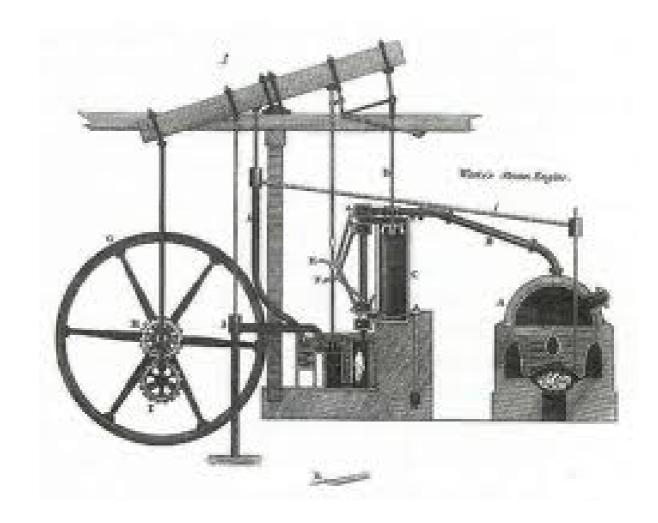
Continuous transfinite Blum-Shub-Smale computations and a Church-like thesis for poly-time on infinite strings

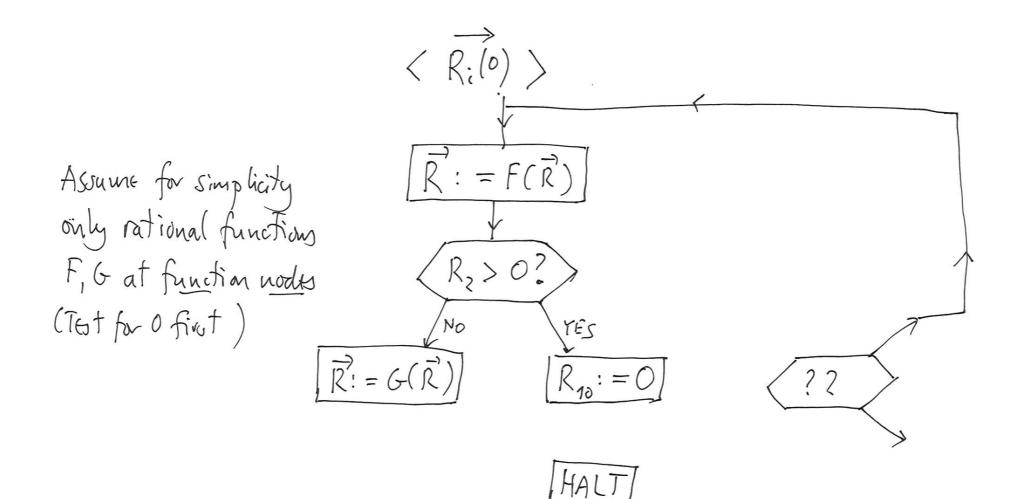
P.D.Welch University of Bristol

NUS: Sets and Computations 16.iv.15



Idea: A conceptual model for handling computations on reals from \mathbb{R} :

- *Registers* for reals R_1, \ldots, R_N with contents $R_1(t), \ldots, R_N(t)$ at *time* or *stage t*.
- A finite *program* P_e consisting of instructions I_1, \ldots, I_K with the current instruction I(t).
- If, and when, the computation halts, at time say θ , we say that the machine has *computed* $R_1(\theta)$: $P_e(\overrightarrow{R_i(0)}) \downarrow R_1(\theta)$.



Transfinite BSS machines: *I*BSS's¹

Transfinite Action:

- (Continuity) If, at limit stage λ , any of the $\lim_{\alpha \to \lambda} R_i(\alpha)$ do not exist, then $P_e(\overrightarrow{R_i(0)})$ crashes.
- ▶ NB: This includes the case that $\lim_{\alpha \to \lambda} R_i(\alpha) = \infty$.
- Limit instruction: I(λ) = lim inf_{t→λ} I(t) =
 the least instruction \$\$\$ performed cofinally in λ.
- (Continuity) is a stringent constraint.

