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Turing degrees

(D ,≤T ) is the primary subject of classical recursion theory.

Given A,B ⊆ ω, A ≤T B if there is a Turing machine that
correctly computes the membership of A with oracle B.

An equivalent set theoretical definition is that A is ∆1

definable in the structure (H(ω),∈, B).

Write A ≡T B if A ≤T B and B ≤T A. This is an
equivalence relation, and the equivalent classes are the Turing
degrees. Write A˜ = the degree of A, D = {A˜ | A ⊆ ω}.

A′, the Turing jump of A, is the set corresponding to the
halting problem (relativized to A). It is also the Σ1-theory of
the structure (H(ω),∈, A).
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Generalizations of Turing degrees

Various variations/generalizations of Turing degrees have been
studied.

Turing reduction is the simplest form of definability reduction.
The notion of Turing of degree can be naturally extended to
those of higher level of definability reduction, such as
arithmetic degrees, hyperarithmetic degrees, higher degrees of
projective hierarchies, even constructible degrees, degrees
induced by inner model operators, etc.

— Descriptive Set Theory.

One can also extend the notion of Turing degree on subsets of
ω to subsets of large ordinals.

— α-recursion theory.
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Generalized degree notion

Let Γ be a reasonable fragment (or extension) of ZFC.

Definition

Let λ be an infinite cardinal. Fix a well-ordering w : H(λ) → λ.
For a, b ⊂ λ:

Let M [a] be the minimal Γ-model of the form Lα[w][a],
α > λ.a

Let αa denote the height of M [a], call it a Γ-ordinal for a.

a ≤Γ b if M [a] ⊆ M [b]. a ≡Γ b if a ≤Γ b and b ≤Γ a

Write a˜ for the degree of a, the ≡Γ-equivalence class of a.
Write (Dλ

Γ ,≤Γ) as the degree poset.

JΓ(a), the Γ-jump of G, is the subset of λ coding the
structure (M [a],∈, a).

aThis requires Con(Γ).
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An typical example: λ = ω and Γ = KP theory.

In this case, for a ⊂ ω,

a˜ is the hyperarithmetic degree of a,

JKP(a) is ∆1-equivalent to the hyper-jump of a, which is the
complete Σ1-theory of Lωa

1
[a]. In particular, JKP(∅) = O.

For this talk, let Γ = Z, i.e. ZF− Replacement.1

We use Z-degrees to illustrate the main idea.

1This theory suffices for our later covering argument.
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Higher Degree Theory

α-degrees were studied only in L. Our recent work on
generalized degree notions reveals some interesting
connections between large cardinals and degree structures at
uncountable cardinals, in particular, strong limit singular
cardinals of countable cofinality.

We shall present a new type of generalized degree structure in
the core model of a certain large cardinal, via which we would
like to propose a new research program, Higher Degree
Theory, to reopen the study of generalized degree structures,
in particular, focusing on the connection between large
cardinals and the complexity of degree structures.
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We investigate degree structures in canonical inner models.

Not much of degree structures (at uncountable cardinals) can
be determined by ZFC alone.

Forcing can create all kind of “untamed” degree structures.
We would like to have a theory that is robust under forcing.

Fine structure models provide more “controlled” settings.

To differentiate these degree structures, we test them with a list of
degree theoretical questions.
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A list of questions

1 (Post Problem). Are there incomparable degrees, i.e.

¬(a˜ ≤ b˜) ∧ ¬(b˜≤ a˜)?
2 (Minimal Cover). Given a˜, is there a b˜ minimal w.r.t. a˜, i.e.

a˜ < b˜∧ ¬∃c˜(a˜ < c˜< b˜)?
3 (Posner-Robinson). Is it true for co-λ many x ⊂ λ that

(∃G)[x˜⊕G˜ ≡Z JZ(G)
˜

]?

4 (Degree Determinacy). Is Detλ(Z-Deg) true?
Here Detλ(Z-Deg): Every Z-degree invariant subset of P(λ)
either contains a cone or is disjoint from a cone.2

For (D ,≤T ), the answers to 1-3 are Yes. Degree determinacy is
false in ZFC, but true under ZF+ DC+ AD.

2A set A ⊂ P(λ) is Z-degree invariant if ∀a ∈ A (a˜ ⊂ A). A cone is a set
of the form Ca = {b | a ≤ b}.
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Three cases

λ is regular. Not very interesting.

