Continuous transfinite Blum-Shub-Smale computations and a
Church-like thesis for poly-time on infinite strings
P.D.Welch University of Bristol NUS: Sets and Computations 16.iv.15

Introduction: BSS Machines

Idea: A conceptual model for handling computations on reals from R:

> Registers for reals Ry, . .., Ry with contents Ry(¢), ... ,Ry(¢) at time or
stage 1.
» A finite program P, consisting of instructions [y, ... , Ix - with the

current instruction /(7).

» If, and when, the computatlon halts, at time say 6, we say that the
machine has computed Ry(0): P.(R;() LRy (6

Aguwe fov Sinep be:?
Nb e oua VﬂAMC;EdAO
£ af fuudion wales
(Tot fo- 0 fiT)

Transfinite BSS machines: /BSS’s!

Transfinite Action:
» (Continuity) If, at limit stage A, any of the lim,,_, \ R;(«) do not exist,
then P, (m) crashes.
» NB: This includes the case that lim,_, \ R;(«) = oo.

» Limit instruction: I(\) = liminf,_, \ I(t) =
the least instruction § performed cofinally in A.

¢ (Continuity) is a stringent constraint.

YTowards a theory of infinite time Blum-Shub-Smale Machines, P. Koepke and B. Seyfferth,
CiE2012 Proceedings, Springer LNCS, 2012.

Transfinite BSS machines: /BSS’s!

Transfinite Action:
» (Continuity) If, at limit stage A, any of the lim,,_, \ R;(«) do not exist,
then P, (m) crashes.
» NB: This includes the case that lim,_, \ R;(«) = oo.

» Limit instruction: I(\) = liminf,_, \ I(t) =
the least instruction § performed cofinally in A.

¢ (Continuity) is a stringent constraint.

e Koepke-Seyftferth ask:

Q1 How long do the machines compute before looping/crashing?
Q2 What do the machines compute?

Q3 How do the above depend on N, the no. of registers?

(They answer Q1& Q3. We have answered Q2.)

YTowards a theory of infinite time Blum-Shub-Smale Machines, P. Koepke and B. Seyfferth,
CiE2012 Proceedings, Springer LNCS, 2012.

—

N-dim . T [O,UN/ }MSB 15 0O

Q4 Fa ‘FVOZM\M Pe,NM+7Jm*G\,’ig’L”§_Pf Oe“: . Pe[";\)\LO;?
G5: Haow ww\[)&?(I ?Q: 8@ 76/6;]

Q1: Looping times

Theorem (Koepke-Seyfferth)

Any IBSS machine P, crashes, halts, or is looping, by time w™ ! where M is
the § of function nodes in P,.

Proof: (M = 1) Suppose for a contradiction the point moves after stage w?.

Then the function F(X) was applied at some stage > w? but was not applied
cofinally in w? (by (Continuity), since otherwise R; (:uz) is a fixed point). So
for some stage o < w? the computation can be regarded as one starting from
Ri(a) using a program with one less function node. In this case (M=1) the
program then use only the finitely many query nodes, and must be looping
by stage w?. Contradiction!

M = [+ 1: repeat: argue by induction. []

Q1: Looping times

Theorem (Koepke-Seyfferth)

Any IBSS machine P, crashes, halts, or is looping, by time w™ ! where M is
the § of function nodes in P,.

Proof: (M = 1) Suppose for a contradiction the point moves after stage w?.

Then the function F(X) was applied at some stage > w? but was not applied
cofinally in w? (by (Continuity), since otherwise R; (:uz) is a fixed point). So
for some stage o < w? the computation can be regarded as one starting from
Ri(a) using a program with one less function node. In this case (M=1) the
program then use only the finitely many query nodes, and must be looping
by stage w?. Contradiction!

M = [+ 1: repeat: argue by induction. []

Remark:

(1) The number of registers was irrelevant. This answers Q1 and Q3.

(2) Since time w® i1s all that’s needed, all IBSS computations can be run
inside L, [I_é,] and by absoluteness are the same computations as in V.
Hence the IBSS computable reals from inputs I_éi are all in L« [I_é,-]. Later we
shall see the converse.

ITTM’s: a review

Input: | 1 1 0 1 1 10]0]107]O0
Scratch: | () 1 1 1 1 1 1 OO
Output: | 0 0 0 1 1 0 1 0

» P,: again a finite sequence of instructions.

» At limit stages A the R/W Head, which is on cell Ce () at time 7, goes
back to C,(») where c(\) := liminf;_, c(z) =4
the least cell f visited visited cofinally in A.
o Limit instruction: 1(\) := liminf,_, 5 I(t) =4
the least instruction § performed cofinally in A.
e Cell update C;(\) := liminf,_, , C;(¢) fori < w.

» We may consider running such on input 7 € (2¢)" restricting to w®
steps only; as output we have precisely the A, (7) reals.

Confluence

Theorem (W)

The following classes of functions of the form F : (2N)F — 2N gre
extensionally equivalent:
(I) Those functions computed by a continuous IBSSM machine;

(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

Proof:?> (I) C (II): We take k = 1. By Koepke-Seyfferth for any IBSSM
computable F there is N < w so that F(x) is computable in less than w”
steps.

e Consider that computation to be performed inside L~ [x].

e ITTM-compute a code for any L~ [x|, and its theory, uniformly in the
input x by time w™ 3. Since we have the theory, we have the digits of the
final halting IBSSM-output (or otherwise the fact that it 1s looping or has
crashed), since these are also part of the set theoretical truths of L |x]).
Thus (I) C (II).