¹*Towards a theory of infinite time Blum-Shub-Smale Machines*, P. Koepke and B. Seyfferth, CiE2012 Proceedings, Springer LNCS, 2012.

Transfinite BSS machines: *I*BSS's¹

Transfinite Action:

- (Continuity) If, at limit stage λ , any of the $\lim_{\alpha \to \lambda} R_i(\alpha)$ do not exist, then $P_e(\overrightarrow{R_i(0)})$ crashes.
- ▶ NB: This includes the case that $\lim_{\alpha \to \lambda} R_i(\alpha) = \infty$.
- Limit instruction: I(λ) = lim inf_{t→λ} I(t) =
 the least instruction # performed cofinally in λ.
- (Continuity) is a stringent constraint.
- Koepke-Seyfferth ask:

Q1 How long do the machines compute before looping/crashing?

Q2 What do the machines compute?

Q3 How do the above depend on *N*, the no. of registers?

(They answer Q1& Q3. We have answered Q2.)

¹*Towards a theory of infinite time Blum-Shub-Smale Machines*, P. Koepke and B. Seyfferth, CiE2012 Proceedings, Springer LNCS, 2012.

A transfinite dynamical system
N-dim. torus
$$[0,1]^N$$
 - identify $1 \rightarrow 0$.
Q4: For program P_e , what is the origin set $O_e := \{\vec{r}: P_e(\vec{r}) \downarrow 0\}$?
Q5: How complex is $\{e: O_e \neq \emptyset\}$?

Q1: Looping times

Theorem (Koepke-Seyfferth)

Any IBSS machine P_e crashes, halts, or is looping, by time ω^{M+1} where M is the \ddagger of function nodes in P_e .

Proof: (M = 1) Suppose for a contradiction the point moves after stage ω^2 . Then the function $F(\vec{x})$ was applied at some stage $> \omega^2$ but was not applied cofinally in ω^2 (by (**Continuity**), since otherwise $R_i(\vec{\omega}^2)$ is a fixed point). So for some stage $\alpha < \omega^2$ the computation can be regarded as one starting from $R_i(\vec{\alpha})$ using a program with one less function node. In this case (M=1) the program then use only the finitely many query nodes, and must be looping by stage ω^2 . Contradiction! M = l + 1: repeat: argue by induction.

Q1: Looping times

Theorem (Koepke-Seyfferth)

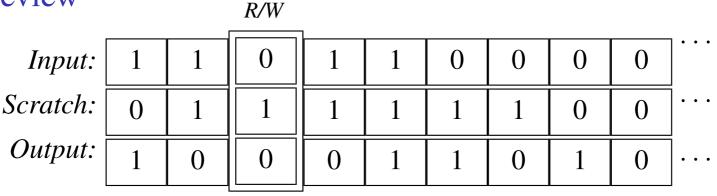
Any IBSS machine P_e crashes, halts, or is looping, by time ω^{M+1} where M is the \ddagger of function nodes in P_e .

Proof: (M = 1) Suppose for a contradiction the point moves after stage ω^2 . Then the function $F(\vec{x})$ was applied at some stage $> \omega^2$ but was not applied cofinally in ω^2 (by (**Continuity**), since otherwise $R_i(\vec{\omega}^2)$ is a fixed point). So for some stage $\alpha < \omega^2$ the computation can be regarded as one starting from $R_i(\vec{\alpha})$ using a program with one less function node. In this case (M=1) the program then use only the finitely many query nodes, and must be looping by stage ω^2 . Contradiction! M = l + 1: repeat: argue by induction.

Remark:

(1) The number of registers was irrelevant. This answers Q1 and Q3. (2) Since time ω^{ω} is all that's needed, all IBSS computations can be run inside $L_{\omega^{\omega}}[\vec{R}_i]$ and by absoluteness are the same computations as in *V*. Hence the IBSS computable reals from inputs \vec{R}_i are all in $L_{\omega^{\omega}}[\vec{R}_i]$. Later we shall see the converse.

