
Continuous transfinite Blum-Shub-Smale computations and a
Church-like thesis for poly-time on infinite strings
P.D.Welch University of Bristol NUS: Sets and Computations 16.iv.15



Introduction: BSS Machines

Idea: A conceptual model for handling computations on reals from R:
I Registers for reals R1, . . . ,RN with contents R1(t), . . . ,RN(t) at time or

stage t.
I A finite program Pe consisting of instructions I1, . . . , IK - with the

current instruction I(t).
I If, and when, the computation halts, at time say ✓, we say that the

machine has computed R1(✓): Pe(
���!
Ri(0)) # R1(✓).





Transfinite BSS machines: IBSS’s1

Transfinite Action:
I

(Continuity) If, at limit stage �, any of the lim↵!� Ri(↵) do not exist,
then Pe(

���!
Ri(0)) crashes.

I NB: This includes the case that lim↵!� Ri(↵) = 1.
I Limit instruction: I(�) = lim inft!� I(t) =

the least instruction ] performed cofinally in �.

• (Continuity) is a stringent constraint.

• Koepke-Seyfferth ask:
Q1 How long do the machines compute before looping/crashing?
Q2 What do the machines compute?
Q3 How do the above depend on N, the no. of registers?
(They answer Q1& Q3. We have answered Q2.)

1Towards a theory of infinite time Blum-Shub-Smale Machines, P. Koepke and B. Seyfferth,
CiE2012 Proceedings, Springer LNCS, 2012.



Transfinite BSS machines: IBSS’s1

Transfinite Action:
I

(Continuity) If, at limit stage �, any of the lim↵!� Ri(↵) do not exist,
then Pe(

���!
Ri(0)) crashes.

I NB: This includes the case that lim↵!� Ri(↵) = 1.
I Limit instruction: I(�) = lim inft!� I(t) =

the least instruction ] performed cofinally in �.

• (Continuity) is a stringent constraint.

• Koepke-Seyfferth ask:
Q1 How long do the machines compute before looping/crashing?
Q2 What do the machines compute?
Q3 How do the above depend on N, the no. of registers?
(They answer Q1& Q3. We have answered Q2.)

1Towards a theory of infinite time Blum-Shub-Smale Machines, P. Koepke and B. Seyfferth,
CiE2012 Proceedings, Springer LNCS, 2012.





Q1: Looping times

Theorem (Koepke-Seyfferth)
Any IBSS machine Pe crashes, halts, or is looping, by time !M+1 where M is
the ] of function nodes in Pe.

Proof: (M = 1) Suppose for a contradiction the point moves after stage !2.
Then the function F(~x) was applied at some stage > !2 but was not applied
cofinally in !2 (by (Continuity), since otherwise ~Ri(!2) is a fixed point). So
for some stage ↵ < !2 the computation can be regarded as one starting from
~Ri(↵) using a program with one less function node. In this case (M=1) the

program then use only the finitely many query nodes, and must be looping
by stage !2. Contradiction!
M = l + 1: repeat: argue by induction.

Remark:
(1) The number of registers was irrelevant. This answers Q1 and Q3.
(2) Since time !! is all that’s needed, all IBSS computations can be run
inside L!! [~Ri] and by absoluteness are the same computations as in V .
Hence the IBSS computable reals from inputs ~Ri are all in L!! [~Ri]. Later we
shall see the converse.



Q1: Looping times

Theorem (Koepke-Seyfferth)
Any IBSS machine Pe crashes, halts, or is looping, by time !M+1 where M is
the ] of function nodes in Pe.

Proof: (M = 1) Suppose for a contradiction the point moves after stage !2.
Then the function F(~x) was applied at some stage > !2 but was not applied
cofinally in !2 (by (Continuity), since otherwise ~Ri(!2) is a fixed point). So
for some stage ↵ < !2 the computation can be regarded as one starting from
~Ri(↵) using a program with one less function node. In this case (M=1) the

program then use only the finitely many query nodes, and must be looping
by stage !2. Contradiction!
M = l + 1: repeat: argue by induction.