In L-like models, such λ has the property λ<λ = λ. Most
recursion theoretic constructions at ω (like priority argument,
recursion theoretic forcing) can be generalized to such λ.

cf(λ) > ω, e.g. λ = ℵω1 . Nothing interesting left.

Theorem (Sy Friedman, 81) (V = L)

ℵω1-degrees are well-ordered above any singularizing degree.a

aA degree that computes an ω1-sequence cofinal in ℵω1 .
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The key in Friedman’s proof is the analysis of stationary subsets of
cf(λ). His argument works for most reasonable definability degree
notions.

Corollary (V = a fine structure extender model)

Z-degrees at singular cardinals of uncountable cofinality are
well-ordered above any singularizing degree.

This closes the case cf(λ) > ω.

cf(λ) = ω, e.g. λ = ℵω. Where the fun is.
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Pictures in L

Both Sy Friedman and Woodin observed independently that

Theorem

(V = L) If cf(λ) = ω, then the Z-degrees at λ are well-ordered
above any singularizing degree. In particular, the Z-degrees at ℵω

are well-ordered.

So in L, one can find only one type of degree structures at
singulars of countable cofinality: well-ordered after the least
singularizing degee.

A key ingredient of the argument is

Covering Lemma for L. (Jensen, 74)

Assume ¬∃0♯. Then every set x ⊂ Ord is covered by a y ∈ L, with
|y| = |x|+ ω1.
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Proof

Suppose a ⊂ λ, a ≥Z d, and d singularizes λ. Then a
computes a “cutoff” function.

Work in M [a]. Identify subset x ⊂ λ as a member of [λ]ω.

M [a] has no sharps, by Covering, ∃b ∈ LM [a] ∩ P(λ) s.t.
a ⊂ b ∧ |b| ≤ ω1. Then

a

b
∼ z

ω1
, for some z ⊂ ω1.

M [a] and LM [a] have the same P(ω1). Thus a ∈ LM [a]. In
other word, M [a] = Lαa ⊴ L.

Z-degrees at λ are well-ordered above d˜. ⊣
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Answers to the list:

Post Problem No.
Minimal Cover Yes. “No” for > 1 minimal covers.

Posner-Robinson No.
Degree Determinacy No.

Remark

For inner models between L and L[µ], the minimal inner
model for one measurable cardinal, the same argument applies,
as their Covering Lemmas are of the same form. (e.g.L[0♯])

A little wrinkle in L[µ], due to the different form of the
covering lemma for L[µ]. The argument for L can be adapted
to yield the same picture – well-ordered above some point – at
every singular cardinal of countable cofinality.
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Pictures in L[µ]

Let κ be the measurable, λ strong limit and cf(λ) = ω.

Reorganize L[µ] as L[E], by Steel’s construction, using partial
measures. The point is the acceptability condition, i.e.∀γ < α,

(Lα+1[E]− Lα[E]) ∩ P(γ) ̸= ∅ ⇒ Lα[E] |= |α| = γ.

Two cases:

λ > κ. Argue as in L.

λ < κ. Fix a ⊂ λ above the least Lα+1[E] that singularizes λ.
M [a] contains no 0†. The most KM [a], the core model for
M [a], could be is either L[µ′] or there is no measurable.

If no measurable, then M [a] = KM [a], by Covering as before.
By Comparison, M [a] ⊴ K = L[E].

If KM [a] = L[µ′], then there are two cases.
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Pictures in L[µ]

Covering Lemma for L[µ]. (Dodd-Jensen, 82)

Assume ¬∃0†, but there is an inner model L[µ]. Let κ = crit(µ).
Then for every set x ⊂ Ord, one of the following holds:

1 Every set x ⊂ Ord is covered by a y ∈ L[µ], with
|y| = |x|+ ω1.

2 ∃C, Prikry generic over L[µ], s.t. every set x ⊂ Ord is
covered by a y ∈ L[µ][C], with |y| = |x|+ ω1.
Such C is unique up to finite difference.

Case 1. M [a] |= V = L[µ′], argue as in L.

Case 2. Note that λ < κ′ = crit(µ′), and C ⊂ κ′ adds no new
bounded subsets of κ′. It must be Case 1, as the covering
set y is in M [a].

By Comparison, M [a] ⊴ K = L[E].
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Pictures in L[µ̄]

A new picture starts to emerge in the canonical model for ω
many measurable cardinals, L[µ̄], where µ̄ = ⟨µn : n < ω⟩ and
each µn is a measure on κn and κn < κn+1, n < ω.