ITTM's: a review



- P_e : again a finite sequence of instructions.
- At limit stages λ the *R/W* Head, which is on cell C_{c(t)} at time t, goes back to C_{c(λ)} where c(λ) := lim inf^{*}_{t→λ} c(t) =_{df} the least cell # visited visited cofinally in λ.
 - *Limit instruction:* $I(\lambda) := \liminf_{t \to \lambda} I(t) =_{df}$ the least instruction \sharp performed cofinally in λ .
 - Cell update $C_i(\lambda) := \liminf_{t \to \lambda} C_i(t)$ for $i < \omega$.
- We may consider running such on input $\vec{r} \in (2^{\omega})^N$ restricting to ω^{ω} steps only; as output we have precisely the $\Delta^0_{\omega^{\omega}}(\vec{r})$ reals.

Confluence

Theorem (W)

The following classes of functions of the form $F : (2^{\mathbb{N}})^k \to 2^{\mathbb{N}}$ are extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

Proof:² (I) \subseteq (II): We take k = 1. By Koepke-Seyfferth for any IBSSM computable *F* there is $N < \omega$ so that F(x) is computable in less than ω^N steps.

• Consider that computation to be performed inside $L_{\omega^N}[x]$.

• ITTM-compute a code for any $L_{\omega^N}[x]$, and its theory, uniformly in the input *x* by time ω^{N+3} . Since we have the theory, we have the digits of the final halting IBSSM-output (or otherwise the fact that it is looping or has crashed), since these are also part of the set theoretical truths of $L_{\omega^N}[x]$). Thus (I) \subseteq (II).

²See, *e.g.*, P. D Welch, *Turing's Legacy*, Ed. R. Downey, LNL, vol 42, CUP, 2012, pp 493-529.

Proof contd.)

Theorem

The following classes of functions of the form $F : (2^{\mathbb{N}})^k \to 2^{\mathbb{N}}$ are extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

(II) \subseteq (III): If *F* is in the class (II), then for some $N < \omega$, by absoluteness, F(x) is ITTM-computable within $L_{\omega^N}[x]$. By setting up the definition of the ITTM program *P* computing *F*, we may define some α such that the output of that program *P* on *x* (*i.e.* F(x)) is always the α 'th element in the natural wellorder of $L_{\omega^N}[x]$ uniformly in *x*. However the set $L_{\omega^N}[x]$ is SRSF-recursive from $\{x\}$ (again uniformly in *x*) as is a code for α . This yields the conclusion that we may find uniformly the output of P(x) using the code for α , again as the output of an SRSF-recursive-in-*x* function. This renders (II) \subseteq (III).

Theorem

The following classes of functions of the form $F : (2^{\mathbb{N}})^k \to 2^{\mathbb{N}}$ are extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are SRSF, (PRSF,CRSF).

Proof contd. (III) \subseteq (I) Let F(x/-) be in (III), then there is³ $M < \omega$ and a Σ_1 -formula $\varphi(v_0, v_1)$ so that

$$F(x/-) = z \text{ iff } L_{\omega^M}[x] \models \varphi[x, z]$$

• We have in turn another $\Sigma_1 \psi(v_0, v_1)$ (in $\mathcal{L}_{\dot{x}, \dot{\in}}$) so that

$$F(x/-)(k) = z(k) = 1 \text{ iff } L_{\omega^M}[x] \models \psi[x,k].$$

• It thus suffices to be able to compute the Σ_1 -truth sets for $L_{\alpha}[x]$ for all $\alpha < \omega^{\omega}$ by IBSSM's. There are a variety of ways one could do this, but it is well known that calculating the α 'th iterates of the Turing jump relativised to x for $\alpha < \omega^{\omega}$ would suffice.

³A. Beckmann, S. Buss, S-D. Friedman, "*Safe Recursive Set Functions*", Thm. 3.5)

Coding truth sets into IBSSM comps.

• For $y \in \mathbb{R}$ let y also denote the element of $2^{\mathbb{N}}$ coding the set of integers of y's expansion as an infinite fraction and *vice versa*. Fix an $M < \omega$, to see that we may calculate $x^{(\beta)'}$ for $\beta < \omega^M$.