Remark:
(1) The number of registers was irrelevant. This answers Q1 and Q3.
(2) Since time !! is all that’s needed, all IBSS computations can be run
inside L!! [~Ri] and by absoluteness are the same computations as in V .
Hence the IBSS computable reals from inputs ~Ri are all in L!! [~Ri]. Later we
shall see the converse.



ITTM’s: a review

Input:

Scratch:

Output:

1

0

1

1

1

0

R/W

0

1

0

1

1

0

1

1

1

0

1

1

0

1

0

0

0

1

0

0

0

· · ·

· · ·

· · ·

I Pe: again a finite sequence of instructions.
I At limit stages � the R/W Head, which is on cell Cc(t) at time t, goes

back to Cc(�) where c(�) := lim inf⇤t!� c(t) =df
the least cell ] visited visited cofinally in �.

• Limit instruction: I(�) := lim inft!� I(t) =df
the least instruction ] performed cofinally in �.

• Cell update Ci(�) := lim inft!� Ci(t) for i < !.

I We may consider running such on input~r 2 (2!)N restricting to !!

steps only; as output we have precisely the �0
!! (~r) reals.



Confluence

Theorem (W)
The following classes of functions of the form F : (2 )k ! 2 are
extensionally equivalent:
(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

Proof:2 (I) ✓ (II): We take k = 1. By Koepke-Seyfferth for any IBSSM
computable F there is N < ! so that F(x) is computable in less than !N

steps.
• Consider that computation to be performed inside L!N [x].
• ITTM-compute a code for any L!N [x], and its theory, uniformly in the
input x by time !N+3. Since we have the theory, we have the digits of the
final halting IBSSM-output (or otherwise the fact that it is looping or has
crashed), since these are also part of the set theoretical truths of L!N [x]).
Thus (I) ✓ (II).

2See, e.g., P. D Welch, Turing’s Legacy, Ed. R. Downey, LNL, vol 42, CUP, 2012, pp
493-529.



Proof contd.)

Theorem
The following classes of functions of the form F : (2 )k ! 2 are
extensionally equivalent:
(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

(II) ✓ (III): If F is in the class (II), then for some N < !, by absoluteness,
F(x) is ITTM-computable within L!N [x]. By setting up the definition of the
ITTM program P computing F, we may define some ↵ such that the output
of that program P on x (i.e. F(x)) is always the ↵’th element in the natural
wellorder of L!N [x] uniformly in x. However the set L!N [x] is
SRSF-recursive from {x} (again uniformly in x) as is a code for ↵. This
yields the conclusion that we may find uniformly the output of P(x) using
the code for ↵, again as the output of an SRSF-recursive-in-x function. This
renders (II) ✓ (III).



Theorem
The following classes of functions of the form F : (2 )k ! 2 are
extensionally equivalent:
(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

Proof contd. (III) ✓ (I) Let F(x/�) be in (III), then there is3 M < ! and a
⌃1-formula '(v0, v1) so that

F(x/�) = z iff L!M [x] |= '[x, z]

• We have in turn another ⌃1  (v0, v1) (in Lẋ,2̇) so that

F(x/�)(k) = z(k) = 1 iff L!M [x] |=  [x, k].

• It thus suffices to be able to compute the ⌃1-truth sets for L↵[x] for all
↵ < !! by IBSSM’s. There are a variety of ways one could do this, but it is
well known that calculating the ↵’th iterates of the Turing jump relativised
to x for ↵ < !! would suffice.

3A. Beckmann, S. Buss, S-D. Friedman, “Safe Recursive Set Functions”, Thm. 3.5)



Coding truth sets into IBSSM comps.

• For y 2 R let y also denote the element of 2N coding the set of integers of
y’s expansion as an infinite fraction and vice versa. Fix an M < !, to see that
we may calculate x(�)

0
for � < !M .