The case λ ̸= κω is argued as in L[µ], Zermelo degrees at λ is
well ordered above any singularizing degree. A new degree
structure appears at λ = κω.

The key is the Covering. The Covering for L[µ̄] is similar to
that of L[µ], except that C in case 2 now is a system of
indiscernibles C = ⟨Cn : n < ω⟩ with the properties:

1 Each Cn ⊂ κn is either finite or a Prikry sequence;
2 C as a whole is a uniform system of indiscernibles, i.e.

(∀x̄ ∈ L[µ̄]) (∀n < ω)(xn ∈ µn) ⇒ |
∪

{Cn \xn | n < ω}| < ω.

Let fC be such that fC(n) = |Cn|, n < ω.
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Covering Lemma for L[µ̄]

Fix an f : ω → ω ∪ {ω} with infinite support.

Lemma (Covering Lemma for L[µ̄])

Assume the sharp of L[µ̄] does not exist and there is an inner
model containing ω measurable cardinals. Let L[µ̄] be such that
λ = supn<ω κn is as small as possible, where each κn = crit(µn).
Then one of the following two statements holds:

1 For every set x of ordinals there is a set y ∈ L[µ̄] with x ⊆ y
and |y| = |x|+ ω1.

2 There is a (Pf
µ̄, L[µ̄])-generic system of indiscernibles C ⊆ λ

such that fC = f and for every set x ⊂ Ord there is a set
y ∈ L[µ̄, C] such that x ⊆ y and |y| = |x|+ ω1. Furthermore,
the system C is unique up to finite differences.

For our next theorem, only the case ∀n f(n) = 1 is needed.
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Theorem

Assume V = L[µ̄], where µ̄ = ⟨µn : n < ω⟩ is a sequence of measures
s.t.κω = sup crit(µn) is least possible. Suppose λ > ω and cf(λ) = ω.

1 If λ ̸= κω, then the Z-degrees at λ are wellordered above any
singularizing degree;

2 If λ = κω, consider Z-degrees at λ above µ̄, viewing µ̄ as a subset
of λ. For η < λ+, let βη denote the η-th Z-ordinal (for ∅), and
B =def {βη | η < λ+ ∧ βη > limξ<η βξ}. Then

1 B = {αa | a ⊂ λ}. Define a˜ ≼ b˜⇔ αa ≤ αb, for a, b ⊂ λ.
Then ≼ prewellorders the Z-degrees at λ above µ̄.

2 For η < λ+, let αη = the η-th member of B,
let Aη be a subset of λ that codes the sequence ⟨αξ : ξ < η⟩,
and Cη be the set of all (Pµ̄, Lαη [µ̄])-generic sequences.
Then the Z-degrees at λ (above µ̄) with Z-ordinal αη are
exactly the degrees induced by

Aη ⊕ Cη = {(Aη, C) | C ∈ Cη ∪ {∅}}.
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αη

α0

α1

Deg[C0]

Deg[A1 ⊕ C1]

degree of µ̄

Deg[Aη ⊕ Cη]

A0

A1
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Proof of 2.

Fix an a ⊂ λ = κω, the real coding the theory of L[µ̄] is not in
M(a), so one can apply the Covering for L[µ̄] within M [a].

1 a is covered by a set y ∈ (L[µ̄])M [a] with |y| = |a|+ ℵ1,
2 a is covered by a set y ∈ (L[µ̄][Ca])

M [a] with |y| = |a|+ ℵ1,
where Ca is Pµ̄-generic over Lαa [µ̄]. Such Ca is “unique”.

Case 1: M [a] = (L[µ̄])M [a] = Lαa [µ̄],
Case 2: M [a] = (L[µ̄][Ca])

M [a] = Lαa [µ̄, Ca], for some Ca.

In both cases, αa is a βη for some η < λ+. By the minimality
of M [a], βη > limξ<η αξ. Thus B ⊇ {αa | a ⊂ λ}.

For η < λ+, as βη is the least Zermelo ordinal above
limξ<η βξ = limξ<η αξ, M [Aη] = Lβη [µ̄]. This proves 2-1.

