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Singular Cardinal Hypothesis

Singular Cardinal Hypothesis

SCH ≡ 2λ = λ+ for all singular strong limit cardinal λ.

Large cardinals imply SCH above them:

Theorem (Solovay 1971)

If κ is a strongly compact cardinal, then SCH holds above κ.

Strong forcing axioms also imply SCH:

Theorem ( 1 Foreman-Magidor-Shelah 1988, 2 Viale 2006)

1 Martin’s Maximum (MM) implies SCH.

2 Proper Forcing Axiom (PFA) implies SCH.
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Reflection principles

Weak Reflection Principle

For a cardinal µ ≥ ω2,

WRP(µ) ≡ for any stationary X ⊆ [µ]ω there is R ∈ [µ]ω1 such that
ω1 ⊆ R and X ∩ [R]ω is stationary in [R]ω.

WRP ≡ WRP(µ) holds for all cardinals µ ≥ ω2.

WRP follows from MM. (Foreman-Magidor-Shelah)

WRP has interesting consequences. For example:

▶ 2ω ≤ ω2 (Todorčević)
▶ Chang’s Conjecture (Foreman-Magidor-Shelah)
▶ NSω1 is presaturated. (Feng-Magidor)
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Fodor-type Reflection Principle (Fuchino, Soukup, Usuba et al. 2010)

For a regular cardinal µ ≥ ω2,

FRP(µ) ≡ for any stat. S ⊆ µ ∩ Cof(ω) and any ⟨bα | α ∈ S⟩ with bα ∈ [α]ω

there is γ ∈ µ ∩ Cof(ω1) such that for any function g on S ∩ γ
with g(α) ∈ bα there is β with g−1[{β}] stationary in γ.

FRP ≡ FRP(µ) holds for all regular cardinals µ ≥ ω2.

FRP follows from MM. (Fuchino, Soukup, Usuba et al.)

FRP has many equivalent reflection principles in terms of topology, graph
theory, etc. For example:

▶ For every locally countably compact space X , if X is non-metrizable,
then there is a non-metrizable subspace of X of size ω1.

▶ For every infinite graph G , if the coloring number of G is uncountable,
then there is G ′ ⊆ G of size ω1 whose coloring number is uncountable.

(Fuchino, Soukup, S., Usuba et al.)
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Reflection principles and SCH

Theorem ( 1 Shelah 2004, 2 Fuchino-Rinot 2011)
1 WRP implies SCH.

2 FRP implies SCH.

Their proofs use the following fact:

Fact (Shelah)

Assume SCH fails. Then there is a singular cardinal of cofinality ω at which
a better scale exists.

In fact the following are proved in the proofs of the above theorem:

Theorem ( 1 Shelah 2004, 2 Fuchino-Rinot 2011)

If λ is a singular cardinal of cofinality ω at which a better scale exists, then

1 WRP(λ+) fails,

2 FRP(λ+) fails.
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The fact about better scales is a deep theorem in PCF theory.
It is quite useful, but its proof is long and complicated...

Question
Can we deduce SCH from reflection principles directly without using better scales?
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Another motivation: TP, ITP and SCH

Weiß introduced a tree property TP(κ, λ) and an ineffability property ITP(κ, λ)
on Pκ(λ), which characterize the strongly compactness and the supercompactness
for inaccessible κ:

κ is strongly compact iff κ is inaccessible, and TP(κ, λ) holds for all λ ≥ κ.

κ is supercompact iff κ is inaccessible, and ITP(κ, λ) holds for all λ ≥ κ.

TP(κ) and ITP(κ) denote that TP(κ, λ) and ITP(κ, λ) hold for all λ ≥ κ, resp.

The following indicates that ω2 is similar as a supercompact cardinal under PFA:

Theorem (Weiß 2010)

PFA implies ITP(ω2).

The similar holds for WRP:

Theorem (S.-Veličković 2011)

WRP+MAω1 implies ITP(ω2).
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Open Problem

Does ITP(ω2) (or TP(ω2)) imply SCH?

To prove that ITP(ω2) implies SCH, we cannot use better scales:

Theorem (Magidor)

PFA is consistent with the existence of better scales at all singular cardinals.
(Hence so is ITP(ω2).)

Thus if we could prove that ITP(ω2) implies SCH, then we would have a proof of
SCH from WRP +MAω1 without using better scales.

Question
Can we deduce SCH from WRP without using better scales?
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Answer

Answer
Yes, both for WRP and FRP.

