Partial homogeneity of projective Fraisse limits and homogeneity of the pseudo-arc

Sławomir Solecki

University of Illinois at Urbana-Champaign Research supported by NSF grant DMS-1266189

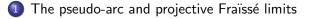
April 2015

(中) (종) (종) (종) (종) (종)

Most of the work is joint with Todor Tsankov.

(日)

Outline of Topics



- Projective types
- Homogeneity for points with minimal types
 - The transfer theorem
- 5 Questions and extensions

・ 何 ト ・ ヨ ト ・ ヨ ト

The pseudo-arc and projective Fraïssé limits

Sławomir Solecki (University of Illinois)

April 2015 4 / 31

The pseudo-arc

$\mathcal{K}([0,1]^2)=\text{compact subsets of }[0,1]^2$ with the Vietoris topology

イロト イヨト イヨト イヨト

 $\mathcal{C} =$ all connected sets in $\mathcal{K}([0,1]^2)$

(日) (同) (三) (三)

- $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^2)$
- $\ensuremath{\mathcal{C}}$ is compact

(日) (同) (三) (三)

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

・ロト ・四ト ・ヨト ・ヨト

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudo-arc**.

(日) (同) (三) (三) (三)

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^3)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudo-arc**.

・ロト ・ 一 ・ ・ ヨト ・ ヨト

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^4)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudo-arc**.

・ロト ・ 一 ・ ・ ヨト ・ ヨト

 $\mathcal{K}([0,1]^n) = \text{compact subsets of } [0,1]^n \text{ with the Vietoris topology, } n \ge 2$ $\mathcal{K}([0,1]^n) \text{ is compact, } n \ge 2$

 $\mathcal{C}=$ all connected sets in $\mathcal{K}([0,1]^n)$, $n\geq 2$

 ${\mathcal C}$ is compact

There exists a (unique up to homeomorphism) $P \in C$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudo-arc**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

 $\mathcal{K}([0,1]^{\omega}) =$ compact subsets of $[0,1]^{\omega}$ with the Vietoris topology $\mathcal{K}([0,1]^{\omega})$ is compact

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^\omega)$

 $\ensuremath{\mathcal{C}}$ is compact

There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudo-arc**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

(日) (同) (日) (日) (日)

The pseudo-arc is a hereditarily indecomposable continuum

(日) (同) (三) (三)

The pseudo-arc is a **hereditarily indecomposable** continuum, that is, if $C_1, C_2 \subseteq P$ are continua with $C_1 \cap C_2 \neq \emptyset$, then $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.

(日) (周) (三) (三)

The pseudo-arc is a **hereditarily indecomposable** continuum, that is, if $C_1, C_2 \subseteq P$ are continua with $C_1 \cap C_2 \neq \emptyset$, then $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.

The pseudo-arc was discovered by Knaster in 1922.

(日) (周) (三) (三)

Projective Fraïssé limits

(日) (同) (三) (三)

${\mathcal F}$ a family of finite structures

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

< ロ > < 同 > < 三 > < 三

- \mathcal{F} a family of finite structures
- Consider \mathcal{F} with **epimorphisms** between structures.
- \mathcal{F} is called a **projective Fraïssé family** if it **Joint Epimorphism Property** and **Projective Amalgamation Property**.

A (10) A (10)

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

\mathcal{F} is called a projective Fraïssé family if it Joint Epimorphism Property and Projective Amalgamation Property.

Irwin–S.: If \mathcal{F} is a projective Fraïssé family, then there exists a unique projective limit

$$\mathbb{F} = \varprojlim \mathcal{F}$$

that is projectively universal and projectively homogeneous.

${\mathcal F}$ a family of finite structures

Consider \mathcal{F} with **epimorphisms** between structures.

\mathcal{F} is called a projective Fraïssé family if it Joint Epimorphism Property and Projective Amalgamation Property.

