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Émile Borel (1909): Normal Numbers

Definition

Let ξ be a real number.

I ξ is simply normal to base b iff in its base-b expansion, (ξ)b, each digit
appears with limiting frequency equal to 1/b.

I ξ is normal to base b iff in (ξ)b every finite pattern of numbers occurs
with limiting frequency equal to the expected value 1/b`, where ` is the
pattern length.

I ξ is absolutely normal iff it is normal to every base b.
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Normality

If the sequence of digits in (ξ)b were chosen independently at random, then the
simple normality of ξ in base b would be a special case of the Law of Large
Numbers.

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem

Give one example of an absolutely normal number.

It is not known whether any (or all) of the familiar irrational numbers are

absolutely normal: π, e,
1 +

√
5

2

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Examples

First constructions of absolutely normal numbers by Lebesgue and Sierpiński,
independently, 1917.

Theorem (Champernowne 1933)

0.123456789101112131415161718192021222324 . . . is normal to base ten.

An elementary but intricate counting argument shows that Champernowne’s
number is normal to base 10, but it is not known whether it is absolutely
normal.
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A computable example

Theorem (Turing ∼1938 (see Becher, Figueira and Picchi 2007))

There is a computable absolutely normal number.

Other computable instances Schmidt 1961/1962, Becher and Figueira 2002.
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Absolutely normal numbers in just above quadratic time

Theorem (Becher, Heiber and Slaman 2013)

Suppose f : N→ N is a computable non-decreasing unbounded function. There
is an algorithm to compute an absolutely normal number ξ such that, for any
base b, the algorithm outputs the first n digits in (ξ)b after O(f (n) n2)
elementary operations.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another
argument for an absolutely normal number in polynomial time, based on
polynomial-time martingales.
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Discrepancy

Let {bnξ} denote the fractional part of bnξ.

Theorem (Wall 1949)

A real number ξ is normal to base b iff the sequence ({bnξ} : 0 ≤ n <∞) is
uniformly distributed in [0, 1]: for every 0 ≤ u < v ≤ 1,

lim
N→∞

#{n : 1 ≤ n ≤ N, u ≤ {bnξ} < v}
N

= (v − u).

Definition

Let N be a positive integer. Let ξ1, . . . , ξN be real numbers in [0, 1]. The
discrepancy of ξ1, . . . , ξN is

D(ξ1, . . . , ξN) = sup
0≤u<v≤1

∣∣∣#{n : 1 ≤ n ≤ N, u ≤ ξn < v}
N

− (v − u)
∣∣∣.

A real number ξ is normal to base b iff lim
N→∞

D({bnξ} : 0 ≤ n ≤ N) = 0.
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The output of the effective algorithm in base 10

Programmed by Martin Epszteyn

0.4031290542003809132371428380827059102765116777624189775110896366...

First 250000 digits output by the algorithm First 250000 digits of Champernowne

Plotted in 500x500 pixels, 10 colors Plotted in 500x500 pixels, 10 colors
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Normality to Different Bases

There is one readily-identified connection between normality to one base and
normality to another.

Definition

For natural numbers b1 and b2 greater than 0, we say that b1 and b2 are
multiplicatively dependent if they have a common power.

Theorem (Maxfield 1953)

If b1 and b2 are multiplicatively dependent bases, then, for any real ξ, ξ is
normal to base b1 iff it is normal to base b2.
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Multiplicative independence

Theorem (Schmidt 1961/62)

Let R be a subset of the natural numbers greater than or equal to 2 which is
closed under multiplicative dependence. There is a real ξ such that ξ is normal
to every base in R and not normal to any integer base in the complement of R.
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Normal numbers and Weyl’s criterion

Theorem (Weyl’s Criterion)

A sequence (ξn : n ≥ 1) is uniformly distributed modulo one iff
for every complex-valued 1-periodic continuous function f ,

lim
N→∞

1

N

N∑
n=1

f (ξn) =

∫ 1

0

f (x)dx .

That is, iff for every non-zero integer t, lim
N→∞

1

N

N∑
n=1

e2πitξn = 0

Thus, ξ is normal to base b iff for every non-zero t

lim
N→∞

1

N

N−1∑
n=0

e2πitbnξ = 0.

Schmidt’s argument rested upon subtle estimates of such harmonic sums.
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A Logician’s Analysis of Independence Between Bases.

Let S be the set of minimal representatives of the multiplicative dependence
classes.

Theorem (Becher and Slaman 2013)

Let R be a Π0
3 subset of S. There is a real ξ such that ξ is normal to every

base in R and not normal to any of the other elements of S. Furthermore, ξ is
uniformly computable in the Π0

3 formula which defines R.

An index set calculation:

Theorem (Becher and Slaman 2013)

The set of real numbers that are normal to at least one base is Σ0
4-complete.

A fixed point:

Theorem (Becher and Slaman 2013)

For any Π0
3 formula ϕ there is a computable real ξ such that for all b in S, ξ is

normal to base b iff ϕ(ξ, b) is true.
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Simple Normality

ξ is simply normal to base b iff each digit appears with limiting frequency equal
to 1/b in the base-b expansion of ξ.

Necessary Conditions:

Theorem

For any base b and real number ξ, the following hold.

