# On Normal Numbers 

Theodore A. Slaman

University of California Berkeley

Joint work with Verónica Becher, and in part with Pablo Heiber, Yann Bugeaud and Jan Reimann


April 29, 2015

## Émile Borel (1909): Normal Numbers

## Definition

Let $\xi$ be a real number.

- $\xi$ is simply normal to base $b$ iff in its base- $b$ expansion, $(\xi)_{b}$, each digit appears with limiting frequency equal to $1 / b$.
- $\xi$ is normal to base $b$ iff in $(\xi)_{b}$ every finite pattern of numbers occurs with limiting frequency equal to the expected value $1 / b^{\ell}$, where $\ell$ is the pattern length.
- $\xi$ is absolutely normal iff it is normal to every base $b$.


## Normality

If the sequence of digits in $(\xi)_{b}$ were chosen independently at random, then the simple normality of $\xi$ in base $b$ would be a special case of the Law of Large Numbers.

## Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

## Problem

Give one example of an absolutely normal number.
It is not known whether any (or all) of the familiar irrational numbers are absolutely normal: $\pi, e, \frac{1+\sqrt{5}}{2}$

Conjecture (Borel 1950)
Irrational algebraic numbers are absolutely normal.

## Examples

First constructions of absolutely normal numbers by Lebesgue and Sierpiński, independently, 1917.

## Theorem (Champernowne 1933)

$0.123456789101112131415161718192021222324 \ldots$ is normal to base ten.
An elementary but intricate counting argument shows that Champernowne's number is normal to base 10, but it is not known whether it is absolutely normal.

## A computable example

Theorem (Turing ~1938 (see Becher, Figueira and Picchi 2007))
There is a computable absolutely normal number.
Other computable instances Schmidt 1961/1962, Becher and Figueira 2002.

## Absolutely normal numbers in just above quadratic time

## Theorem (Becher, Heiber and Slaman 2013)

Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ is a computable non-decreasing unbounded function. There is an algorithm to compute an absolutely normal number $\xi$ such that, for any base $b$, the algorithm outputs the first $n$ digits in $(\xi)_{b}$ after $O\left(f(n) n^{2}\right)$ elementary operations.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument for an absolutely normal number in polynomial time, based on polynomial-time martingales.

## Discrepancy

Let $\left\{b^{n} \xi\right\}$ denote the fractional part of $b^{n} \xi$.

## Theorem (Wall 1949)

A real number $\xi$ is normal to base $b$ iff the sequence $\left(\left\{b^{n} \xi\right\}: 0 \leq n<\infty\right)$ is uniformly distributed in $[0,1]$ : for every $0 \leq u<v \leq 1$,

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{n: 1 \leq n \leq N, u \leq\left\{b^{n} \xi\right\}<v\right\}}{N}=(v-u)
$$

## Definition

Let $N$ be a positive integer. Let $\xi_{1}, \ldots, \xi_{N}$ be real numbers in $[0,1]$. The discrepancy of $\xi_{1}, \ldots, \xi_{N}$ is

$$
D\left(\xi_{1}, \ldots, \xi_{N}\right)=\sup _{0 \leq u<v \leq 1}\left|\frac{\#\left\{n: 1 \leq n \leq N, u \leq \xi_{n}<v\right\}}{N}-(v-u)\right|
$$

A real number $\xi$ is normal to base $b$ iff $\lim _{N \rightarrow \infty} D\left(\left\{b^{n} \xi\right\}: 0 \leq n \leq N\right)=0$.

## The output of the effective algorithm in base 10

## Programmed by Martin Epszteyn

$0.4031290542003809132371428380827059102765116777624189775110896366 \ldots$


First 250000 digits output by the algorithm Plotted in $500 \times 500$ pixels, 10 colors


First 250000 digits of Champernowne Plotted in $500 \times 500$ pixels, 10 colors

## Normality to Different Bases

There is one readily-identified connection between normality to one base and normality to another.

## Definition

For natural numbers $b_{1}$ and $b_{2}$ greater than 0 , we say that $b_{1}$ and $b_{2}$ are multiplicatively dependent if they have a common power.

