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ and $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ are Noetherian.

$\mathsf{ACA}_0 \vdash Q$ a wqo $\rightarrow \mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$ Noetherian

We need to prove the statement "if Q is a wqo, then $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^\sharp(Q))$ is Noetherian" in $\mathsf{ACA}_0.$

We prove the contrapositive. Let $F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots$ be a sequence of effectively closed sets that does **not** stabilize. We want to build a **bad** sequence in Q.

Topology reminder!

Basic closed sets have the form $\{\mathbf{e}_0, \dots \mathbf{e}_{n-1}\}\downarrow^{\sharp}$, where $\mathbf{e}_i \in \mathcal{P}_{\mathrm{f}}(Q)$.

Key observation!

If $\{\mathbf{e}_0,\ldots,\mathbf{e}_{n-1}\}\downarrow^{\sharp}\supseteq F_0\supseteq F_1\supseteq F_2\supseteq\ldots$ does not stabilize, then

$$F_0 \cap \mathbf{e}_i \downarrow^{\sharp} \supseteq F_1 \cap \mathbf{e}_i \downarrow^{\sharp} \supseteq F_2 \cap \mathbf{e}_i \downarrow^{\sharp} \supseteq \dots$$

does not stabilize for some i < n. (As $\{e_0, \ldots, e_{n-1}\}\downarrow^{\sharp} = \bigcup_{i < n} e_i \downarrow^{\sharp}$.)

Building a bad sequence

Suppose we have a finite bad sequence $(q_k)_{k < m}$ from Q and a sequence $(\mathbf{e}_k)_{k < m}$ from $\mathcal{P}_{\mathbf{f}}(Q)$ such that

- $q_k \in \mathbf{e}_k$ and
- $F'_0 \supseteq F'_1 \supseteq F'_2 \supseteq \ldots$ does not stabilize, where $F'_n = F_n \cap \bigcap_{k < m} \mathbf{e}_k \downarrow^{\sharp}$.

Now . . .

• There are i < j and \mathbf{p} such that $\mathbf{p} \in F'_i \setminus F'_j$.

• Note
$$(\forall k < m) (\mathbf{p} \leq^{\sharp}_{Q} \mathbf{e}_{k}).$$

- There is a basic closed set $E \downarrow^{\sharp}$ such that $E \downarrow^{\sharp} \supseteq F'_{i}$ but $\mathbf{p} \notin E \downarrow^{\sharp}$.
- By the **key observation** there is an $\mathbf{e}_m \in E$ such that $F'_0 \cap \mathbf{e}_m \downarrow^{\sharp} \supseteq F'_1 \cap \mathbf{e}_m \downarrow^{\sharp} \supseteq F'_2 \cap \mathbf{e}_m \downarrow^{\sharp} \supseteq \dots$ does not stabilize.
- Choose $q_m \in \mathbf{e}_m \setminus \mathbf{p}^{\uparrow}$.
- If $q_k \leq_Q q_m$, then $q_m \in \mathbf{e}_k \uparrow \subseteq \mathbf{p} \uparrow$, a contradiction.

The reversal

The reversal is based on the construction of a recursive linear order \boldsymbol{L}

- of type $\omega + \omega^*$
- such that every infinite subset of the ω^* part computes 0'.

Let $f: \mathbb{N} \to \mathbb{N}$ be an injection. Call an $n \in \mathbb{N}$ true if $(\forall k > n)(f(n) < f(k))$.

If T is an infinite set of true numbers, then $\operatorname{ran}(f) \leq_{\mathrm{T}} T \oplus f$.

Build L so that the ω^* part consists of exactly the true numbers.

How to build L

At the beginning of stage n+1, L consists of

- a potential ω part of numbers already witnessed to be false and
- a potential ω^* part of numbers that might be true.

Stage n + 1 witnesses that some of the most recently added (i.e., least in L) true numbers are actually false. Put n + 1 immediately above these points.

$\mathsf{RCA}_0 \vdash (Q \text{ a wqo} \rightarrow \mathcal{U}(\mathcal{P}_{\mathrm{f}}^{\sharp}(Q)) \text{ Noetherian}) \rightarrow \mathsf{ACA}_0$

Let $f\colon \mathbb{N}\to \mathbb{N}$ be an injection. We need to use

Q a wqo $\rightarrow \mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$ Noetherian

to show that ran(f) exists.

In fact, we use the contrapositive

$$\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$$
 not Noetherian $\to Q$ not a wqo.