• Construct a counter to be used in general iterative processes, using registers C_{M-1}, \ldots, C_0 whose contents $C(j) = n_j$ = the multiple of ω^j in the Cantor normal form of ω^{β} . Thus $\beta = \omega^{M-1} \cdot n_{M-1} + \cdots + \omega \cdot n_1 + n_0 < \omega^M$ where we are at the β 'th stage in the process.

• Effect this so that $C_0 = C_1 = \cdots = C_{M-1} = 0$ occurs first at stage ω^M .

Let p₀ = 2, p₁ = 3, etc., enumerates the primes. Code the characteristic function of {e ∈ ω | e ∈ W_e^{x^{(β)'}}} as 1/0's in the digits at the s'th-places after the decimal point of R₁ where s is of the form p_{M+e}.p₀<sup>n₀+1</sub>......p_{M-1}^{n_{M-1}+1}.
For limit stages λ < ω^M, continuity of the register contents automatically ensures that this real in R₁ also codes the disjoint union of the x^{(β)'} for β < λ, and at stage ω^M we have the whole sequence of jumps encoded as required.
</sup>

A Church-like thesis

Thesis: Any effective notion of computation on ω -strings x_1, \ldots, x_n that runs in less than ω^{ω} steps is SRSF-computable from (x_1, \ldots, x_n) .

- Any claim of justification for this, (as for the original CT-thesis) turns on what one means by 'effective notion'.
- But the case for this seems watertight:
 - Any such 'effective notion' has to be absolute between ZF-models, in particular be absolute to L.
 - Similarly it surely must be the case that such a notion for computing from x, must be absolute between L[x] and L_w^w [x]. For if this degree of absoluteness failed, then it would mean that the course of computation from x must be appealing to some additional information, some device, some agency, *extra* to L_w^w [x]. How can one argue that any such external input is 'effective'?
 - And we have seen above that the theory of $L_{\omega^M}[\vec{x}]$ is essentially *SRSF*-computable.

- ► It would seem then that any notion of 'effective algorithm' for such computation should be coded in some way into L_ω^ω, or at the very worst have a description that is coded there.
- Compare this with arguments of Gandy ⁴ for standard computation on integers: notions of *effectivity* here must have a finite description, or have finite components which may be coded within the realm of the hereditarily finite sets. Thus a successful, *i.e.* halting, computation is an object in *HF* and relies on nothing outside of *HF*.
- ► Further compare with Kleene recursion, also a recursion on 2^N: a course of computation is coded as living on a well founded finite path tree, and is a hyperarithmetic object. Hence such computations belong precisely to the realm that they compute (since a set is Kleene-computable iff it is *HYP* and relies on nothing outside of its realm: L_{ω₁^{ck}}.
- ► As above then, any effective notion of poly-time on strings should rely on nothing outside its realm: L_ω^ω.

⁴R.O. Gandy. *Church's thesis and principles for mechanisms*. In J. Barwise, H.J. Keisler, and K. Kunen, editors, The Kleene Symposium, Studies in Logic and the Foundations of Mathematics, pages 123-148, Amsterdam, 1980. North-Holland.

Liminf for IBSSM's

• Relax (Continuity). Instead use

(**Liminf**): For $Lim(\lambda)$ define $R_i(\lambda) = \liminf_{t \to \lambda} R_i(t)$.

Interpret P_e below in this sense.

Liminf for IBSSM's

• Relax (Continuity). Instead use

(**Liminf**): For $Lim(\lambda)$ define $R_i(\lambda) = \liminf_{t \to \lambda} R_i(t)$.

Interpret P_e below in this sense.

Proposition $\mathsf{KP} + \Pi_3$ -Reflection $\vdash ``\forall x \forall e(P_e(x) \text{ stabilizes ''}.$

Liminf for IBSSM's

• Relax (Continuity). Instead use

(**Liminf**): For $Lim(\lambda)$ define $R_i(\lambda) = \liminf_{t \to \lambda} R_i(t)$.

Interpret P_e below in this sense.

Proposition $\mathsf{KP} + \Pi_3$ -Reflection $\vdash ``\forall x \forall e(P_e(x) \text{ stabilizes ''}.$

Q6 (Open) Δ_2^1 -CA₀ \vdash " $\forall x \forall e(P_e(x) \text{ stabilizes "}?)$