## Theorem (Maxfield 1953)

If $b_{1}$ and $b_{2}$ are multiplicatively dependent bases, then, for any real $\xi, \xi$ is normal to base $b_{1}$ iff it is normal to base $b_{2}$.

## Multiplicative independence

## Theorem (Schmidt 1961/62)

Let $R$ be a subset of the natural numbers greater than or equal to 2 which is closed under multiplicative dependence. There is a real $\xi$ such that $\xi$ is normal to every base in $R$ and not normal to any integer base in the complement of $R$.

## Normal numbers and Weyl's criterion

## Theorem (Weyl's Criterion)

A sequence ( $\xi_{n}: n \geq 1$ ) is uniformly distributed modulo one iff for every complex-valued 1-periodic continuous function $f$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(\xi_{n}\right)=\int_{0}^{1} f(x) d x
$$

That is, iff for every non-zero integer $t, \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i t \xi_{n}}=0$

Thus, $\xi$ is normal to base $b$ iff for every non-zero $t$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} e^{2 \pi i t b^{n} \xi}=0
$$

Schmidt's argument rested upon subtle estimates of such harmonic sums.

## A Logician's Analysis of Independence Between Bases.

Let $\mathcal{S}$ be the set of minimal representatives of the multiplicative dependence classes.

## Theorem (Becher and Slaman 2013)

Let $R$ be a $\Pi_{3}^{0}$ subset of $\mathcal{S}$. There is a real $\xi$ such that $\xi$ is normal to every base in $R$ and not normal to any of the other elements of $\mathcal{S}$. Furthermore, $\xi$ is uniformly computable in the $\Pi_{3}^{0}$ formula which defines $R$.

An index set calculation:

## Theorem (Becher and Slaman 2013)

The set of real numbers that are normal to at least one base is $\Sigma_{4}^{0}$-complete.
A fixed point:
Theorem (Becher and Slaman 2013)
For any $\Pi_{3}^{0}$ formula $\varphi$ there is a computable real $\xi$ such that for all $b$ in $\mathcal{S}, \xi$ is normal to base b iff $\varphi(\xi, b)$ is true.

## Simple Normality

$\xi$ is simply normal to base $b$ iff each digit appears with limiting frequency equal to $1 / b$ in the base- $b$ expansion of $\xi$.

Necessary Conditions:

## Theorem

For any base $b$ and real number $\xi$, the following hold.

- For any positive integers $k$ and $m$, if $\xi$ is simply normal to base $b^{k m}$ then $\xi$ is simply normal to base $b^{m}$.
- (Long 1957) If there are infinitely many positive integers $m$ such that $\xi$ is simply normal to base $b^{m}$, then $\xi$ is simply normal to all powers of $b$.


## Simple Normality

$\xi$ is simply normal to base $b$ iff each digit appears with limiting frequency equal to $1 / b$ in the base- $b$ expansion of $\xi$.

Necessary and Sufficient Conditions:

## Theorem (Becher, Bugeaud and Slaman 2013)

Let $M$ be a set of natural numbers greater than or equal to 2 such that the following necessary conditions hold.

- For any $b$ and positive integers $k$ and $m$, if $b^{k m} \in M$ then then $b^{m} \in M$.
- For any $b$, if there are infinitely many positive integers $m$ such that $b^{m} \in M$, then all powers of $b$ belong to $M$.
There is a real number $\xi$ such that for every base $b, \xi$ is simply normal to base $b$ iff $b \in M$.

Thanks to Mark Haiman for providing a needed result in combinatorial number theory.

## A Comment on Hausdorff Dimension

In the above, we exhibit a Cantor-like construction of a fractal such that its uniform measure concentrates on reals of the desired simple-normality type. By inspection of the construction, there are such fractals with Hausdorff dimension arbitrarily close to one.

## Irrationality Exponents

## Definition (originating with Liouville 1855)

For a real number $\xi$, the irrationality exponent of $\xi$ is the least upper bound of the set of real numbers $z$ such that

$$
0<\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{z}}
$$

is satisfied by an infinite number of integer pairs $(p, q)$ with $q>0$.

When $z$ is large and $0<\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{z}}$, then $p / q$ is a good approximation to $\xi$ when seen in the scale of $1 / q$.