The fact about better scales can be replaced with some simple arguments.
Moreover, as for WRP, the rest of the proof becomes simpler.
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Proof of SCH from FRP without scales

We prove ¬SCH ⇒ ¬FRP.

FRP(µ) ≡ for any stat. S ⊆ µ ∩ Cof(ω) and any ⟨bα | α ∈ S⟩ with bα ∈ [α]ω

there is γ ∈ µ ∩ Cof(ω1) such that for any function g on S ∩ γ
with g(α) ∈ bα there is β with g−1[{β}] stationary in γ.

Lemma 1

Let λ be a cardinal. If there is a sequence ⟨bα | α < λ+⟩ in [λ]ω such that

(⋆) for any γ ∈ λ+ ∩ Cof(ω1) there are a club c ⊆ γ and ⟨eα | α ∈ c⟩ such that
eα ⊆ bα is finite and ⟨bα \ eα | α ∈ c⟩ is pairwise disjoint,

then FRP(λ+) fails.

Proof:
We claim that if ⟨bα | α < λ+⟩ satisfies (⋆), then its restriction to
S = (λ+ ∩ Cof(ω)) \ λ witnesses ¬FRP(λ+).

Suppose γ ∈ λ+ ∩ Cof(ω1). Let g be a function on c such that g(α) ∈ bα \ eα.
Then g is 1-1 on c . □
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Assume ¬SCH. Let λ be the least singular strong limit cardinal with 2λ > λ+.
We show there is ⟨bα | α < λ+⟩ satisfying (⋆).

Note that cof(λ) = ω by Silver’s Theorem. So λω = 2λ > λ+.

Lemma 2

For any A ⊆ [λ]<λ of size ≤ λ+ there is b ∈ [λ]ω s.t. b∩A is finite for any A ∈ A.

Proof:

Take a bijection f : [λ]<ω → λ. W.m.a. each A ∈ A is closed under f −1.

We can take b′ ∈ [λ]ω s.t. b′ ̸⊆ A for any A ∈ A.

(Otherwise, λω = |[λ]ω| = |
∪

A∈A[A]
ω| ≤ λ+.)

Let b′ = {β′
n | n < ω}, and for each n let βn := f ({β′

m | m < n}).
Note that if A ∈ A, and β′

m /∈ A, then βn /∈ A for all n > m.

So b = {βn | n < ω} is as desired. □
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We show that there is ⟨bα | α < λ+⟩ satisfying (⋆).

(⋆) For any γ ∈ λ+ ∩ Cof(ω1) there are a club c ⊆ γ and ⟨eα | α ∈ c⟩ such that
eα ⊆ bα is finite and ⟨bα \ eα | α ∈ c⟩ is pairwise disjoint.

For each γ ∈ λ+ ∩ Cof(ω1), fix a club cγ ⊆ γ of order-type ω1.

By induction on α < λ+ take bα.
Suppose α < λ+ and bβ has been taken for each β < α.

▶ For each γ ∈ λ+ ∩ Cof(ω1) let A
α
γ :=

∪
{bβ | β ∈ cγ ∩ α}.

▶ By Lemma 2 let bα be s.t. bα ∩ Aα
γ is finite for every γ ∈ λ+ ∩ Cof(ω1).

⟨bα | α < λ+⟩ is as desired:
Suppose γ ∈ λ+ ∩ Cof(ω1). For each α ∈ cγ let eα := bα ∩ Aα

γ .
Then eα is finite, and ⟨bα \ eα | α ∈ cγ⟩ is pairwise disjoint. □
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Proof of SCH from WRP without scales

Assume ¬SCH. Let λ be the least singular strong limit cardinal with 2λ > λ+.
Note that cof(λ) = ω.

We claim that WRP(λ+) fails.
In this talk we only construct a stationary X ⊆ [λ+]ω such that

X ∩ [R]ω is non-stationary for any R ∈ [λ+]ω1 with ω1 ⊆ R and cof(sup(R)) = ω1.

This X can be shrunken (without using scales) so that
X ∩ [R]ω is non-stationary for any R ∈ [λ+]ω with ω1 ⊆ R,
which witnesses ¬WRP(λ+).
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Lemma 3

For any A ⊆ [λ+]<λ of size ≤ λ+ there is b ∈ [λ+]ω s.t. b ∩ A is finite for any
A ∈ A.

Proof: The same as Lemma 2. □

Lemma 4

For any A ⊆ [λ+]<λ of size ≤ λ+ and any partition ⟨Iα | α < λ+⟩ of λ+,
there is b ∈ [λ+]ω such that for any A ∈ A we have Iα ∩ A = ∅ for all but finitely
many α ∈ b.