Irwin–S.: If \mathcal{F} is a projective Fraïssé family, then there exists a unique projective limit

$$\mathbb{F} = \varprojlim \mathcal{F}$$

that is projectively universal and projectively homogeneous.

 \mathbb{F} also has **Projective Extension Property**.

- 4 目 ト - 4 日 ト - 4 日 ト

The connection

<ロ> (日) (日) (日) (日) (日)

$\mathcal{P} =$ all finite, linear, reflexive graphs with graph relation R

(日)

$\mathcal{P}=$ all finite, linear, reflexive graphs with graph relation R

Irwin–S.: \mathcal{P} is a projective Fraïssé family.

< ロ > < 同 > < 三 > < 三

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $\mathbb{R}^{\mathbb{P}}$.

(日) (同) (三) (三)

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

(日) (同) (日) (日)

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Irwin–S.: $\mathbb{P}/\mathbb{R}^{\mathbb{P}}$ is the pseudo-arc.

(日) (同) (三) (三)

Let $\mathbb{P} = \varprojlim \mathcal{P}$ be the projective Fraïssé limit of \mathcal{P} with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Irwin–S.: $\mathbb{P}/\mathbb{R}^{\mathbb{P}}$ is the pseudo-arc.

There is a natural continuous homomorphism

```
\operatorname{Aut}(\mathbb{P}) \to \operatorname{Homeo}(\mathbb{P}/\mathbb{R}^{\mathbb{P}})
```

with dense range.

イロト 不得 トイヨト イヨト 二日

Bing: The pseudo-arc is homogeneous

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bing: The pseudo-arc is homogeneous, that is, for any $x, y \in P$, there exists $f \in \text{Homeo}(P)$ such that f(x) = y.

(日) (同) (三) (三)

Projective types

Sławomir Solecki (University of Illinois)

Homogeneity and pseudo-arc

▶ ◀ ≣ ▶ ≣ ∽ ९ ୯ April 2015 14 / 31

(日) (同) (日) (日) (日)

M is a **structure** if

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

M is a structure if

- M is a compact, 0-dimensional, second countable space,
- R^M is a closed binary relation on M,
- each continuous function $M \to X$, with X finite, factors through an epimorphism $M \to A$ for some $A \in \mathcal{P}$.

A B A A B A

Let $f: M \to X$ be continuous, with X finite.

Let $f: M \to X$ be continuous, with X finite. So f is a projective tuple.

Let $f: M \to X$ be continuous, with X finite. So f is a projective tuple. Let $p \in M$.

-

• • • • • • • • • • • •

Let $f: M \to X$ be continuous, with X finite. So f is a projective tuple. Let $p \in M$.

Define

$$t_{(M,p)}(f) = \{f(K) \colon p \in K \subseteq M, K \text{ structure}\}.$$

Sławomir Solecki (University of Illinois)

-

• • • • • • • • • • • •

Let $f: M \to X$ be continuous, with X finite. So f is a projective tuple. Let $p \in M$.

Define

$$t_{(M,p)}(f) = \{f(K) \colon p \in K \subseteq M, K \text{ structure}\}.$$

 $t_{(M,p)}(f)$ is a family of subsets of the finite set X.

(日) (同) (三) (三)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by \subseteq and with $\{x\} \in c$.

• • • • • • • • • • • •

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by \subseteq and with $\{x\} \in c$.

t is a **double chain at** *x* if $t = c_1 \oplus c_2 = \{I \cup J : I \in c_1, J \in c_2\}$ for some c_1, c_2 chains at *x*.

(日) (周) (三) (三)

c is a **chain at** *x* if *c* is a maximal family of subsets of *X* linearly ordered by \subseteq and with $\{x\} \in c$.

t is a **double chain at** *x* if $t = c_1 \oplus c_2 = \{I \cup J : I \in c_1, J \in c_2\}$ for some c_1, c_2 chains at *x*.

Lemma

Let M be a structure, $p \in M$, and $f : M \to X$ be continuous with X finite. Then $t_{(M,p)}(f)$ is a double chain at f(p).