I For any positive integers k and m, if ξ is simply normal to base bkm then ξ
is simply normal to base bm.

I (Long 1957) If there are infinitely many positive integers m such that ξ is
simply normal to base bm, then ξ is simply normal to all powers of b.
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Simple Normality

ξ is simply normal to base b iff each digit appears with limiting frequency equal
to 1/b in the base-b expansion of ξ.

Necessary and Sufficient Conditions:

Theorem (Becher, Bugeaud and Slaman 2013)

Let M be a set of natural numbers greater than or equal to 2 such that the
following necessary conditions hold.

I For any b and positive integers k and m, if bkm ∈ M then then bm ∈ M.

I For any b, if there are infinitely many positive integers m such that
bm ∈ M, then all powers of b belong to M.

There is a real number ξ such that for every base b, ξ is simply normal to base
b iff b ∈ M.

Thanks to Mark Haiman for providing a needed result in combinatorial number
theory.
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A Comment on Hausdorff Dimension

In the above, we exhibit a Cantor-like construction of a fractal such that its
uniform measure concentrates on reals of the desired simple-normality type. By
inspection of the construction, there are such fractals with Hausdorff dimension
arbitrarily close to one.
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Irrationality Exponents

Definition (originating with Liouville 1855)

For a real number ξ, the irrationality exponent of ξ is the least upper bound of
the set of real numbers z such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0.

I When z is large and 0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qz
, then p/q is a good approximation

to ξ when seen in the scale of 1/q.

I The irrationality exponent of ξ is a indicator for how well ξ can be
approximated by rational numbers (a linear version of Kolmogorov
complexity).
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Context

I Liouville numbers are those with infinite irrationality exponent.

I Almost all real numbers have irrationality exponent equal to 2.

I (Roth 1955) Irrational algebraic numbers have irrationality exponent equal
to 2.

We will compute real numbers so as to control their irrationality exponents in
combination with other properties.
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The Jarńık-Besicovitch Theorem

Theorem (Jarńık 1929 and Besicovitch 1934)

For every real number a greater than or equal to 2, the set of numbers with
irrationality exponent equal to a has Hausdorff dimension 2/a.

By direct application of the definitions, the Hausdorff dimension of the set of
numbers with irrationality exponent a is less than or equal to 2/a. The other
inequality comes from an early application of fractal geometry.
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Jarńık’s Fractal

For each real number a greater than 2, Jarńık gave a Cantor-like construction
of a fractal J contained in [0, 1] of Hausdorff dimension 2/a such that the
uniform measure ν on J satisfies the following:

I The set of numbers with irrationality exponent greater than or equal to a
has ν-measure equal to 1.

I For all b greater than a, the set of numbers with irrationality exponent
greater than or equal to b has ν-measure equal to 0.
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Computing Real Numbers with Specified Irrationality
Exponent

Theorem (Becher, Bugeaud and Slaman)

A real number a is the irrationality exponent of a recursive real number iff a is
right recursively enumerable relative to 0′.
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Further into Normality

Definition

Suppose µ is a measure on R. The Fourier Transform µ̂ of µ is given by

µ̂(t) =

∫ ∞
−∞

e2πitξdµ(ξ)

Theorem (Davenport, Erdős and LeVeque 1963)

If µ is a measure on R such that µ̂ vanishes at ∞ sufficiently quickly, then
µ-almost every real number is absolutely normal.
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Absolutely Normal Liouville Numbers

I (Kaufman 1981) For any real number a > 2, there is a measure ν on the
Jarńık fractal for a such that the Fourier transform of ν vanishes at
infinity. The measure ν is a smooth version of the uniform measure.

I (Bluhm 2000) There is a measure ν supported by the Liouville numbers
such that the Fourier transform of ν vanishes at infinity.

I (Bugeaud 2002) There is an absolutely normal Liouville number.
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Computing Absolutely Normal Liouville Numbers

Theorem (Becher, Heiber and Slaman 2013)

There is a computable absolutely normal Liouville number.
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Computing Numbers with Specified Irrationality Exponent
and Pattern of Normality

Theorem (Becher, Bugeaud and Slaman)

For every for every real number a ≥ 2 and every set of bases M satisfying the
conditions for simple normality, there is a real number ξ that has irrationality
exponent a and is simply normal to exactly the bases in M.

One considers a mix between the Jarńık and Simple-Normality fractals. The
uniform measure on the mixed fractal is supported by real numbers of the
desired type. Further, such a ξ can be computed from a and M.
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Irrationality Exponents and Effective Hausdorff Dimension
Work in Progress

Definition

The effective Hausdorff dimension of a real number ξ is the limit infimum of
the rational numbers r such that for infinitely many n the sequence of the first
n digits in the binary expansion of ξ has Kolmogorov complexity less than or
equal to r × n.

If the irrationality exponent of ξ is equal to a, then ξ has effective Hausdorff
dimension less than or equal to 2/a.

Theorem (Becher, Reimann and Slaman)

For each recursive a ≥ 2, there is a real number ξ such that the irrationality
exponent of ξ is a and the effective Hausdorff dimension of ξ is 2/a.

We conjecture that for every a ≥ 2, every b in [0, 2/a] can be the effective
Hausdorff dimension of some ξ with irrationality exponent a.
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