2See, e.g., P. D Welch, Turing’s Legacy, Ed. R. Downey, LNL, vol 42, CUP, 2012, pp
493-529.

Proof contd.)

Theorem

The following classes of functions of the form F : (2N)F — 2N gre
extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;

(III) Those functions that are SRSF, (PRSF,CRSF).

(II) C (III): If F 1s in the class (II), then for some N < w, by absoluteness,
F(x) is ITTM-computable within L [x]|. By setting up the definition of the
ITTM program P computing F, we may define some « such that the output
of that program P on x (i.e. F(x)) is always the a’th element in the natural
wellorder of L v|x| uniformly in x. However the set L |x] is
SRSF-recursive from {x} (again uniformly in x) as is a code for a. This
yields the conclusion that we may find uniformly the output of P(x) using

the code for «, again as the output of an SRSF-recursive-in-x function. This
renders (II) C (I1I).

Theorem

The following classes of functions of the form F : (2N)F — 2N gre
extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;

(III) Those functions that are SRSF, (PRSF,CRSF).

Proof contd. (III) C (I) Let F(x/—) be in (1II), then there is> M < w and a
Y.1-formula (v, v1) so that

F(x/—) = ziff Lo [x] | ¢[x, 2]
e We have in turn another ¥ 1)(vo, v1) (in L, ¢) so that
F(x/=)(K) = 2(k) = 1iff Lw[a] |= v, &)

e It thus suffices to be able to compute the 3> -truth sets for L, [x] for all

a < w® by IBSSM’s. There are a variety of ways one could do this, but it is
well known that calculating the o’th iterates of the Turing jump relativised
to x for o < w® would suffice.

3A. Beckmann, S. Buss, S-D. Friedman, “Safe Recursive Set Functions”, Thm. 3.5)

Coding truth sets into IBSSM comps.

e For y € R let y also denote the element of 2" coding the set of integers of
y’s expansion as an infinite fraction and vice versa. Fix an M < w, to see that
we may calculate x(#)" for 8 < w™.

e Construct a counter to be used in general iterative processes, using
registers Cy_1, . . ., Co whose contents C(j) = n; = the multiple of «’ in the
Cantor normal form of w?. Thus 8 = W™~ - ny_ 1+ w-n; +ng < WM
where we are at the (5’th stage in the process.

e Effect this so that Cy = C; = - -- = Cy—; = 0 occurs first at stage w™.
e Let pg = 2, p1 = 3, etc., enumerates the primes. Code the characteristic

function of {e € w | e € Wj(ﬁ) } as 1/0’s in the digits at the s’th-places after

the decimal point of R; where s is of the form PM+e-P80+1- e .pﬁl_‘lﬁl.

e For limit stages A < w, continuity of the register contents automatically
ensures that this real in R; also codes the disjoint union of the x(*)" for

B < A, and at stage w™ we have the whole sequence of jumps encoded as
required. []

A Church-like thesis

Thesis: Any effective notion of computation on w-strings
X1,...,X, that runs in less than w® steps is SRSF-computable from

(Xl,. . .,Xn).

e Any claim of justification for this, (as for the original CT-thesis) turns on
what one means by ‘effective notion’.
e But the case for this seems watertight:

» Any such ‘effective notion’ has to be absolute between ZF-models, in
particular be absolute to L.

» Similarly it surely must be the case that such a notion for computing
from ¥, must be absolute between L[x] and L, [X]. For if this degree of
absoluteness failed, then it would mean that the course of computation
from X must be appealing to some additional information, some device,
some agency, extra to L« [X]. How can one argue that any such external
input is ‘effective’?

» And we have seen above that the theory of L [X] is essentially
SRSF-computable.

» It would seem then that any notion of ‘effective algorithm’ for such
computation should be coded in some way into L., or at the very
worst have a description that 1s coded there.

» Compare this with arguments of Gandy * for standard computation on
integers: notions of effectivity here must have a finite description, or
have finite components which may be coded within the realm of the
hereditarily finite sets. Thus a successful, i.e. halting, computation is an
object in HF and relies on nothing outside of HF.

» Further compare with Kleene recursion, also a recursion on 2": a course
of computation is coded as living on a well founded finite path tree, and
1s a hyperarithmetic object. Hence such computations belong precisely
to the realm that they compute (since a set is Kleene-computable iff it is
HYP and relies on nothing outside of its realm: L.

» As above then, any effective notion of poly-time on strings should rely
on nothing outside its realm: L.

4R.0. Gandy. Church’s thesis and principles for mechanisms. In J. Barwise, H.J. Keisler,
and K. Kunen, editors, The Kleene Symposium, Studies in Logic and the Foundations of
Mathematics, pages 123-148, Amsterdam, 1980. North-Holland.

Liminf for IBSSM’s

e Relax (Continuity). Instead use
(Liminf): For Lim(\) define R;(A) = liminf,_, \ R;(¢).

Interpret P, below 1n this sense.

Liminf for IBSSM’s

e Relax (Continuity). Instead use
(Liminf): For Lim(\) define R;(A) = liminf,_, \ R;(¢).
Interpret P, below 1n this sense.

Proposition
KP + II3-Reflection -“VxVe(P,(x) stabilizes .

Liminf for IBSSM’s

e Relax (Continuity). Instead use
(Liminf): For Lim(\) define R;(A) = liminf,_, \ R;(¢).

Interpret P, below 1n this sense.

Proposition
KP + II3-Reflection -“VxVe(P,(x) stabilizes .

Q6 (Open) AJ-CAg = “ VaVe(P,(x) stabilizes ” ?