• Construct a counter to be used in general iterative processes, using
registers CM�1, . . . ,C0 whose contents C(j) = nj = the multiple of !j in the
Cantor normal form of !� . Thus � = !M�1 · nM�1 + · · ·! · n1 + n0 < !M

where we are at the �’th stage in the process.
• Effect this so that C0 = C1 = · · · = CM�1 = 0 occurs first at stage !M .
• Let p0 = 2, p1 = 3, etc., enumerates the primes. Code the characteristic
function of {e 2 ! | e 2 Wx(�)0

e } as 1/0’s in the digits at the s’th-places after
the decimal point of R1 where s is of the form pM+e.pn0+1

0 . · · · .pnM�1+1
M�1 .

• For limit stages � < !M , continuity of the register contents automatically
ensures that this real in R1 also codes the disjoint union of the x(�)

0
for

� < �, and at stage !M we have the whole sequence of jumps encoded as
required.



A Church-like thesis

Thesis: Any effective notion of computation on !-strings
x1, . . . , xn that runs in less than !! steps is SRSF-computable from
(x1, . . . , xn).

• Any claim of justification for this, (as for the original CT-thesis) turns on
what one means by ‘effective notion’.
• But the case for this seems watertight:

I Any such ‘effective notion’ has to be absolute between ZF-models, in
particular be absolute to L.

I Similarly it surely must be the case that such a notion for computing
from~x, must be absolute between L[~x] and L!! [~x]. For if this degree of
absoluteness failed, then it would mean that the course of computation
from~x must be appealing to some additional information, some device,
some agency, extra to L!! [~x]. How can one argue that any such external
input is ‘effective’?

I And we have seen above that the theory of L!M [~x] is essentially
SRSF-computable.



I It would seem then that any notion of ‘effective algorithm’ for such
computation should be coded in some way into L!! , or at the very
worst have a description that is coded there.

I Compare this with arguments of Gandy 4 for standard computation on
integers: notions of effectivity here must have a finite description, or
have finite components which may be coded within the realm of the
hereditarily finite sets. Thus a successful, i.e. halting, computation is an
object in HF and relies on nothing outside of HF.

I Further compare with Kleene recursion, also a recursion on 2N: a course
of computation is coded as living on a well founded finite path tree, and
is a hyperarithmetic object. Hence such computations belong precisely
to the realm that they compute (since a set is Kleene-computable iff it is
HYP and relies on nothing outside of its realm: L!ck

1
.

I As above then, any effective notion of poly-time on strings should rely
on nothing outside its realm: L!! .

4R.O. Gandy. Church’s thesis and principles for mechanisms. In J. Barwise, H.J. Keisler,
and K. Kunen, editors, The Kleene Symposium, Studies in Logic and the Foundations of
Mathematics, pages 123-148, Amsterdam, 1980. North-Holland.



Liminf for IBSSM’s

• Relax (Continuity). Instead use

(Liminf): For Lim(�) define Ri(�) = lim inft!� Ri(t).

Interpret Pe below in this sense.

Proposition
KP +⇧3-Reflection `“8x8e(Pe(x) stabilizes ”.

Q6 (Open) �1
2-CA0 ` “ 8x8e(Pe(x) stabilizes ” ?



Liminf for IBSSM’s

• Relax (Continuity). Instead use

(Liminf): For Lim(�) define Ri(�) = lim inft!� Ri(t).

Interpret Pe below in this sense.

Proposition
KP +⇧3-Reflection `“8x8e(Pe(x) stabilizes ”.

Q6 (Open) �1
2-CA0 ` “ 8x8e(Pe(x) stabilizes ” ?



Liminf for IBSSM’s

• Relax (Continuity). Instead use

(Liminf): For Lim(�) define Ri(�) = lim inft!� Ri(t).

Interpret Pe below in this sense.

Proposition
KP +⇧3-Reflection `“8x8e(Pe(x) stabilizes ”.

Q6 (Open) �1
2-CA0 ` “ 8x8e(Pe(x) stabilizes ” ?