But then Case 1 gives M [a] = M [Aη], for some η; and Case 2
gives M [a] = M [Aη, Ca], for some η. This proves 2-2. ⊣
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Moreover,

Theorem

Assume V = L[µ̄], and µ̄, κ̄, λ be as before. The following are
definable over the degree structure (Dλ

Z , <Z):

1 I = {A˜η | Aη ⊂ λ codes ⟨αi : i < η⟩, η < λ+}.
2 R = {(a˜, b˜) | a, b ⊂ λ, αa = αb}

Answers to the list. (at λ = supn κn)

Post Problem Yes. ∃ 2ω many pairwise incomp. degrees.3

Minimal Cover No.
Posner-Robinson No.

Degree Determinacy No.

3In fact, one can embed ([ω]ω,⊆∗). It’s unknown if one can have 2λ many.
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Two more properties

Corollary (V = L[µ̄])

1 There are infinite descending chains of Z-degrees at λ.

2 There is no infinite sequence ⟨a˜i : i < ω⟩ above the degree of
µ̄ such that JZ(a˜i+1) ≤Z a˜i.

(1) implies that (Dλ
Z ,≤Z) is illfounded.

For (D ,≤T ), both types of infinite descending sequences of
Turing degrees exist, i.e. (1) is true, (2) is false.

Both are false for the aforementioned wellordered degree
structures.
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Picture in L[U ]
Theorem (Yang)

Assume κ̄ = ⟨κn : n < ω⟩ is a sequence of measurable cardinals s.t.
each κn+1 carries κn many normal measures. Let λ = supn κn.
Then there is a minimal Z-degree cover for W˜, where W ⊂ λ
codes relevant information, in particular, the matrix U of measures.

One can find this structure in Mitchell’s model for o(κ) = κ.

Answers to the list:

Post Problem Yes. ∃ 2λ many pairwise incomp. degrees.
Minimal Cover Yes. ∃ 2λ many minimal covers for W˜.

Posner-Robinson very likely to be “No”.
Degree Determinacy very likely to be “No”.

For the descending chain questions, Yes to the first one, unknown for the

second.
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Picture from I0

Definition

I0(λ) is the following assertion: There exists an elementary
embedding j : L(Vλ+1) → L(Vλ+1) such that crit(j) < λ.

Theorem

Assume ZFC+ I0(λ). Then

1 For almost all (co-λ many) X ⊂ λ,

(∃G ⊂ λ ) [x˜⊕G˜ ≡Z JZ(G)
˜

].

2 Suppose in Vλ, κ0 =def crit(j) is supercompact, and its
supercompactness is indestructible by κ0-directed posets.a.
Then

L(Vλ+1) |= ¬Detλ(Z-Deg).

aLet us call this I∗0 (λ). ∃λI∗0 (λ) is equiconsistent with ∃λI0(λ)
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Answers to the list:

Post Problem Yes. ∃ 2λ many pairwise incomp. degrees.
Minimal Cover Yes. ∃ 2λ many minimal covers.

Posner-Robinson Yes.
Degree Determinacy almost “No”.

If replace I0(λ) by I∗0 (λ), then the last one is “No”.
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A table

Dω
T (Dℵω

Z )L (Dλ
≥Zµ̄

)L[µ̄] (Dλ
≥ZU )

L[U ] I∗0 (λ)

Post ✓ × ✓ ✓ ✓
Min-Cov ✓ - × ✓ ✓

P–R ✓ × × ? ✓
Deg-Det ∗ × × ? ×

WF ✓ × ✓ ✓ ?
Des-chain-2 ✓ × × ? ?

∗: independent of ZF.
?: unknown.
-: ✓ for one minimal cover, × for multiple minimal covers.
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Remark

The diversities of the types of degree structures at singular
cardinals of countable cofinality reflects the strength of large
cardinals carried in the model.

Among (fine structure) inner models, the “richness” of the
degree structures seems correlated to the location of λ in
these inner models, rather than to the strength of a particular
inner model.
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An example

Example

Assume ZFC+ GCH and there is a measurable cardinal κ of
Mitchell order o(κ) = κ++ plus a measurable cardinal κ′ > κ.

By results of Woodin and Gitik, with a small forcing, one can
arrange that in the generic extension

κ = ℵω,

GCH is true below ℵω,

2ℵω = ℵω+2

κ′ is measurable.

As every degree has only ℵω many predecessors in the degree
partial ordering, the Zermelo degree at ℵω cannot be well ordered
in the generic extension, in contrast to the picture in L[µ].
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Thank you!
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