- The irrationality exponent of $\xi$ is a indicator for how well $\xi$ can be approximated by rational numbers (a linear version of Kolmogorov complexity).


## Context

- Liouville numbers are those with infinite irrationality exponent.
- Almost all real numbers have irrationality exponent equal to 2 .
- (Roth 1955) Irrational algebraic numbers have irrationality exponent equal to 2.

We will compute real numbers so as to control their irrationality exponents in combination with other properties.

## The Jarník-Besicovitch Theorem

## Theorem (Jarník 1929 and Besicovitch 1934)

For every real number a greater than or equal to 2 , the set of numbers with irrationality exponent equal to a has Hausdorff dimension 2/a.

By direct application of the definitions, the Hausdorff dimension of the set of numbers with irrationality exponent $a$ is less than or equal to $2 / a$. The other inequality comes from an early application of fractal geometry.

## Jarník's Fractal

For each real number a greater than 2, Jarník gave a Cantor-like construction of a fractal $J$ contained in $[0,1]$ of Hausdorff dimension $2 / a$ such that the uniform measure $\nu$ on $J$ satisfies the following:

- The set of numbers with irrationality exponent greater than or equal to a has $\nu$-measure equal to 1 .
- For all $b$ greater than $a$, the set of numbers with irrationality exponent greater than or equal to $b$ has $\nu$-measure equal to 0 .


## Computing Real Numbers with Specified Irrationality Exponent

## Theorem (Becher, Bugeaud and Slaman)

A real number a is the irrationality exponent of a recursive real number iff a is right recursively enumerable relative to $0^{\prime}$.

## Further into Normality

## Definition

Suppose $\mu$ is a measure on $\mathbb{R}$. The Fourier Transform $\hat{\mu}$ of $\mu$ is given by

$$
\hat{\mu}(t)=\int_{-\infty}^{\infty} e^{2 \pi i t \xi} d \mu(\xi)
$$

## Theorem (Davenport, Erdős and LeVeque 1963)

If $\mu$ is a measure on $\mathbb{R}$ such that $\hat{\mu}$ vanishes at $\infty$ sufficiently quickly, then $\mu$-almost every real number is absolutely normal.

## Absolutely Normal Liouville Numbers

- (Kaufman 1981) For any real number $a>2$, there is a measure $\nu$ on the Jarník fractal for a such that the Fourier transform of $\nu$ vanishes at infinity. The measure $\nu$ is a smooth version of the uniform measure.
- (Bluhm 2000) There is a measure $\nu$ supported by the Liouville numbers such that the Fourier transform of $\nu$ vanishes at infinity.
- (Bugeaud 2002) There is an absolutely normal Liouville number.


## Computing Absolutely Normal Liouville Numbers

Theorem (Becher, Heiber and Slaman 2013)
There is a computable absolutely normal Liouville number.

## Computing Numbers with Specified Irrationality Exponent and Pattern of Normality

## Theorem (Becher, Bugeaud and Slaman)

For every for every real number $a \geq 2$ and every set of bases $M$ satisfying the conditions for simple normality, there is a real number $\xi$ that has irrationality exponent $a$ and is simply normal to exactly the bases in $M$.

One considers a mix between the Jarník and Simple-Normality fractals. The uniform measure on the mixed fractal is supported by real numbers of the desired type. Further, such a $\xi$ can be computed from $a$ and $M$.

## Irrationality Exponents and Effective Hausdorff Dimension

## Work in Progress

## Definition

The effective Hausdorff dimension of a real number $\xi$ is the limit infimum of the rational numbers $r$ such that for infinitely many $n$ the sequence of the first $n$ digits in the binary expansion of $\xi$ has Kolmogorov complexity less than or equal to $r \times n$.

If the irrationality exponent of $\xi$ is equal to $a$, then $\xi$ has effective Hausdorff dimension less than or equal to $2 / a$.

Theorem (Becher, Reimann and Slaman)
For each recursive $a \geq 2$, there is a real number $\xi$ such that the irrationality exponent of $\xi$ is a and the effective Hausdorff dimension of $\xi$ is 2/a.

We conjecture that for every $a \geq 2$, every $b$ in $[0,2 / a]$ can be the effective Hausdorff dimension of some $\xi$ with irrationality exponent $a$.