The game is to construct an f-recursive quasi-order Q such that

- there is a $f\text{-recursive non-stabilizing decreasing sequence of closed sets in <math display="inline">\mathcal{U}(\mathcal{P}_{\rm f}^\sharp(Q)),$ but
- every bad sequence from $\mathcal{P}_{\mathbf{f}}^{\sharp}(Q)$ helps compute $\operatorname{ran}(f)$.

$\mathsf{Building}\ Q$

Q consists of elements x_n and y_n for $n \in \mathbb{N}$.

- The x_n 's will be ordered like L from the previous slides.
- If n is true, then almost every element will be below x_n .
- If n is false, then almost every element will be above x_n .
- The x_n 's help with computing ran(f) from f and a bad sequence.
- The y_n 's help with computing a decreasing sequence of closed sets.

Computing ran(f) from f and a bad sequence

Suppose $(q_i)_{i \in \mathbb{N}}$ is a bad sequence from Q.

Claim:

The number n is true if and only if $\exists i (q_i \leq_Q x_n)$.

- (\Rightarrow) If n is true, then almost everything is below x_n .
- (\Leftarrow) If *n* is false, then almost everything is above x_n . So if $q_i \leq_Q x_n$, then for every sufficiently large $j q_i \leq_Q x_n \leq_Q q_j$.

So the set of true numbers is Π^0_1 in f and Σ^0_1 in $(q_i)_{i\in\mathbb{N}}$ and f.

Thus the set of true numbers and $\operatorname{ran}(f)$ exist by Δ_1^0 comprehension.

Computing a non-stabilizing decreasing sequence

(Just some of the ideas because the pictures involved exceed my abilities in graphic design.)

We want to compute a non-stabilizing decreasing sequence

$$F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots$$

of effectively closed sets in $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^{\sharp}(Q))$.

We define a sequence of basic closed sets $(E_s\downarrow^{\sharp})_{s\in\mathbb{N}}$, where each E_s is a finite subset of $\mathcal{P}_{\mathrm{f}}(Q)$.

Then F_s will be $\bigcap_{t < s} E_s \downarrow^{\sharp}$.

The E_s 's

 E_s contains elements of the form \mathbf{a}_t and \mathbf{b}_t for $t \leq s$.

For every s:

- $\mathbf{a}_s, \mathbf{b}_s \in E_s$ and
- $x_s \in \mathbf{a}_s$ and $y_s \in \mathbf{b}_s$.
- $\bigcup E_s$ is an antichain in Q.
- $\mathbf{a}_s \notin (E_s \setminus {\mathbf{a}_s}) \downarrow^{\sharp} \text{ and } \mathbf{b}_s \notin (E_s \setminus {\mathbf{b}_s}) \downarrow^{\sharp}.$

Start with $\mathbf{a}_0 = \{x_0\}$, $\mathbf{b}_0 = \{y_0\}$, and $E_0 = \{\mathbf{a}_0, \mathbf{b}_0\}$.

How to define \mathbf{a}_{s+1} , \mathbf{b}_{s+1} and E_{s+1} depends on whether or not a number became false at stage s + 1.

No new numbers false at stage s + 1

If no new numbers became false at stage s+1 then \ldots

- x_{s+1} and y_{s+1} went immediately below x_s .
- Update \mathbf{a}_s to \mathbf{a}_{s+1} by replacing x_s with x_{s+1} .
- Update \mathbf{b}_s to \mathbf{b}_{s+1} by replacing y_s with y_{s+1} .
- Update E_s to E_{s+1} by replacing \mathbf{a}_s with \mathbf{a}_{s+1} and by adding \mathbf{b}_{s+1} .

The effect is that we shrank F_s by eliminating \mathbf{a}_s .

- $\mathbf{a}_s \in F_s$ but
- $\mathbf{a}_s \notin E_{s+1} \downarrow^{\sharp} \supseteq F_{s+1}$ because $\mathbf{a}_s \uparrow$ does not contain x_{s+1} or y_{s+1} .

Some new numbers false at stage s + 1

If n is the least number (x_n greatest in Q) witnessed false at stage s + 1 then ...

- x_{s+1} and y_{s+1} went immediately above x_n .
- Let $\mathbf{a}_{s+1} = \mathbf{b}_n \cup \{x_{s+1}\}$ and let $\mathbf{b}_{s+1} = \mathbf{b}_n \cup \{y_{s+1}\}$.
- Let $E_{s+1} = (E_n \setminus \{\mathbf{a}_n, \mathbf{b}_n\}) \cup \{\mathbf{a}_{s+1}, \mathbf{b}_{s+1}\}.$

The effect is that we shrank F_s by eliminating \mathbf{b}_n .