Proof:

By increasing each A ∈ A if necessary, we may assume that
for each A ∈ A if Iα ∩ A ̸= ∅, then α ∈ A.

By Lemma 3 take b ∈ [λ+]ω s.t. b ∩ A is finite for all A ∈ A.
Then b is as desired. □
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Lemma 5

For any A ⊆ [λ+]<λ of size ≤ λ+ there are stationary many x ∈ [λ+]ω such that
x ∩ A is bounded in sup(x) for any A ∈ A.

This can be proved using Lemma 4 and a game introduced by Veličković.
For a function F : [λ+]<ω → λ+ let G (F ) be the following game of length ω:

I J0 J1 · · · Jn · · ·
II β0 β1 · · · βn · · ·

At the n-th stage, I chooses a bounded interval Jn ⊆ λ+ with βn−1 ≤ min Jn,
and then II chooses βn < λ+.

I wins iff clF ({min Jn | n < ω}) ⊆
∪

n∈ω Jn.

Fact (Veličković)

For any F : [λ+]<ω → λ+, I has a winning strategy for G (F ).
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Lemma 5

For any A ⊆ [λ+]<λ of size ≤ λ+ there are stationary many x ∈ [λ+]ω such that
x ∩ A is bounded in sup(x) for any A ∈ A.

Proof:

Take an arbitrary F : [λ+]<ω → λ+. It suffices to find x ∈ [λ+]ω

which is closed under F and s.t. x ∩ A is bounded in sup(x) for any A ∈ A.

Let τ be a winning strategy of I for G (F ).

Let C be the set of all ordinals < λ+ closed under τ . Then C is club.
Let ⟨βα | α < λ+⟩ be the increasing enumeration of C ∪ {0}.
Let Iα := [βα, βα+1). Then ⟨Iα | α < λ+⟩ is a partition of λ+.

By Lemma 4 take an increasing sequence ⟨αn | n < ω⟩ such that
for any A ∈ A we have Iαn ∩ A = ∅ for all but finitely many n.

Let Jn := τ(⟨βαm | m < n⟩).
Then J0 ⊆ I0, and Jn ⊆ Iαn−1 because βαn−1+1 is closed under τ .
So for any A ∈ A we have Jn ∩ A = ∅ for all but finitely many n.

Let x := clF ({min Jn | n < ω}). Then x is as desired:
x ∩ A is bounded in sup(x) for any A ∈ A because x ⊆

∪
n<ω Jn. □
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Now we construct a stationary X ⊆ [λ+]ω such that
X ∩ [R]ω is non-stationary for any R ∈ [λ+]ω1 with ω1 ⊆ R and cof(sup(R)) = ω1:

For each γ ∈ λ+ ∩ Cof(ω1) take a partition ⟨Aγ
n | n < ω⟩ of γ such that

|Aγ
n | < λ.

Let X be the set of all x ∈ [λ+]ω such that x ∩ Aγ
n is bounded in sup(x)

for all γ and n. Then X is stationary by Lemma 5.

We claim that X is non-reflecting:

▶ Suppose R ∈ [λ+]ω1 and cof(sup(R)) = ω1. Let γ := sup(R).

▶ There is n with R ∩ Aγ
n is unbounded in γ.

Then there are club many y ∈ [R]ω s.t. y ∩ Aγ
n is unbounded in sup(y).

So X ∩ [R]ω is non-stationary.

□
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Semi-stationary reflection

Let W be a set ⊇ ω1. X ⊆ [W ]ω is semi-stationary if the set

{y ∈ [W ]ω | ∃x ∈ X [ y ⊇ x & y ∩ ω1 = x ∩ ω1 ]}

is stationary in [W ]ω.

Semi-Stationary Reflection

For a cardinal µ ≥ ω2,

SSR(µ) ≡ for any semi-stationary X ⊆ [µ]ω there is R ∈ [µ]ω1 such that
ω1 ⊆ R and X ∩ [R]ω is semi-stationary in [R]ω.

SSR ≡ SSR(µ) holds for all cardinals µ ≥ ω2.

SSR follows from WRP.

SSR is equivalent to each of the following:
▶ Every ω1-stationary set preserving poset is semi-proper. (Shelah)
▶ CC∗∗ (Doebler-Schindler)
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Theorem (S.-Veličković)

SSR implies SCH.

Original proof uses better scales. But this can be also proved without scales.
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