- 4 週 ト - 4 三 ト - 4 三 ト

 $t_{(M,p)}(f)$ is called:

E 990

・ロト ・四ト ・ヨト ・ヨト

 $t_{(M,p)}(f)$ is called:

almost minimal if $t_{(M,p)}(f) = c_1 \oplus c_2 = c_1 \cup c_2$, for some chains c_1 and c_2 at f(p);

・ロン ・四 ・ ・ ヨン ・ ヨン

 $t_{(M,p)}(f)$ is called:

almost minimal if $t_{(M,p)}(f) = c_1 \oplus c_2 = c_1 \cup c_2$, for some chains c_1 and c_2 at f(p);

minimal if $t_{(M,p)}(f)$ is a chain at f(p).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Lemma (A, important)

 $t_{(M,p)}(f)$ is minimal if and only if

<ロ> (日) (日) (日) (日) (日)

Lemma (A, important)

$t_{(M,p)}(f)$ is minimal if and only if there are $A \in \mathcal{P}$, an epimorphism $h: M \to A$, and $g: A \to X$ such that

• • = • • = •

Lemma (A, important)

 $t_{(M,p)}(f)$ is minimal if and only if there are $A \in \mathcal{P}$, an epimorphism $h: M \to A$, and $g: A \to X$ such that (i) $f = g \circ h$; (ii) h(p) is an endpoint of A.

< 回 ト < 三 ト < 三 ト

Homogeneity for points with minimal types

Sławomir Solecki (University of Illinois)

Homogeneity and pseudo-arc

April 2015 20 / 31

Image: A image: A

Lemma

Let $p \in \mathbb{P}$, $f : \mathbb{P} \to X$ continuous, X finite.

<ロ> (日) (日) (日) (日) (日)

Lemma

Let $p \in \mathbb{P}$, $f : \mathbb{P} \to X$ continuous, X finite. Then $t_{(\mathbb{P},p)}(f)$ is almost minimal.

Sławomir Solecki (University of Illinois)

$p \in \mathbb{P}$ has minimal types if $t_{(M,p)}(f)$ is minimal for each continuous $f : \mathbb{P} \to X$ with X finite.

(日) (同) (日) (日) (日)

 $p \in \mathbb{P}$ has minimal types if $t_{(M,p)}(f)$ is minimal for each continuous $f : \mathbb{P} \to X$ with X finite.

Theorem (S.–Tsankov)

Let $p, q \in \mathbb{P}$. Assume that $R^{\mathbb{P}}(p) = \{p\}$ and $R^{\mathbb{P}}(q) = \{q\}$ and p and q have minimal types.

A B F A B F

 $p \in \mathbb{P}$ has minimal types if $t_{(M,p)}(f)$ is minimal for each continuous $f : \mathbb{P} \to X$ with X finite.

Theorem (S.–Tsankov)

Let $p, q \in \mathbb{P}$. Assume that $R^{\mathbb{P}}(p) = \{p\}$ and $R^{\mathbb{P}}(q) = \{q\}$ and p and q have minimal types. Then there exists $f \in Aut(\mathbb{P})$ such that f(p) = q.

イロト 不得下 イヨト イヨト

(日) (同) (三) (三)

Lemma (B, important)

Given:

Sławomir Solecki (University of Illinois)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Lemma (B, important)

Given: $p \in \mathbb{P}$ with $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}$, $a \in A$ an endpoint, $b \in B$;

< 注入 < 注入

Lemma (B, important)

Given: $p \in \mathbb{P}$ with $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}$, $a \in A$ an endpoint, $b \in B$; $f : \mathbb{P} \to A$ an epimorphism, $g : B \to A$ an epimorphism,

Lemma (B, important)

Given: $p \in \mathbb{P}$ with $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}$, $a \in A$ an endpoint, $b \in B$; $f : \mathbb{P} \to A$ an epimorphism, $g : B \to A$ an epimorphism, f(p) = a, g(b) = a.