- $\mathbf{b}_n \in F_s$ but
- $\mathbf{b}_s \notin E_{s+1} \downarrow^{\sharp} \supseteq F_{s+1}$ because $\mathbf{b}_n \uparrow$ does not contain x_{s+1} or y_{s+1} .

Summary of the $\mathcal{P}_{f}(Q)$ cases

Proving the reversal for the \flat case is similar. Thus

Theorem (F H M S VdM)

The following are equivalent over RCA_0 .

(i) ACA₀.

- (ii) If Q is a wqo, then $\mathcal{A}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ is Noetherian.
- (iii) If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ is Noetherian.
- (iv) If Q is a wqo, then $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$ is Noetherian.

Notice that this also shows that "if Q is a wqo, then $\mathcal{P}^{\flat}_{f}(Q)$ is a wqo" implies ACA₀ over RCA₀ (the original reversal used RT₂²).

(Can also eliminate RT_2^2 by showing that "if Q is a wqo, then $\mathcal{P}^\flat_\mathrm{f}(Q)$ is a wqo" implies that the product of two wqo's is a wqo.)

Setting up the uncountable case

We make the following definition to deal with uncountable second-countable spaces.

Definition (RCA₀)

A second-countable space is coded by a set $I \subseteq \mathbb{N}$ and formulas $\varphi(X)$, $\Psi_{=}(X,Y)$, and $\Psi_{\in}(X,n)$ such that the following properties hold.

- If $\varphi(X)$, then $\Psi_{\in}(X,i)$ for some $i \in I$.
- If $\varphi(X)$, $\Psi_{\in}(X, i)$, and $\Psi_{\in}(X, j)$ for some $i, j \in I$, then there is a $k \in I$ such that $\Psi_{\in}(X, k)$ and $\forall Y[\Psi_{\in}(Y, k) \rightarrow (\Psi_{\in}(Y, i) \land \Psi_{\in}(Y, j))].$
- If $\varphi(X)$, $\varphi(Y)$, $\Psi_{\in}(X,i)$ for an $i \in I$, and $\Psi_{=}(X,Y)$, then $\Psi_{\in}(Y,i)$.

Setting up the uncountable case

The idea is that

- $\varphi(X)$ means that X codes a point;
- $\Psi_{\in}(X,i)$ means that the point coded by X is in the i^{th} open set;
- $\Psi_{=}(X, Y)$ means X and Y code the same point.

Important example:

The usual coding of complete separable metric spaces in RCA_0 fits in this framework.

Effectively open sets and effectively closed sets

Effectively open sets and effectively closed sets are coded as they were in the countable case.

Every $h: \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ codes . . .

- $G_h = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in h(n)} \{ X : \varphi(X) \land \Psi_{\in}(X, i) \};$
- $F_h = \bigcap_{n \in \mathbb{N}} \bigcap_{i \in h(n)} \{ X : \varphi(X) \land \neg \Psi_{\in}(X, i) \}.$

Again,

- $X \in G_h$ abbreviates $\varphi(X) \wedge (\exists n) (\exists i \in h(n)) \Psi_{\in}(X, i)$, and
- $X \in F_h$ abbreviates $\varphi(X) \wedge (\forall n)(\forall i \in h(n))(\neg \Psi_{\in}(X,i)).$

Functions $g \colon \mathbb{N} \times \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ code sequences of effectively open sets and sequences of effectively closed sets.

Noetherian second-countable spaces

One gives a definition of compactness as in the countable case and proves that the equivalent characterizations of Noetherian **are** equivalent in RCA_0 .

Proposition (RCA₀; F H M S VdM)

For a second-countable space, the following are equivalent.

- (i) Every effectively open set is compact.
- (ii) For every effectively open set G_h , there is an $N \in \mathbb{N}$ such that $\forall X (X \in G_h \leftrightarrow (\exists n < N) (\exists i \in h(n)) \Psi_{\in}(X, i)).$
- (iii) For every sequence $(G_n)_{n \in \mathbb{N}}$ of effectively open sets such that $\forall n(G_n \subseteq G_{n+1})$ there is an N such that $(\forall n > N)(G_n = G_N)$.
- (iv) For every sequence $(F_n)_{n \in \mathbb{N}}$ of effectively closed sets such that $\forall n(F_n \supseteq F_{n+1})$ there is an N such that $(\forall n > N)(F_n = F_N)$.

$\mathcal{U}(\mathcal{P}^\flat(Q))$ and $\mathcal{U}(\mathcal{P}^\sharp(Q))$

Let Q be a quasi-order. Let $I = \mathcal{P}_{\mathrm{f}}(Q)$.

We code $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ by

• $\varphi(X) \Leftrightarrow X \subseteq Q;$

•
$$\Psi_{=}(X,Y) \Leftrightarrow X=Y;$$

• $\Psi_{\in}(X, \mathbf{i}) \Leftrightarrow \mathbf{i} \subseteq X \downarrow$.

We code $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$ by

• $\varphi(X) \Leftrightarrow X \subseteq Q;$

•
$$\Psi_{=}(X,Y) \Leftrightarrow X=Y;$$

•
$$\Psi_{\in}(X, \mathbf{i}) \Leftrightarrow \mathbf{i} \cap X^{\uparrow} = \emptyset.$$

For $\mathcal{U}(\mathcal{P}^{\flat}(Q))$, the idea is that $\mathbf{i} \in \mathcal{P}_{\mathbf{f}}(Q)$ codes the complement of the basic closed set $\{Q \setminus (q\uparrow) : q \in \mathbf{i}\}\downarrow^{\flat}$.

For $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$, the idea is that $\mathbf{i} \in \mathcal{P}_{\mathrm{f}}(Q)$ codes the complement of the basic closed set $\{\{q\} : q \in \mathbf{i}\}\downarrow^{\sharp}$.

Are these the right topologies?

The basic closed sets of $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ are supposed to be those of the form $\{E_0, \ldots, E_{n-1}\}\downarrow^{\flat}$ for $E_0, \ldots, E_{n-1} \subseteq Q$.

Unfortunately the statement

 $(\forall \text{ quasi-orders } Q)(\forall E \subseteq Q)[\{E\}\downarrow^{\flat} \text{ is effectively closed in } \mathcal{U}(\mathcal{P}^{\sharp}(Q))]$

is equivalent to ACA_0 over RCA_0 .

One may interpret this as the statement " $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ is second-countable" being equivalent to ACA₀ over RCA₀.

However, RCA₀ does prove that $\{E\}\downarrow^{\sharp}$ is effectively closed in $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ for every $E \subseteq Q$.

The relationship between $\mathcal{P}_{f}(Q)$ and $\mathcal{P}(Q)$

 $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ is in general **coarser** than the subspace topology on $\mathcal{P}_{\mathrm{f}}(Q)$ induced by $\mathcal{U}(\mathcal{P}^{\flat}(Q)).$

 $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^\sharp(Q))$ is the same as the subspace topology on $\mathcal{P}_{\mathrm{f}}(Q)$ induced by $\mathcal{U}(\mathcal{P}^\sharp(Q)).$

```
Theorem (RCA<sub>0</sub>; F H M S VdM)
```

Let Q be a quasi-order.

```
(i) If \mathcal{U}(\mathcal{P}^{\flat}(Q)) is Noetherian, then \mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q)) is Noetherian.
```

(ii) If $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$ is Noetherian, then $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^{\sharp}(Q))$ is Noetherian.

This gives the reversals for the uncountable cases.

 $\mathsf{ACA}_0 \vdash Q$ a wqo $\to \mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(Q))$ Noetherian

Key observations:

- If F is effectively closed in $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ and $A \subseteq Q$, then $A \in F \leftrightarrow \mathcal{P}_{\mathrm{f}}(A) \subseteq F$.
- If F is effectively closed in $\mathcal{U}(\mathcal{P}_{\mathrm{f}}^{\sharp}(Q))$ and $A \subseteq Q$, then $A \in F \leftrightarrow \mathcal{P}_{\mathrm{f}}(A) \cap F \neq \emptyset$.
- So in either case, two effectively closed sets are equal if and only if they agree on $\mathcal{P}_{\rm f}(Q).$

Thus if $F_0 \supseteq F_1 \supseteq F_2 \supseteq \ldots$ is non-stabilizing, then

 $(F_0 \cap \mathcal{P}_{\mathrm{f}}(Q)) \supseteq (F_1 \cap \mathcal{P}_{\mathrm{f}}(Q)) \supseteq (F_2 \cap \mathcal{P}_{\mathrm{f}}(Q)) \supseteq \dots$

is non-stabilizing.

So we can give essentially the same proofs that we gave in the countable cases.

Paul Shafer - UGent

RM, wqo's, and Noetherian spaces

Thank you for coming to my talk! Do you have a question about it?