イロト 不得下 イヨト イヨト 二日

Lemma (B, important)

Given: $p \in \mathbb{P}$ with $R^{\mathbb{P}}(p) = \{p\}$, $A, B \in \mathcal{P}$, $a \in A$ an endpoint, $b \in B$; $f : \mathbb{P} \to A$ an epimorphism, $g : B \to A$ an epimorphism, f(p) = a, g(b) = a.Conclusion: there exists an epimorphism $h : \mathbb{P} \to B$ such that h(p) = b.

イロト イポト イヨト イヨト 二日

The transfer theorem

Sławomir Solecki (University of Illinois)

Homogeneity and pseudo-arc

▶ ▲ 클 ▶ 클 ∽ ۹ C April 2015 24 / 31

Aim: transfer partial homogeneity from \mathbb{P} to full homogeneity of $\mathbb{P}/\mathbb{R}^{\mathbb{P}}$.

Theorem (S.–Tsankov)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that

イロト イポト イヨト イヨト

Theorem (S.–Tsankov)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that (i) $x = p/R^{\mathbb{P}}$ for some $p \in \mathbb{P}$ having minimal types and with $R^{\mathbb{P}}(p) = \{p\};$

Sławomir Solecki (University of Illinois)

Theorem (S.–Tsankov)

For each $y \in \mathbb{P}/R^{\mathbb{P}}$, there exists $x \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to \mathbb{P}/R^{\mathbb{P}}$ such that (i) $x = p/R^{\mathbb{P}}$ for some $p \in \mathbb{P}$ having minimal types and with $R^{\mathbb{P}}(p) = \{p\};$ (ii) $\phi(x) = y.$

イロト 不得 トイヨト イヨト 二日

From partial homogeneity of ${\mathbb P}$ and the above transfer theorem we get the following corollary.

(日) (同) (三) (三)

From partial homogeneity of ${\mathbb P}$ and the above transfer theorem we get the following corollary.

Corollary (Bing) The pseudo-arc is homogeneous.

• = • •

イロト イヨト イヨト イヨト

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .

Weak commutation for epimorphisms $f: \mathbb{P} \to A, g: \mathbb{P} \to B \text{ and } h: \widehat{A} \to \widehat{B}:$

Given $A \in \mathcal{P}$, define the pre-dual $\widehat{A} \in \mathcal{P}$ of A with a bijection $A \ni a \to \widehat{a}$ an edge in \widehat{A} .

Weak commutation for epimorphisms $f: \mathbb{P} \to A, g: \mathbb{P} \to B \text{ and } h: \widehat{A} \to \widehat{B}:$

$$h[\widehat{f(p)}] \subseteq \widehat{g(p)}$$
 for each $p \in \mathbb{P}$.

Questions

Sławomir Solecki (University of Illinois)

Homogeneity and pseudo-arc

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ April 2015 29 / 31

<ロ> (日) (日) (日) (日) (日)

What is the complexity of the orbit equivalence relation of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} ?

What is the complexity of the orbit equivalence relation of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} ? Can orbits be characterized by types or sequences of types?

- What is the complexity of the orbit equivalence relation of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} ? Can orbits be characterized by types or sequences of types?
- Is there a partial homogeneity of $\mathbb P$ for several points?

- What is the complexity of the orbit equivalence relation of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} ? Can orbits be characterized by types or sequences of types?
- Is there a partial homogeneity of $\mathbb P$ for several points?
- Can one prove a maximal homogeneity of \mathbb{P} ?

- What is the complexity of the orbit equivalence relation of the natural action of $Aut(\mathbb{P})$ on \mathbb{P} ? Can orbits be characterized by types or sequences of types?
- Is there a partial homogeneity of $\mathbb P$ for several points?
- Can one prove a maximal homogeneity of \mathbb{P} ?
- Formulate a logic in which $t_{(M,p)}(f)$ become types.

Panagiotopoulos-S.: Menger compacta as projective Fraïssé limits

• • • • • • • • • • • •